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Nontrivial critical points of asymptotically

quadratic functions at resonances

by Michal Fečkan (Bratislava)

Abstract. Asymptotically quadratic functions defined on Hilbert spaces are studied
by using some results of the theory of Morse–Conley index. Applications are given to
existence of nontrivial weak solutions for asymptotically linear elliptic partial and ordinary
differential equations at resonances.

1. Introduction. This paper is a continuation of [2] and it is devoted
to the study of the existence of nontrivial critical points of asymptotically
quadratic functions defined on Hilbert spaces. The paper is divided into
three parts.

Section 2 deals with the existence of critical points for functions on
infinite-dimensional spaces which are asymptotically quadratic at infinity.
Recently several papers dealing with such problems have appeared (see [1,
5, 6]). In the first part of Section 2, results on existence of nontrivial criti-
cal points are proved for functions with asymptotically linear gradients and
whose linear asymptotes are mostly not invertible and trivial critical points
are degenerate. Certain relations are crucial between the Morse indices of
trivial degenerate critical points and the Morse indices of linear asymptotes.
In addition, conditions of the Landesman–Lazer type must be considered
(see [7] and [8]). Some theorems of Section 2 are also devoted to a case when
there are no such relations, but the given nondegenerate critical points lie
on the same level sets. These theorems can be naturally applied when the
functions considered are invariant under finite groups of transformations. In
that section we also study resonant cases.

Section 3 is devoted to the problem

(1.1)
−∆u+ h(u, x) = 0, x ∈ Ω,

u|∂Ω = 0,
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where Ω is an open bounded subset of R
3 with a smooth boundary ∂Ω and

h ∈ C(R ×Ω,R) is asymptotically linear in u and satisfies h(0, ·) = 0. The
existence of a nonzero weak solution of (1.1) is shown.

The last Section 4 deals with the existence of a nonzero solution of the
equation

(1.2)
−y′′ − n2y + g(y) = 0, x ∈ [0, π],

y(0) = y(π) = 0,

where n > 1 is a natural number and g ∈ C(R,R) is asymptotically linear
satisfying

(1.3) lim
u→0±

g(u)

|u|m sgnu
= l± <∞

for m > 1 and l+l− ≥ 0, l2− + l2+ > 0. The existence of small solutions
of boundary value problems like (1.2) is studied in [3] and [4], where the
isolatedness of the zero solution of (1.2) is proved under the condition (1.3).

We study the existence of nonzero solutions in (1.1–2) at resonances and
for degenerate cases, i.e. where both asymptotes at infinity and linearizations
at zero solutions have nonzero kernels. (1.1) with some symmetries is also
investigated.

2. Abstract results. Let H be a Hilbert space with an inner product
〈·, ·〉 and the norm |·|. Recall that the Morse index of a bounded self-adjoint
linear map is the (finite) dimension of the subspace of all eigenvectors of
that map with negative eigenvalues. The Morse index of a critical point of
a C2-smooth function is the Morse index of its Hessian at that point. The
Hessian at a critical point x of a C2-smooth function f at x is denoted by
Hess f(x). A critical point x of a C1-smooth function f is nondegenerate if
f is C2-smooth at x and Hess f(x) is invertible.

We note that f ∈ C1(H,R) is said to satisfy the P.S. condition (see [6,
Remark 4.2]) if every sequence {ui}

∞
i=1 ⊂ H such that {f(ui)}

∞
i=1 is bounded

and grad f(ui) → 0 as i→ ∞ contains a convergent subsequence. It is clear
that f ∈ C1(H,R) satisfies the P.S. condition provided that grad f is a
compact perturbation of a bounded linear, Fredholm, self-adjoint operator
and (grad f)−1(B) is bounded for any bounded subset B. The last property
is valid if grad f has an invertible linear asymptote at infinity.

Definition 2.1. Let f ∈ C1(H,R) have a critical point 0 such that
A = Hess f(0) exists, indexA exists and A is Fredholm. f is said to satisfy
the condition (C+), respectively (C−), if there is a constant α > 0 such
that for any sequences {rn}

∞
n=1, rn ∈ (0,∞), {zn}

∞
n=1, zn ∈ H, satisfying
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rn → 0+ and |zn| = O(r2n) as rn → 0+, we have

lim inf
n→∞

〈S(rnϕ+ zn), ϕ〉/rα
n > 0,

respectively

lim sup
n→∞

〈S(rnϕ+ zn), ϕ〉/rα
n < 0,

uniformly for ϕ ∈ ∂B1 ≡ {x ∈ kerA | |x| = 1}, where S = grad f −A.

Theorem 2.2. If f satisfies the condition (C+), respectively (C−), then

there is a neighbourhood U of 0 and a constant ε0 > 0 such that the only

critical point of f(x) + ε|x|2/2 in U is 0 for ε0 > ε > 0, respectively −ε0 <
ε < 0.

P r o o f. We consider the case (C+), the other one is similar. Assume the
contrary. Then there are εn → 0+ and xn → 0, xn 6= 0, such that

εnxn + grad f(xn) = 0.

Hence
εnxn2 +Axn2 +QAS(xn1 + xn2) = 0,

εnxn1 + PAS(xn1 + xn2) = 0,

where xn = xn1 + xn2, xn1 ∈ kerA, xn2 ∈ imA, and QA : H → imA,
PA : H → kerA are the orthogonal projections such that PA +QA = I.

Since (εnI +A)/imA→ imA is invertible, we obtain

|xn2| ≤ c|xn1 + xn2|
2 = c|xn1|

2 + c|xn2|
2,

|xn2| = O(|xn1|
2) as xn1 → 0.

We put xn1 = rnϕn, rn > 0, ϕn ∈ ∂B1. So |xn2| = O(r2n) as rn → 0+ and

εnrnϕn + PAS(rnϕn + xn2) = 0.

This implies

εnrn|ϕn|
2 + 〈S(rnϕn + xn2), ϕn〉 = 0

and so

εnrn + rα
n〈S(rnϕn + xn2), ϕn〉/r

α
n = 0.

But (C+) implies, for n sufficiently large,

0 = εnrn + rα
n〈S(rnϕn + xn2), ϕn〉/r

α
n > εnrn.

This contradiction finishes the proof.

R e m a r k 2.3. If S = S1 + S2, where S1(tx) = tαS1(x) for all t > 0
and x ∈ H, S1 is continuous, α > 0 is a constant and |S2(x)| = o(|x|α) for
small x, then the condition (C+), respectively (C−), is satisfied provided
〈S1(ϕ), ϕ〉 > 0, respectively 〈S1(ϕ), ϕ〉 < 0, for all ϕ ∈ ∂B1.

Definition 2.4. f ∈ C1(H,R) is said to satisfy the condition (H+),
respectively (H−), if:



46 M. Fečkan

(i) f(u) = 1
2 〈Lu, u〉+g(u), where L : H → H is a Fredholm, self-adjoint

bounded linear operator for which the Morse index exists;
(ii) There is a constant M > 0 such that |grad g(x)| ≤M for all x ∈ H;
(iii) grad g is a compact operator;
(iv) There is a continuous map ω : S1 = {v ∈ kerL | |v| = 1} → H such

that

lim
r→∞

grad g(u+ rv) = ω(v)

uniformly in both v ∈ S1 and u ∈ A for any fixed bounded subset A of H1;
(v) There is no solution of the equation λv + Pω(v) = 0 with v ∈ S1

and λ ≥ 0, respectively λ ≤ 0.

Theorem 2.5. If f satisfies the condition (H+), respectively (H−), then

there is a bounded neighbourhood V of 0 and a constant ε1 > 0 such that

there are no critical points of f(x) + ε|x|2/2 in H \ V for ε1 > ε > 0,
respectively −ε1 < ε < 0.

P r o o f. Let f satisfy (H+); the other case is similar. Set fε(u)=f(u) +
ε|u|2/2. Assume that there are H ∋ uεi

→ ∞ such that εi → 0 as i → ∞
and grad fεi

(uεi
) = 0.

We take the orthogonal projections P : H → kerL and Q = I−P . Then

(L+ εiI)uεi2 +Q grad g(uεi
) = 0,

εiuεi1 + P grad g(uεi1 + uεi2) = 0,

uεi
= uεi1 + uεi2, uεi1 ∈ kerL, uεi2 ∈ H1.

The assumption (ii) implies the boundedness of {uεi2} and {εiuεi1}. So
uεi1 → ∞. By putting wεi

= uεi1/|uεi1| we have

εi|uεi1|wεi
+ P grad g(uεi2 + |uεi1|wεi

) = 0.

We can assume wεi
→ w0 and εi|uεi1| → λ0. Finally, we arrive at the

equation

λ0w0 + Pω(w0) = 0

for some w0 ∈ S1 and λ0 ≥ 0. The contradiction with the assumption (v)
proves the result.

Theorem 2.6. If one of the following assumptions holds:

(i) f satisfies (C+), (H+) and indexA 6= indexL;
(ii) f satisfies (C+), (H−) and indexA 6= indexL+ dim kerL;
(iii) f satisfies (C−), (H+) and indexA+ dimkerA 6= indexL;
(iv) f satisfies (C−), (H−) and indexA+dimkerA 6= indexL+dimkerL,

then f has a critical point different from 0.

P r o o f. Take fε(x) = f(x) + εψ(|x|2/2), where

(a) ψ(x) = x and ε > 0 for the case (i);
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(b) ψ(x) = x and ε < 0 for the case (iv);

(c) For the case (iii), ε > 0 and ψ ∈ C∞(R,R) is such that

ψ(x) =

{
−x for |x| ≤ 1,
x for |x| ≥ 2;

(d) ε < 0 and ψ is as in (c) for the case (ii).

Then we take U , V from Theorems 2.2 and 2.5 with U shrunk and V
enlarged if necessary. On the other hand, we have grad fε(0) = 0 and
indexHess fε(0) 6=indexLε, where Lε is the asymptote of grad fε at infinity.
Moreover, Hess fε(0) and Lε are nondegenerate. So by the well-known result
[1], there is a critical point uε of fε for any ε small such that uε ∈ V \ U .
Since uε ∈ V and V is bounded, we can assume that uεi

weakly tends to
some u0 ∈ H as εi → 0 and i → ∞. By (i) and (iii) of Definition 2.4 it
follows immediately that we can assume uεij

→ u0 in H as j → ∞. Hence

u0 ∈ V \ U is the desired critical point of f .

R e m a r k 2.7. The assumption (v) of Definition 2.4 is satisfied if we
suppose

(vi) For any v ∈ kerL with |v| = 1 there is a symmetric positive semi-
definite matrix Mv ∈ L(kerL), with respect to the inner product on H, such
that 〈ω(v),Mvv〉 > 0, respectively 〈ω(v),Mvv〉 < 0.

If there is an orthogonal basis {ei} of kerL such that for each v ∈ kerL
with |v| = 1 there is i such that 〈ω(v), vi〉 > 0, respectively 〈ω(v), vi〉 < 0,
where v = (vj) is the orthogonal decomposition (the coordinates) of v corre-
sponding to {ei}, then, by taking Mvw = wi for w ∈ kerL, the assumption
(vi) holds.

Of course, (vi) holds provided that we assume

〈ω(v), v〉 > 0, respectively 〈ω(v), v〉 < 0, ∀v ∈ kerL, |v| = 1.

Moreover, according to the proof of Theorem 2.5, the assumptions (iv) and
(v) of Definition 2.4 can be replaced by

(vii) There is a continuous function ω̃ : S1 = {v ∈ kerL | |v| = 1} → R

such that ω̃ > 0, respectively ω̃ < 0, on S1 as well as

lim inf
r→∞

〈grad g(u+ r.v), v〉 ≥ ω̃(v),

respectively

lim sup
r→∞

〈grad g(u+ rv), v〉 ≤ ω̃(v),

uniformly in both v ∈ S1 and u ∈ A for any fixed bounded subset A of H1.

The following result is a generalization of [5, Theorem 1.3].
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Theorem 2.8. Let f ∈ C1(H,R) satisfy the condition (H+), respec-

tively (H−). Furthermore, assume that f has critical points x1, . . . , xk, f is

C2-smooth near these points and Hess f(xi), i = 1, . . . , k, are all Fredholm

operators possessing Morse indices. If

indexL 6∈ [indexHess f(xi), index Hess f(xi) + dim ker Hess f(xi)],

respectively

indexL+ dim kerL

6∈ [indexHess f(xi), indexHess f(xi) + dim ker Hess f(xi)],

for all i = 1, . . . , k, then f has another critical point.

P r o o f. We consider the case (H+); the other one is similar. We take the
perturbation

g(x) = f(x) + 〈a, x〉 + εψ̃(x),

where a ∈ H and ε > 0 are small and ψ̃ ∈ C1(H,R) is a convex function

equal to 0 in an open neighbourhood U ⊂ H of {x1, . . . , xk} and ψ̃(z) =

|z|2/2 for any z sufficiently large. Moreover, we can assume that grad ψ̃(B) is

bounded for any bounded subset B ⊂ H. Such a function ψ̃ can be defined
by the formula ψ̃(z) = τ(|z|2/2) for a function τ ∈ C∞(R,R) such that
τ ′ ≥ 0, τ ′′ ≥ 0 and

τ(x) =

{
0 for |x| ≤ max1≤i≤k |xi|

2/2 + 1,
x for |x| ≥ max1≤i≤k |xi|

2/2 + 3.

Of course, such a τ exists.

Let Ui, i = 1, . . . , k, be small, open bounded neighbourhoods of the
points x1, . . . , xk, respectively, such that f is C2-smooth on

⋃k
i=1 Ui and⋃k

i=1 Ui ⊂ U . We show the existence of a critical point of g in B \
⋃k

i=1 Ui,
where B is a sufficiently large, fixed ball. Indeed, if g has critical points only
in

⋃k
i=1 Ui, then by applying the Sard theorem, all the critical points can

be assumed to be nondegenerate. Moreover, since a is small and so are the
Ui, it follows that Hess g(u), for any critical point u ∈ Ui, is Fredholm with
Morse index in the interval

[indexHess f(xi), indexHess f(xi) + dim ker Hess f(xi)].

This holds for all i = 1, . . . , k. By assumption, indexL is not in this interval.
This contradicts [5, Theorem 1.3], since the asymptote of grad g is L + εI
and index(L + εI) = indexL for ε > 0 small. So g has a critical point in

B \
⋃k

i=1 Ui. By passing to the limit a→ 0, ε→ 0+, the proof is finished as
for Theorem 2.6.
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The following theorem extends the above results when there are no rela-
tions between the Morse indices of given nondegenerate critical points and
the Morse indices of linear asymptotes.

Theorem 2.9. Let f ∈ C1(H,R) satisfy the assumptions (i) and (iii)
of Definition 2.4 with L invertible and grad g(x) = o(|x|) as |x| → ∞.

Furthermore, assume that f has nondegenerate critical points x1, . . . , xk,
k ≥ 2, for which the Morse indices exist and f(x1) = . . . = f(xk). Then f
has another critical point.

P r o o f. If f only has the critical points x1, . . . , xk then we take

BK = {x ∈ H | |x| ≤ K},

for a fixed large number K > 0 such that

{x1, . . . , xk} ⊂ BK , h(BK) = tindex L,

where h denotes the generalized Morse–Conley index (see [1, p. 6 and The-
orem 2.8]). Note that this index h exists, since f satisfies the P.S. condi-
tion. Because f(x1) = . . . = f(xk), the maximal invariant set in BK is
{x1, . . . , xk}. Hence (see [1, Theorem 1.1])

h(BK) = h({x1, . . . , xk}) =
k∑

i=1

h({xi}).

Thus

tindex L =

k∑

i=1

tindexHess f(xi).

We obtain a contradiction. The proof is finished.

Now we give a resonant case of Theorem 2.9.

Theorem 2.10. Let f satisfy either the condition (H+) or (H−). Fur-

thermore, assume that f has nondegenerate critical points x1, . . . , xk, k ≥ 2,
for which the Morse indices exist and f(x1) = . . . = f(xk). Then f has an-

other critical point.

P r o o f. We consider the case (H+); the other one is similar. We take

fε = f + εψ̃ with ε > 0 sufficiently small, where ψ̃ is from the proof of
Theorem 2.8. It is clear that x1, . . . , xk are the only critical points of fε in
some open set U1 ⊂ U which are nondegenerate. Moreover, grad fε has the
linear asymptote L + εI at infinity. Now we apply Theorem 2.9 to obtain
a critical point of fε in the set B \ U1, where B is a sufficiently large, fixed
ball. By passing to the limit ε→ 0+ as in the proof of Theorem 2.8, we find
a nontrivial critical point of f . The proof is finished.



50 M. Fečkan

The assumption of Theorems 2.9 and 2.10, namely that f has nondegen-
erate critical points x1, . . . , xk, k ≥ 2, for which the Morse indices exist and
f(x1) = . . . = f(xk), may be naturally satisfied when f is symmetric. More
precisely, let T = {Tg}g∈G be a linear representation of a finite group G in
H. Then f is said to be invariant under T if

f(Tgx) = f(x) ∀(x, g) ∈ H × G.

It is clear that if x is a critical point of f then Tgx, g ∈ G, are all critical
points as well. Now, T consists of invertible linear transformations and if x
is a critical point of f possessing Hess f(x) then

Hess f(Tgx) = (T−1
g )∗ ◦ Hess f(x) ◦ T−1

g ∀g ∈ G.

Hence we see that if x is nondegenerate then so is Tgx for any g ∈ G. Here
∗ is the transpose. So by Theorems 2.9–10 we obtain the following result.

Theorem 2.11. Let f ∈ C1(H,R) satisfy either the assumptions (i) and

(iii) of Definition 2.4 with L invertible and grad g(x) = o(|x|) as |x| → ∞,
or (H+), or (H−). Furthermore, assume that f is invariant under T . If f
has a nondegenerate critical point x such that Tg0

x 6= x for some g0 ∈ G,
then f has another critical point different from Tgx, g ∈ G.

R e m a r k 2.12. If there is a critical point x of f ∈ C1(H,R), which is
asymptotically quadratic and invariant under T , such that Tgx = x for all
g ∈ G then we can restrict the study of the existence of another critical
point to the space

Hs ≡ {u ∈ H | Tgu = u ∀g ∈ G}.

The Hilbert space Hs is invariant for grad f , and x ∈ Hs is a critical point
of f |Hs.

We end this section with the following result.

Theorem 2.13. Let f satisfy the condition (H−). If f has a local min-

imum and indexL = 0,dim kerL > 0 then f has another critical point.

P r o o f. We assume that 0 is the given critical point and that it is a
unique critical point of f . Take fε = f + εψ̃, ε < 0, from the proof of
Theorem 2.8. So there is an open bounded neighbourhood U of 0 such that
ψ̃|U = 0 and the only critical point of f in U is 0. Hence 0 is also the only
critical point of fε in U . Since 0 is a local minimum of fε, by [1, Theorem
1.1(v)], the generalized Morse–Conley index of 0 is 1.On the other hand, this
index is tdim ker L for a large ball. This contradiction implies the existence
of a critical point of fε outside U . By passing to the limit ε → 0+ as for
Theorem 2.8, the proof is finished.
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R e m a r k 2.14. It follows from the proof of Theorem 2.13 that if f sat-
isfies either (H+) or (H−) with indexL > 0,dim kerL ≥ 0 and f has a local
minimum, then f has another critical point.

3. Weak solutions of elliptic equations. By putting

H = W 1,2(Ω), H̃(u, x) =

u\
0

h(v, x) dv

and

(3.1) f(u) =
\
Ω

(
1
2 |∇u|

2 + H̃(u, x)
)
dx,

we see that critical points of (3.1) are weak solutions of (1.1). The norm and
inner product on H are denoted by | · |W 1,2 and (·, ·)W 1,2 , respectively. Note

that |u|W 1,2 =
√T

Ω
|∇u|2 dx. Let λi, with λi+1 > λi > 0, i = 1, 2, . . . , be

the eigenvalues of −∆u, u|∂Ω = 0. We put Σ = {−λi}
∞
i=1.

Definition 3.1. h is said to satisfy the condition (A1+), respectively
(A1−), if there is a constant q ∈ Σ and a function φ ∈ C(R × Ω,R) such
that

h(u, x) = qu+ φ(u, x), lim sup
|u|→∞

|φ(u, x)/u4| <∞,

lim
u→0

φ(u, x)/u3 = d > 0, respectively < 0, uniformly in x ∈ Ω.

Definition 3.2. h is said to satisfy the condition (A2+), respectively
(A2−), if there is a constant p ∈ Σ and functions γ± ∈ C(Ω,R) such that

lim
u→±∞

(h(u, x) − pu) = γ±(x) uniformly in x ∈ Ω

and \
Ω∩{η≥0}

γ+η dx+
\

Ω∩{η≤0}

γ−η dx > 0, respectively < 0,

∀η ∈ {ϕ ∈W 1,2(Ω) | ∆ϕ = pϕ} \ {0}.

Theorem 3.3. If f satisfies (A1±), respectively (A2±), then f given by

(3.1) satisfies (C±), respectively (H±) when (iv) and (v) of Definition 2.4
are replaced by (vii) of Remark 2.7.

P r o o f. To prove the first part of this theorem, we apply Remark 2.3 by
putting

(S1(u), v)W 1,2 = d
\
Ω

u3v dx,

(S2(u), v)W 1,2 =
\
Ω

(φ(u, x) − du3)v dx.



52 M. Fečkan

We show that in this case α = 3. The homogeneity of S1 in Remark 2.3 is
clear for this case. We note that W 1,2(Ω)⊂L6(Ω) by the Sobolev imbedding
theorem. Our assumptions imply that for any r > 0 there is a constant
a = a(r) > 0 such that

|φ(u, x) − du3| ≤ r|u|3 + a|u|4 ∀(u, x) ∈ R ×Ω.

So we obtain∣∣∣
\
Ω

(φ(u, x) − du3)v dx
∣∣∣ ≤

\
Ω

(r|u|3|v| + au4|v|) dx

≤ r

√\
Ω

u6 dx

√\
Ω

v2 dx

+ a
( \

Ω

u6 dx
)2/3( \

Ω

|v|3 dx
)1/3

≤ cr|∇u|3L2 |v|L2 + ac|∇u|4L2 |∇v|L2

≤ (crλ1|∇u|
3
L2 + ac|∇u|4L2)|∇v|L2 ,

for a constant c > 0. These estimates imply that for any r > 0 there is a
constant a1 = a1(r) > 0 such that

|(S2(u), v)W 1,2 | ≤ (r|u|3W 1,2 + a1|u|
4
W 1,2)|v|W 1,2 .

So

|S2(u)|W 1,2 ≤ r|u|3W 1,2 + a1|u|
4
W 1,2 .

Hence |S2(u)|W 1,2 = o(|u|3W 1,2) as u→ 0.

Finally, we have (S1(ϕ), ϕ)W 1,2 = d
T
Ω
ϕ4 dx, so the assumption of Re-

mark 2.3, 〈S1(ϕ), ϕ〉 > 0, respectively 〈S1(ϕ), ϕ〉 < 0, for ϕ ∈ ∂B1 is satisfied
as well.

To prove the second part, we put

(Lv,w)W 1,2 =
\
Ω

(∇v∇w + pvw) dx,

kerL = span{ϕ ∈W 1,2(Ω) | ∆ϕ = pϕ}.

So we get (see [7, Theorem 3.5.94])

ω̃(η) =
\

Ω∩{η≥0}

γ+η dx+
\

Ω∩{η≤0}

γ−η dx

for any η ∈ kerL such that |u|W 1,2 = 1. Hence the condition (vii) of Remark
2.7 holds.

Theorem 3.4. If one of the following conditions is satisfied :

(a) h satisfies (A1+), (A2+) and p 6= q;
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(b) h satisfies (A1+), (A2−) and either p ≤ q, or p > q with (q, p) ∩ Σ
6= ∅;

(c) h satisfies (A1−), (A2+) and either p ≥ q, or p < q with (p, q)∩Σ 6= ∅;
(d) h satisfies (A1−), (A2−) and p 6= q,

then (1.1) has a nonzero weak solution.

P r o o f. By using Theorem 3.3 and

indexA = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, q < −λ},

dimkerA = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, q = −λ},

indexL = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, p < −λ},

dim kerL = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, p = −λ},

the result follows by Theorem 2.6.

Now we deal with cases when h has a symmetry.

Theorem 3.5. Consider (1.1) with −Ω=Ω and suppose h is C1-smooth

in u such that ∂
∂uh(·, ·) is uniformly bounded on R ×Ω and

h(u, x) = h(u,−x) ∀(u, x) ∈ R ×Ω.

Assume that f satisfies either the condition (A2+) or (A2−). If there is a

weak solution v of (1.1) such that v(x) 6= v(−x) on a subset of Ω with a

nonzero Lebesgue measure and
[

inf
Ω

∂

∂u
h
(
v(x), x), sup

Ω

∂

∂u
h(v(x), x)

]
∩Σ = ∅,

then (1.1) has at least 3 weak solutions.

P r o o f. We apply Theorem 2.11 in the proof of Theorem 3.4. Now G=
Z2 ≡ {0, 1} and

(T1u)(x) ≡ u(−x) ∀x ∈ Ω.

The assumptions imply that v is a nondegenerate critical point of f , where
f is given by (3.1), and has a Morse index. Hence (1.1) has at least 3 weak
solutions: v(x), v(−x) and the one predicted by Theorem 2.11.

R e m a r k 3.6. Consider (1.1) with h satisfying the conditions of Theorem
3.5 and having a weak and symmetric solution v, i.e. v(x)=v(−x) for almost
all x ∈ Ω. By applying Remark 2.12 in the proof of Theorem 3.5, we can
find another weak and symmetric solution of (1.1). We note that now the
set Σ is replaced by

Σe = {λ ∈ R | ∆ϕ = λϕ, 0 6= ϕ ∈W 1,2(Ω), ϕ(x) = ϕ(−x) ∀x ∈ Ω},

since the space Hs of Remark 2.12 has the form

He = {ϕ ∈W 1,2(Ω) | ϕ(x) = ϕ(−x) ∀x ∈ Ω}.
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R e m a r k 3.7. The symmetry of h in Theorem 3.5 could be replaced by

h(u, x) = −h(−u,−x) ∀(u, x) ∈ R ×Ω.

Then we can modify Theorem 3.5 and Remark 3.6 for this case by taking
G = Z2 and

(T1u)(x) ≡ −u(−x) ∀x ∈ Ω.

We note that now the set Σ is replaced by

Σ0 = {λ ∈ R | ∆ϕ = λϕ, 0 6= ϕ ∈W 1,2(Ω), ϕ(x) = −ϕ(−x) ∀x ∈ Ω},

since the space Hs of Remark 2.12 has the form

H0 = {ϕ ∈W 1,2(Ω) | ϕ(x) = −ϕ(−x) ∀x ∈ Ω}.

Now we apply Theorem 2.8.

Theorem 3.8. Assume h is C1-smooth in u, ∂
∂u
h(·, ·) is uniformly

bounded on R × Ω and limu→0 h(u, x)/u = q ∈ Σ uniformly in x ∈ Ω.

If one of the following conditions is satisfied :

(i) h satisfies (A2+) and either q < p, or q > p with (p, q) ∩Σ 6= ∅;
(ii) h satisfies (A2−) and either q > p, or q < p with (q, p) ∩Σ 6= ∅,

then f has a nonzero weak solution.

P r o o f. We have

indexA = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, q < −λ},

dimkerA = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, q = −λ},

indexL = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, p < −λ},

dim kerL = dim span{ϕ ∈W 1,2(Ω) | −∆ϕ = λϕ, p = −λ}.

If q > p and (p, q)∩Σ 6= ∅ then indexL > indexA+dimkerA. If q < p then
indexL < indexA. If q < p and (q, p) ∩ Σ 6= ∅ then indexL+ dimkerL <
indexA. If q > p then indexL + dim kerL > indexA + dimkerA. So the
proof is finished by Theorem 2.8.

R e m a r k 3.9. According to Theorem 3.4, if h satisfies, in addition to
the assumptions of Theorem 3.8, either (A1+) or (A1−), then there are more
(p, q) for which (1.1) has a nonzero weak solution.

Finally, we apply Theorem 2.13 to (1.1).

Theorem 3.10. If

lim inf
u→0

H̃(u, x)/u2 > −λ1/2 uniformly in x ∈ Ω

and h satisfies the condition (A2−) with p = −λ1 then (1.1) has a nonzero

weak solution.
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P r o o f. We apply Theorem 2.13. It is enough to show that u = 0 is
a local minimum of f defined by (3.1), since now clearly indexL = 0 and
dim kerL > 0. By assumption, for any sufficiently small r > 0 there is a
constant d = d(r) > 0 such that

H̃(u, x) ≥ 1
2 (−λ1 + r)u2 − d|u|3 ∀(u, x) ∈ R ×Ω.

Hence by the Sobolev imbedding theorem and λ1 > 0, we have for a small
r > 0,

f(u) =
1

2
|∇u|2L2 +

\
Ω

H̃(u, x) dx ≥
1

2
|∇u|2L2 +

1

2
(−λ1 + r)|u|2L2 − dc|∇u|3L2

≥
1

2
|∇u|2L2 +

1

2
(−λ1 + r)|∇u|2L2/λ1 − dc|∇u|3L2

=
r

2λ1
|∇u|2L2 − dc|∇u|3L2 ,

for a constant c > 0. So f(u) > 0 for u 6= 0 sufficiently small.

4. Nonzero solutions of the problem (1.2). It is clear that in the
notations of the previous section we have h(y, x) = −n2y + g(y) as well as
Σ = {−i2 | i ∈ N} and the corresponding eigenvectors are simple.

Theorem 4.1. h(y, x) = −n2y + g(y) with Ω = [0, π] satisfies the con-

dition (A2+), respectively (A2−), if there is a k ∈ N and constants g(±∞)
such that

(4.1) lim
y→±∞

(g(y) − (n2 − k2)u) = g(±∞),

and

(4.2)





g(+∞) > 0, g(−∞) < 0 for k = 1,
g(+∞) > g(−∞) for k = 2j,
g(+∞) > max{jg(−∞)/(j + 1), (j + 1)g(−∞)/j}

for k = 2j + 1, where j ∈ N,

respectively

(4.3)





g(+∞) < 0, g(−∞) > 0 for k = 1,
g(+∞) < g(−∞) for k = 2j,
g(+∞) < min{jg(−∞)/(j + 1), (j + 1)g(−∞)/j}

for k = 2j + 1, where j ∈ N.

P r o o f. The conditions of Definition 3.2 now read\
[0,π]∩{c sin kx≥0}

g(+∞)c sin kx dx+
\

[0,π]∩{c sin kx≤0}

g(−∞)c sin kx dx > 0,
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respectively\
[0,π]∩{c sin kx≥0}

g(+∞)c sin kx dx+
\

[0,π]∩{c sin kx≤0}

g(−∞)c sin kx dx < 0

for c = ±1. From the assumptions of this theorem, it is clear that they are
satisfied for this case.

Theorem 4.2. (3.1) with h(y, x) = −n2y+g(y) and Ω = [0, π] satisfies

the condition (C+), respectively (C−), provided that (1.3) holds with l± ≥ 0,
l2+ + l2− > 0, respectively l± ≤ 0, l2+ + l2− > 0.

P r o o f. We apply Remark 2.3 with

(S1(y), v)W 1,2 =

π\
0

g̃(y)v dx, (S2(y), v)W 1,2 =

π\
0

(g(y) − g̃(y))v dx

and

g̃(y) =

{
l+y

m for y ≥ 0,
−l−|y|

m for y ≤ 0.

We show that in this case α = m. The homogeneity of S1 in Remark 2.3
is clear for this case. Since W 1,2[0, π] ⊂ C[0, π] by the Sobolev imbedding
theorem and

lim
y→0

(g(y) − g̃(y))/ym = 0,

we see that |S2(y)|W 1,2 = o(|y|mW 1,2) as y → 0. Finally, for c = ±1 we have

(S1(c sinnx), c sin nx)W 1,2

= l+
\

[0,π]∩{c sin nx>0}

(c sin nx)m+1 dx+ l−
\

[0,π]∩{c sin nx<0}

|c sinnx|m+1 dx.

So the last condition of Remark 2.3, 〈S1(ϕ), ϕ〉 > 0, respectively 〈S1(ϕ), ϕ〉
< 0, for ϕ ∈ ∂B1, is satisfied as well.

Theorem 4.3. If one of the following assumptions holds:

(i) (4.1–2) with n 6= k as well as (1.3) with l± ≥ 0, l2+ + l2− > 0 are

satisfied ;
(ii) (4.1), (4.3) with n− 1 6= k as well as (1.3) with l± ≥ 0, l2+ + l2− > 0

are satisfied ;
(iii) (4.1–2) with n 6= k − 1 as well as (1.3) with l± ≤ 0, l2+ + l2− > 0 are

satisfied ;
(iv) (4.1), (4.3) with n 6= k as well as (1.3) with l± ≤ 0, l2+ + l2− > 0 are

satisfied ,

then (1.2) has a nonzero solution.

P r o o f. This follows from Theorem 2.6 as in Theorem 3.4, since now
indexA = n− 1, dim kerA = 1 and indexL = k − 1, dim kerL = 1.
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Theorem 4.4. Consider (1.2) where instead of (1.3) we suppose that g
is C1-smooth for y small and g′(0) = 0. Assume, in addition, that either

(4.1–2) hold with k 6= n, k 6= n + 1, or (4.1), (4.3) hold with k 6= n − 1,
k 6= n. Then (1.2) has a nonzero solution.

P r o o f. As in the previous proof, this is already done in Theorem 3.8.
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[2] M. Fe čkan, Critical points of asymptotically quadratic functions, Ann. Polon. Math.
61 (1995), 63–76.

[3] —, On a theorem of L. Lefton, Math. Slovaca 42 (1992), 195–200.
[4] L. Lefton, Existence of small solutions to a resonant boundary value problem with

large nonlinearity , J. Differential Equations 85 (1990), 171–185.
[5] S. L i and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system, ibid.

78 (1989), 53–73.
[6] J. Mawhin and M. Wil lem, Critical Point Theory and Hamiltonian Systems,

Springer, New York, 1989.
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