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Nontrivial critical points of asymptotically
quadratic functions at resonances

by MICHAL FECKAN (Bratislava)

Abstract. Asymptotically quadratic functions defined on Hilbert spaces are studied
by using some results of the theory of Morse—Conley index. Applications are given to
existence of nontrivial weak solutions for asymptotically linear elliptic partial and ordinary
differential equations at resonances.

1. Introduction. This paper is a continuation of [2] and it is devoted
to the study of the existence of nontrivial critical points of asymptotically
quadratic functions defined on Hilbert spaces. The paper is divided into
three parts.

Section 2 deals with the existence of critical points for functions on
infinite-dimensional spaces which are asymptotically quadratic at infinity.
Recently several papers dealing with such problems have appeared (see [1,
5, 6]). In the first part of Section 2, results on existence of nontrivial criti-
cal points are proved for functions with asymptotically linear gradients and
whose linear asymptotes are mostly not invertible and trivial critical points
are degenerate. Certain relations are crucial between the Morse indices of
trivial degenerate critical points and the Morse indices of linear asymptotes.
In addition, conditions of the Landesman—Lazer type must be considered
(see [7] and [8]). Some theorems of Section 2 are also devoted to a case when
there are no such relations, but the given nondegenerate critical points lie
on the same level sets. These theorems can be naturally applied when the
functions considered are invariant under finite groups of transformations. In
that section we also study resonant cases.

Section 3 is devoted to the problem

(L1) —Au+ h(u,z) =0, =z €2,
' ul0f2 =0,
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where (2 is an open bounded subset of R3 with a smooth boundary 9f2 and
h € C(R x £2,R) is asymptotically linear in v and satisfies h(0,-) = 0. The
existence of a nonzero weak solution of (1.1) is shown.

The last Section 4 deals with the existence of a nonzero solution of the
equation
_y” - n2y + g(y) = 07 T < [077‘-]7
y(0) = y(m) = 0,

where n > 1 is a natural number and g € C(R,R) is asymptotically linear
satisfying

(1.2)

(1.3) i)

— L =] <
u—0x |u|™sgnu *

for m > 1 and I+ > 0, 2 + li > (0. The existence of small solutions
of boundary value problems like (1.2) is studied in [3] and [4], where the
isolatedness of the zero solution of (1.2) is proved under the condition (1.3).

We study the existence of nonzero solutions in (1.1-2) at resonances and
for degenerate cases, i.e. where both asymptotes at infinity and linearizations
at zero solutions have nonzero kernels. (1.1) with some symmetries is also
investigated.

2. Abstract results. Let H be a Hilbert space with an inner product
(-,-) and the norm |-|. Recall that the Morse index of a bounded self-adjoint
linear map is the (finite) dimension of the subspace of all eigenvectors of
that map with negative eigenvalues. The Morse index of a critical point of
a C%-smooth function is the Morse index of its Hessian at that point. The
Hessian at a critical point z of a C?-smooth function f at x is denoted by
Hess f(x). A critical point z of a C'-smooth function f is nondegenerate if
f is C%-smooth at x and Hess f(x) is invertible.

We note that f € C1(H,R) is said to satisfy the P.S. condition (see [6,
Remark 4.2]) if every sequence {u;}2, C H such that {f(u;)}$2, is bounded
and grad f(u;) — 0 as i — oo contains a convergent subsequence. It is clear
that f € CY(H,R) satisfies the P.S. condition provided that grad f is a
compact perturbation of a bounded linear, Fredholm, self-adjoint operator
and (grad f)~!(B) is bounded for any bounded subset B. The last property
is valid if grad f has an invertible linear asymptote at infinity.

DEFINITION 2.1. Let f € C'(H,R) have a critical point 0 such that
A = Hess f(0) exists, index A exists and A is Fredholm. f is said to satisfy
the condition (C4), respectively (C_), if there is a constant o > 0 such
that for any sequences {r,}>2,, r, € (0,00), {z,}52 1, 2, € H, satisfying
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2
n

lim inf(S(rpe + 25), @) /T2 > 0,

rn, — 04 and |z,| = O(r;) as r,, — 04, we have

respectively
lim sup(S(rne + 2n), @) /T < 0,

uniformly for ¢ € 9B = {x € ker A | |x| = 1}, where S = grad f — A.
THEOREM 2.2. If f satisfies the condition (Cy), respectively (C_), then
there is a neighbourhood U of 0 and a constant €9 > 0 such that the only
critical point of f(x) +e|x|?/2 in U is 0 for eg > & > 0, respectively —eo <
e < 0.
Proof. We consider the case (C), the other one is similar. Assume the
contrary. Then there are ¢, — 04 and z,, — 0, x,, # 0, such that
Entyn + grad f(z,) = 0.
Hence
EnTpa + A$n2 + QAS($77,1 + xn2) — 07
EnTnl + PAS(xnl + xn2) = 07
where x, = Tp1 + Tno, Tn1 € ker A, x,0 € iImA, and Q4 : H — im A,
P4 : H — ker A are the orthogonal projections such that P4 + Q4 = L.
Since (e,1+ A)/im A — im A is invertible, we obtain
|Tna| < c@n + Tn2l* = clzn1]® + clznal?,
|Zna| = O(|zp1]?)  as z,1 — 0.

We put 2,1 = 7y @n, ™n > 0, 0 € OB1. S0 |pa| = O(r2) as r,, — 04 and

EnTnn + PaS(rnpn + Tn2) = 0.

This implies

entalen]? + (S(rnen + Tn2), o) = 0
and so

EnTn + 1 (S(rnen + Tn2), on) /Ty = 0.
But (C4) implies, for n sufficiently large,

0=cnrn + 70 (S(rnpn + Tn2), Pn)/re > enrn.
This contradiction finishes the proof. m
Remark 2.3. If S = S + Sy, where Sq(tx) = t*Si(x) for all ¢t > 0

and x € H, Sp is continuous, a > 0 is a constant and |Sa(z)| = o(|x|®) for

small x, then the condition (C} ), respectively (C_), is satisfied provided
(S1(p), ) > 0, respectively (S1(p), ) <0, for all ¢ € 0B;.

DEFINITION 2.4. f € CY(H,R) is said to satisfy the condition (Hy),
respectively (H_), if:
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(i) f(u) = 3(Lu,u)+g(u), where L : H — H is a Fredholm, self-adjoint
bounded linear operator for which the Morse index exists;
(ii) There is a constant M > 0 such that |grad g(z)| < M for all x € H;
(iii) grad g is a compact operator;
(iv) There is a continuous map w : S; = {v € ker L | |v| = 1} — H such
that
Tlg{.lo grad g(u + rv) = w(v)

uniformly in both v € S; and u € A for any fixed bounded subset A of Hy;
(v) There is no solution of the equation \v + Pw(v) = 0 with v € S
and A > 0, respectively A < 0.

THEOREM 2.5. If f satisfies the condition (H..), respectively (H_), then
there is a bounded neighbourhood V of 0 and a constant 1 > 0 such that
there are mo critical points of f(x) + elz|?/2 in H\'V for ey > ¢ > 0,
respectively —e1 < e < 0.

Proof. Let f satisfy (H); the other case is similar. Set f.(u)=f(u)+
elul?/2. Assume that there are H 5 u., — oo such that g; — 0 as i — oo
and grad f., (u.,) = 0.

We take the orthogonal projections P : H — ker L and Q =1 — P. Then

(L +eil)ue,2 + Qgrad g(u.,) =0,

gite;1 + Pgrad g(ue,1 + ue,2) =0,

Us, = Ugy1 + Uey2,  Ug;1 € ker Ly ugo € Hiy.
The assumption (ii) implies the boundedness of {uc,2} and {g;uc,1}. So
Ue,1 — 00. By putting w., = uc,1/|uc,1| we have

Ei’uail We,; + Pgradg(ueﬂ + ‘ueil wai) =0.

We can assume w., — wp and &;|us,1| — Ag. Finally, we arrive at the
equation
)\Owo + Pw(wg) =0
for some wy € S; and A9 > 0. The contradiction with the assumption (v)
proves the result. m
THEOREM 2.6. If one of the following assumptions holds:

(i) f satisfies (C4), (Hy) and index A # index L;
(i) f satisfies (Cy), (H-) and index A # index L + dimker L;
(iii) f satisfies (C-), (Hy) and index A + dimker A # index L;
(iv) f satisfies (C-), (H-) and index A+dimker A # index L+dimker L,

then f has a critical point different from 0.
Proof. Take f.(z) = f(x) + e¥(|z|?/2), where
(a) ¥(z) = x and € > 0 for the case (i);
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(b) ¢¥(z) = x and € < 0 for the case (iv);
(c) For the case (iii), € > 0 and ¢ € C*°(R,R) is such that

—z for |z| <1,

V(=) = {:17 for |z| > 2;

(d) e <0 and 9 is as in (c) for the case (ii).

Then we take U, V from Theorems 2.2 and 2.5 with U shrunk and V
enlarged if necessary. On the other hand, we have grad f-(0) = 0 and
index Hess f.(0) #index L., where L. is the asymptote of grad f. at infinity.
Moreover, Hess f.(0) and L. are nondegenerate. So by the well-known result
[1], there is a critical point u. of f. for any £ small such that u. € V' \ U.
Since u. € V and V is bounded, we can assume that u., weakly tends to
some ug € H as ¢; — 0 and i — oo. By (i) and (iii) of Definition 2.4 it
follows immediately that we can assume Ug,, — Uo in H as j — oo. Hence

ug € V' \ U is the desired critical point of f. m

Remark 2.7. The assumption (v) of Definition 2.4 is satisfied if we
suppose

(vi) For any v € ker L with |v| = 1 there is a symmetric positive semi-
definite matrix M,, € L(ker L), with respect to the inner product on H, such
that (w(v), M,v) > 0, respectively (w(v), M,v) < 0.

If there is an orthogonal basis {e;} of ker L such that for each v € ker L
with |v| = 1 there is ¢ such that (w(v),v;) > 0, respectively (w(v),v;) < 0,
where v = (v;) is the orthogonal decomposition (the coordinates) of v corre-
sponding to {e; }, then, by taking M,w = w; for w € ker L, the assumption
(vi) holds.

Of course, (vi) holds provided that we assume

(w(v),vy >0, respectively (w(v),v) <0, Vv €kerL, |[v]=1.
Moreover, according to the proof of Theorem 2.5, the assumptions (iv) and
(v) of Definition 2.4 can be replaced by

(vii) There is a continuous function @ : S;1 = {v € ker L | |v| = 1} — R
such that w > 0, respectively w < 0, on S as well as

lim inf(grad g(u + r.v),v) > @(v),
respectively

lim sup(grad g(u + rv), v) < w(v),

T—00

uniformly in both v € S; and u € A for any fixed bounded subset A of H;.

The following result is a generalization of [5, Theorem 1.3].
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THEOREM 2.8. Let f € C'(H,R) satisfy the condition (H.), respec-
tiwely (H_). Furthermore, assume that f has critical points x1,...,x, [ is
C?-smooth near these points and Hess f(x;), i = 1,...,k, are all Fredholm
operators possessing Morse indices. If

index L ¢ [index Hess f(z;),index Hess f(z;) + dim ker Hess f(x;)],
respectively

index L + dimker L
¢ [index Hess f(x;),index Hess f(z;) + dim ker Hess f(x;)],

forall i=1,...,k, then f has another critical point.

Proof. We consider the case (H ); the other one is similar. We take the
perturbation

g(x) = f(2) + (a,2) + (),
where @ € H and € > 0 are small and J € C'(H,R) is a convex function
equal to 0 in an open neighbourhood U C H of {zy,...,x;} and zﬁ(z) =
|2|2 /2 for any z sufficiently large. Moreover, we can assume that grad ¢(B) is
bounded for any bounded subset B C H. Such a function 1) can be defined

by the formula (z) = 7(|2|?/2) for a function 7 € C*°(R,R) such that
7 >0,7" >0 and

() = 0 for x| < maxi<;<k |7;?/2 + 1,
|z for |z| > maxi<i<p |7:2/2 + 3.

Of course, such a 7 exists.

Let U;, ¢ = 1,...,k, be small, open bounded neighbourhoods of the
points z1,...,xy, respectively, such that f is C?-smooth on Ule U; and
Ule U; C U. We show the existence of a critical point of g in B\ Ule U,
where B is a sufficiently large, fixed ball. Indeed, if g has critical points only
in Ule U;, then by applying the Sard theorem, all the critical points can
be assumed to be nondegenerate. Moreover, since a is small and so are the
U;, it follows that Hess g(u), for any critical point u € U;, is Fredholm with
Morse index in the interval

[index Hess f(z;),index Hess f(z;) + dim ker Hess f(x;)].

This holds for all i = 1, ..., k. By assumption, index L is not in this interval.
This contradicts [5, Theorem 1.3], since the asymptote of grad g is L + ¢l
and index(L + €I) = index L for € > 0 small. So g has a critical point in
B\ Ule U;. By passing to the limit a — 0, ¢ — 04, the proof is finished as
for Theorem 2.6. m
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The following theorem extends the above results when there are no rela-
tions between the Morse indices of given nondegenerate critical points and
the Morse indices of linear asymptotes.

THEOREM 2.9. Let f € C'(H,R) satisfy the assumptions (i) and (iii)
of Definition 2.4 with L invertible and grad g(z) = o(|z|) as |x| — oo.
Furthermore, assume that f has nondegenerate critical points xq,...,Tg,
k > 2, for which the Morse indices exist and f(x1) = ... = f(xg). Then f
has another critical point.

Proof. If f only has the critical points 1, ..., z; then we take
Bx ={x € H| |z| < K},
for a fixed large number K > 0 such that
{x1,...,24} C Bg, h(Bg)=t"4>E

where h denotes the generalized Morse—Conley index (see [1, p. 6 and The-
orem 2.8]). Note that this index h exists, since f satisfies the P.S. condi-
tion. Because f(z1) = ... = f(xx), the maximal invariant set in By is
{z1,...,2%}. Hence (see [1, Theorem 1.1])

k
h(Br) =h({z1,...,zx}) = Y h({z:}).
i=1
Thus
k
pindex L _ Z tindex Hess f(xt)
=1

We obtain a contradiction. The proof is finished. m
Now we give a resonant case of Theorem 2.9.

THEOREM 2.10. Let f satisfy either the condition (Hy) or (H_). Fur-
thermore, assume that f has nondegenerate critical points x4, ..., xg, k > 2,
for which the Morse indices exist and f(x1) = ... = f(xx). Then f has an-
other critical point.

Proof. We consider the case (H,); the other one is similar. We take
f. = f + e with e > 0 sufficiently small, where ¢ is from the proof of
Theorem 2.8. It is clear that z1,...,x are the only critical points of f. in
some open set U; C U which are nondegenerate. Moreover, grad f. has the
linear asymptote L + ¢l at infinity. Now we apply Theorem 2.9 to obtain
a critical point of f. in the set B\ U;, where B is a sufficiently large, fixed
ball. By passing to the limit € — 04 as in the proof of Theorem 2.8, we find
a nontrivial critical point of f. The proof is finished. =
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The assumption of Theorems 2.9 and 2.10, namely that f has nondegen-
erate critical points x1,...,xk, k > 2, for which the Morse indices exist and
f(x1) = ... = f(xk), may be naturally satisfied when f is symmetric. More
precisely, let 7 = {T,}4c¢ be a linear representation of a finite group G in
H. Then f is said to be invariant under 7 if

J(Ty2) = f(x)  Vl(x.g) € H xG.

It is clear that if = is a critical point of f then T,z, g € G, are all critical
points as well. Now, 7 consists of invertible linear transformations and if x
is a critical point of f possessing Hess f(z) then

Hess f(T,z) = (Tgfl)* o Hess f(x) oT;1 Vg eg.

Hence we see that if x is nondegenerate then so is Tyx for any g € G. Here
* is the transpose. So by Theorems 2.9-10 we obtain the following result.

THEOREM 2.11. Let f € CY(H,R) satisfy either the assumptions (i) and
(i) of Definition 2.4 with L invertible and grad g(x) = o(|z|) as |z| — oo,
or (Hy), or (H_). Furthermore, assume that f is invariant under T. If f
has a nondegenerate critical point x such that Ty,x # x for some go € G,
then f has another critical point different from Tyx, g € G.

Remark 2.12. If there is a critical point = of f € C'(H,R), which is
asymptotically quadratic and invariant under 7, such that Tyz = z for all
g € G then we can restrict the study of the existence of another critical
point to the space

Hi={ue H|Tju=uVgeGg}.

The Hilbert space Hy is invariant for grad f, and x € H, is a critical point
of f|Hs.

We end this section with the following result.

THEOREM 2.13. Let f satisfy the condition (H_). If f has a local min-
imum and index L = 0,dim ker L > 0 then f has another critical point.

Proof. We assume that 0 is the given critical point and that it is a
unique critical point of f. Take f. = f + e, ¢ < 0, from the proof of
Theorem 2.8. So there is an open bounded neighbourhood U of 0 such that
Y|U = 0 and the only critical point of f in U is 0. Hence 0 is also the only
critical point of f. in U. Since 0 is a local minimum of f., by [1, Theorem
1.1(v)], the generalized Morse-Conley index of 0 is 1. On the other hand, this
index is tdimkerL for a large ball. This contradiction implies the existence
of a critical point of f. outside U. By passing to the limit ¢ — 0 as for
Theorem 2.8, the proof is finished. =
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Remark 2.14. It follows from the proof of Theorem 2.13 that if f sat-
isfies either (Hy ) or (H_) with index L > 0,dimker L > 0 and f has a local
minimum, then f has another critical point.

3. Weak solutions of elliptic equations. By putting

H=W"2(2), H(uz)= Sh(v,az) dv
0
and
(3.1) fu) = S (3|Vul? + ﬁ(u,a:)) dz,
Q

we see that critical points of (3.1) are weak solutions of (1.1). The norm and
inner product on H are denoted by |-|y1.2 and (-, -)y1.2, respectively. Note
that |uw12 = /{, |Vu?dz. Let \;, with Aip1 > X\ > 0,1 =1,2,..., be
the eigenvalues of —Au, u|0f2 = 0. We put X' = {—\;}2;.

DEFINITION 3.1. h is said to satisfy the condition (Al,), respectively

(A1_), if there is a constant ¢ € X and a function ¢ € C(R x §2,R) such
that
h(u,z) = qu+ ¢(u,z),  limsup |¢(u, z)/u*| < oo,
|[u|—o0

lirrb d(u, ) /u® =d >0, respectively <0, uniformly in z € £2.
u—

DEFINITION 3.2. h is said to satisfy the condition (A2, ), respectively
(A2_), if there is a constant p € X and functions v+ € C'(£2,R) such that

lilil (h(u,z) — pu) = v+ (z) uniformly in z € 2

and
S Yin dz + S v_ndx >0, respectively <0,
©2n{n=>0} 2n{n<o}
Vi € {p € WH2(2) | Ap = pp} \ {0}.

THEOREM 3.3. If f satisfies (Aly), respectively (A24), then f given by
(3.1) satisfies (Cy), respectively (Hy) when (iv) and (v) of Definition 2.4
are replaced by (vii) of Remark 2.7.

Proof. To prove the first part of this theorem, we apply Remark 2.3 by
putting

(S1(u),v)pyr2 =d S udv du,
Q

(So(u),v)wr2 = S(qﬁ(u,x) — du®)v de.
Q
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We show that in this case @ = 3. The homogeneity of S; in Remark 2.3 is
clear for this case. We note that W2(£2) C L%(£2) by the Sobolev imbedding
theorem. Our assumptions imply that for any r > 0 there is a constant
a = a(r) > 0 such that

|p(u, x) — du?| < r|ul® +alul*  V(u,z) €R x 0.
So we obtain

‘ S(qﬁ(u,x) — du®)v da:‘ < S(T!u\?’\v\ + au*|v|) dzx
2

Q
Sr\/Squm\/Szﬂdw
Q Q
2/3 1/3
+ 6d lv|® d
a((xlu x) <§ZU x)

< er|Vaul3z|v|pe + ac|Vultz| Vol
< (erM|Vul3s + aclVults)|Vv|ze,

for a constant ¢ > 0. These estimates imply that for any r > 0 there is a
constant a; = a1 (r) > 0 such that
|(Sa(u), v)wrz| < (rluliyrz + arlulfe)|o]lwe
w w
So
[Sa(uw)lwrz < rlufiyrs + azlulj..

Hence [Sa(u)|wr2 = o(|ulf. 2) as u — 0.

Finally, we have (S1(¢), @)w12 = d{, ©* dx, so the assumption of Re-
mark 2.3, (S1(p), @) > 0, respectively (S1(¢), ¢) < 0, for ¢ € 0By is satisfied

as well.
To prove the second part, we put

(Lv,w)wr2 = S(Vva + pvw) de,
2
ker I = span{p € W'2(02) | Ap = py}.
So we get (see [7, Theorem 3.5.94])
sm= |\ ymd+ | ynde
n{n>0} n{n<o}

for any n € ker L such that |u|y 1.2 = 1. Hence the condition (vii) of Remark
2.7 holds. m

THEOREM 3.4. If one of the following conditions is satisfied:
(a) h satisfies (Aly), (A24) and p # g;



Critical points 53

(b) h satisfies (A1), (A2_) and either p < q, or p > q with (¢,p) N X

# 0;
(¢) h satisfies (A1_), (A24) and eitherp > q, orp < q with (p,q)NX # (;
(d) h satisfies (A1_), (A2_) and p # q,

then (1.1) has a nonzero weak solution.
Proof. By using Theorem 3.3 and
index A = dimspan{p € W12(02) | —Ap = \p, ¢ < —A},
dimker A = dimspan{p € W'2(22
index L = dimspan{p € WH?(02
dimker I = dimspan{y € W?(02
the result follows by Theorem 2.6. m
Now we deal with cases when h has a symmetry.

THEOREM 3.5. Consider (1.1) with —2= (2 and suppose h is C*-smooth
in u such that a%h('v -) s uniformly bounded on R x {2 and
h(u,z) = h(u, —z) Y(u,x) € R x £2.

Assume that f satisfies either the condition (A2.) or (A2_). If there is a
weak solution v of (1.1) such that v(x) # v(—x) on a subset of §2 with a
nonzero Lebesgue measure and

.. 0 0

11(1}’ %h(v(:n),az),sgp %h(v(:n),x) Ny =1,

then (1.1) has at least 3 weak solutions.
Proof. We apply Theorem 2.11 in the proof of Theorem 3.4. Now G =
Zs ={0,1} and
(Thu)(x) =u(—z) Vxe .
The assumptions imply that v is a nondegenerate critical point of f, where

f is given by (3.1), and has a Morse index. Hence (1.1) has at least 3 weak
solutions: v(x), v(—x) and the one predicted by Theorem 2.11. =

Remark 3.6. Consider (1.1) with h satisfying the conditions of Theorem
3.5 and having a weak and symmetric solution v, i.e. v(x)=v(—x) for almost
all z € (2. By applying Remark 2.12 in the proof of Theorem 3.5, we can
find another weak and symmetric solution of (1.1). We note that now the
set X is replaced by

Te={AeR[Ap=2p, 0# ¢ e W), p(x) = p(—z) Yz € 2},
since the space H, of Remark 2.12 has the form
He={p e WH(2) | p(x) = p(—x) Yz € 2},
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Remark 3.7. The symmetry of h in Theorem 3.5 could be replaced by
hu,z) = —h(—u,—z) VY(u,z) € R x {2
Then we can modify Theorem 3.5 and Remark 3.6 for this case by taking
G = 7Zy and
(Thu)(z) = —u(—z) Vz e .

We note that now the set Y is replaced by

So={AeR[Ap=2p, 0#p € WH(2), p(x) = —p(—z) Vo € 2},
since the space Hg of Remark 2.12 has the form

Hy = {p € WH2(2) | p(z) = —p(—2) Yz € 2}.
Now we apply Theorem 2.8.

THEOREM 3.8. Assume h is C'-smooth in u, (%h(-,-) s uniformly
bounded on R x 2 and lim, o h(u,z)/u = q € X uniformly in x € (2.
If one of the following conditions is satisfied:

(i) h satisfies (A2) and either ¢ < p, or q > p with (p,q) N X # (;
(ii) h satisfies (A2_) and either ¢ > p, or ¢ < p with (q,p) N X # 0,

then f has a nonzero weak solution.
Proof. We have
index A = dimspan{p € W12(02) | —Ap = \p, ¢ < —A},
dimker A = dimspan{p € W'23(2) | —Ap = A\p, ¢ = —\},
index L = dimspan{p € Wh?(2) | —Ap = g, p < —\},
dimker L = dimspan{p € Wh?(2) | —Ap = Ay, p = —A}.

If ¢ > p and (p,q) N X # 0 then index L > index A+dimker A. If ¢ < p then
index L < index A. If ¢ < p and (q,p) N X # () then index L + dimker L <
index A. If ¢ > p then index L 4+ dimker L > index A + dimker A. So the
proof is finished by Theorem 2.8. =

Remark 3.9. According to Theorem 3.4, if h satisfies, in addition to
the assumptions of Theorem 3.8, either (A1) or (A1_), then there are more
(p,q) for which (1.1) has a nonzero weak solution.

Finally, we apply Theorem 2.13 to (1.1).
THEOREM 3.10. If
lim igf H(u,z)/u®> > —\1/2  uniformly in x € 2

and h satisfies the condition (A2_) with p = —\; then (1.1) has a nonzero
weak solution.



Critical points 55

Proof. We apply Theorem 2.13. It is enough to show that u = 0 is
a local minimum of f defined by (3.1), since now clearly index L = 0 and
dimker L > 0. By assumption, for any sufficiently small » > 0 there is a
constant d = d(r) > 0 such that

H(u,z) > (=X +r)u? —dul*  V(u,z) € R x 2.

Hence by the Sobolev imbedding theorem and A; > 0, we have for a small
r >0,

1 ~ 1 1
) = 5IVulte + { H(u,2)de > S[Vulfs + 5 (<A1 + ) [ulfs — de|Vulj,
0

1 1
§|Vu|%2 + (=M )| Vul2, /A1 — de|Vul3

- %\wyiz — de|Vul.,
1

v

for a constant ¢ > 0. So f(u) > 0 for u # 0 sufficiently small.

4. Nonzero solutions of the problem (1.2). It is clear that in the
notations of the previous section we have h(y,z) = —n?y + g(y) as well as
X = {—i%?|i € N} and the corresponding eigenvectors are simple.

THEOREM 4.1. h(y,z) = —n?y + g(y) with 2 = [0, 7] satisfies the con-
dition (A2,), respectively (A2_), if there is a k € N and constants g(£o0)
such that

(4.1) i (g(y) = (n* = k*)u) = g(o0),

and

g(+00) >0, g(—o0) <0 fork=1,
g(+00) > g(—00) for k = 2j,

(42) ) gloo) > maxig(=o0) /(i + 1), G + Dg(—00)/s)
for k =254+ 1, where j € N,
respectively
g(+0) <0, g(—o0) >0 fork=1,

g(+00) < min{jg(—00)/(j + 1), (j + 1)g(—00)/j}
for k =25+ 1, where j € N.
Proof. The conditions of Definition 3.2 now read

S g(+o0)csin kx dx + S g(—oo)csin kx dx > 0,
[0,7]N{csin kax>0} [0,7]N{csin kaz<0}
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respectively
S g(+o0)csin kx dx + S g(—o0)csin kz dx < 0
[0,7r]N{csin ka>0} [0,7r]N{csin ka<0}

for ¢ = £1. From the assumptions of this theorem, it is clear that they are
satisfied for this case. m

THEOREM 4.2. (3.1) with h(y,z) = —n*y+g(y) and 2 = [0, 71| satisfies
the condition (Cy.), respectively (C_), provided that (1.3) holds with I+ > 0,
li +1%2 >0, respectively 1+ < 0, li +12 >0.

Proof. We apply Remark 2.3 with

(S1(y), v)wre = \g)vde,  (S2(y),v)nre = \(9y) — G(v))vda
0 0
and
oy ley™ for y > 0,
9(y) = { —I_|y|™ for y <O0.
We show that in this case & = m. The homogeneity of S; in Remark 2.3
is clear for this case. Since W12[0,7] C C[0,7] by the Sobolev imbedding
theorem and

lim(g(y) — 9())/y™ =0,
we see that [S3(y)|w1.2 = o(|y|{i1.2) as y — 0. Finally, for ¢ = £1 we have

(S1(esinnx), csin ne) 1.2

=14 S (esinnz)™ dx +1_ S lesinnx|™ 1 da.
[0,7r]N{ecsinnz>0} [0,7]N{csinnx<0}
So the last condition of Remark 2.3, (S1(¢), ¢) > 0, respectively (S1(¢), ¥)
< 0, for ¢ € 0By, is satisfied as well. m

THEOREM 4.3. If one of the following assumptions holds:
(i) (4.1-2) with n # k as well as (1.3) with 4 > 0, I3 +12 > 0 are

satisfied,;

(ii) (4.1), (4.3) with n — 1 # k as well as (1.3) with L > 0,13 +1%2 >0
are satisfied;

(iil) (4.1-2) with n # k — 1 as well as (1.3) with I3 <0, 13 +12 >0 are
satisfied,;

(iv) (4.1), (4.3) with n # k as well as (1.3) with 1y <0, 12 +1%2 >0 are
satisfied,
then (1.2) has a nonzero solution.

Proof. This follows from Theorem 2.6 as in Theorem 3.4, since now
indexA=n—1,dimker A=1and index L =k — 1, dimker L =1. m
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THEOREM 4.4. Consider (1.2) where instead of (1.3) we suppose that g

is C't-smooth for y small and ¢'(0) = 0. Assume, in addition, that either

(4.1

—2) hold with k # n, k # n+ 1, or (4.1), (4.3) hold with k # n — 1,

k #n. Then (1.2) has a nonzero solution.

Proof. Asin the previous proof, this is already done in Theorem 3.8. m
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