
ANNALES
POLONICI MATHEMATICI

LXVII.2 (1997)

Fundamental solutions of the complex
Monge–Ampère equation

by Halil Ibrahim Celik and Evgeny A. Poletsky (Syracuse, N.Y.)

Abstract. We prove that any positive function on CP1 which is constant outside a
countable Gδ-set is the order function of a fundamental solution of the complex Monge–
Ampère equation on the unit ball in C2 with a singularity at the origin.

1. The Monge–Ampère equation. Every locally bounded plurisub-
harmonic function u on a domain D ⊂ Cn satisfies the Monge–Ampère
equation (ddcu)n = µ, where

dc =
i

2π
(∂ − ∂)

and µ is a Borel measure on D (see [2] and [7]). A definition of the
Monge–Ampère operator for unbounded plurisubharmonic functions is not
known. However, if a plurisubharmonic function u is locally bounded away
from its singularities, the Monge–Ampère operator can be defined as
a positive Borel measure (see [6]). A fundamental solution at the origin
of the Monge–Ampère equation on the unit ball B in Cn is a plurisubhar-
monic function on B such that lim|z|→1 u(z) = 0 and (ddcu)n =αδ0, where
δ0 is the Dirac measure at 0 and α > 0. In this paper we consider only such
fundamental solutions. For n = 1, 2πddcu=∆u and, therefore, fundamental
solutions of the Monge–Ampère equation are proportional to fundamental
solutions of the Laplace equation which play very important role in classical
potential theory. Their significance is based on the fact that fundamental
solutions at a given point of the domain are proportional to each other.
This implies the representation of subharmonic functions as convolutions of
fundamental solutions and Laplacians.
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Therefore to represent plurisubharmonic functions as convolutions it is
important to describe the set of fundamental solutions at some point. Exam-
ples of non-proportional fundamental solutions on domains in C2 are known
and can be found in [1], [6, Ex. 5.7] and [8, Ex. 10.1]. However, all these
examples have quite simple nature of singularities leaving some hope for
complete description of fundamental solutions. In this paper we construct
different fundamental solutions on B ⊂ C2 whose order functions are defined
by arbitrary functions on arbitrary countable Gδ-sets in the complex projec-
tive space CP1 (see Corollary 2.3). In our opinion it makes any description
of such solutions too complicated to be useful.

Definition 1.1. A plurisubharmonic function on a domain D in Cn is
maximal if for every relatively compact open subset G of D and for each
function v, upper semicontinuous on the closure G of G and plurisubhar-
monic on G, v ≤ u in G if v ≤ u on ∂G.

It was proved in [2] that a bounded plurisubharmonic function u is max-
imal iff it satisfies the homogeneous Monge–Ampère equation (ddcu)n = 0.
Following [7] we denote by PSH(B, 0) the set of plurisubharmonic functions
on B, locally bounded on B∗ = B\{0}. Theorem 1.2 is a direct consequence
of results in [6].

Theorem 1.2. Let u ∈ PSH(B, 0) and u(0) = −∞. Then u is maximal
on B∗ if and only if there exists a constant α > 0 such that (ddcu)2 = αδ0.

It follows from this theorem that fundamental solutions are plurisubhar-
monic functions on B, maximal on B∗, and equal to 0 on ∂B.

We say that plurisubharmonic functions u and v on the ball are equivalent
at 0 (u ∼ v) if their difference is locally bounded near the origin.

Theorem 1.3. If fundamental solutions u and v are equivalent at 0, then
they are equal on B.

P r o o f. Since u ∼ v at 0, there exist positive constants c and s such
that u(z)− c ≤ v(z) for all |z| ≤ s. For |z| = r ≤ s, let δ = δ(r) ≥ −c/ log r.
Then u(z) + δ log |z| ≤ v(z) when |z| = r. This inequality is also true on
∂B. Hence by the maximality of v on B \ {0}, u(z) + δ log |z| ≤ v(z) on the
shell R(r, 1) = {z ∈ B : r < |z| < 1}. We let r → 0 to obtain u(z) ≤ v(z)
on B. Similarly, v(z) ≤ u(z) on B and therefore, u = v on B.

To distinguish non-equivalent plurisubharmonic functions one can use
the order function, which is defined as follows:

Definition 1.4. Let u be a plurisubharmonic function on the unit ball
B in Cn. The function ou defined as

ou(z) = lim
r→0

inf
|γ|=r

u(γz)
log |γz|

,
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where z 6= 0 is a vector in Cn and γ ∈ C, is called the order function of u
at the origin.

Since ou(z) = ou(γz), γ 6= 0, we may assume that the order function is
defined on the unit sphere S in Cn or on the complex projective space CPn−1,
which for n = 2 coincides with the Riemann sphere C. If u∈ PSH(B, 0) then
ou(z) is bounded above. On the complex plane the order function is equal
to (2π)−1∆u({0}), where ∆u({0}) is the mass of the Laplacian of u at the
origin. Therefore,

ou(z) = (2π)−1∆ζuz({0}),
where uz(ζ) = u(ζz) for ζ ∈ C.

It was proved in [3] that the order function is equal to the constant l on
CPn−1 minus a pluripolar set and is greater than l on this set. Now it follows
immediately that if u is negative on the unit ball, then u(z) ≤ l log |z|. It
can be proved (see [4]) that l is the Lelong number of u at 0. We do not
need this observation, but we will use the name. It can be proved (see [5])
that the order function is a Gδ-function, i.e., the sets {z : ou(z) ≥ α} are
Gδ for all real α.

Clearly equivalent plurisubharmonic functions have the same order func-
tion. The converse is not true as the example of maximal plurisubharmonic
functions u(z1, z2) = max(log |z1|, 2 log |z2|) and v(z1, z2) = max(log |z1 +z2

2 |,
log |z3

1 + z3
2 |) shows.

The following method allows us to construct fundamental solutions on B.
Let v be a negative plurisubharmonic function on B such that v(0) = −∞.
Set

vr(z) =
{

0 if z ∈ B \Br,
v(z) if z ∈ Br,

where Br is the ball of radius r. The function vr is upper semicontinuous.
We set

ur(z) = sup{w : w(z) is plurisubharmonic on B and w ≤ vr}.
The functions ur are plurisubharmonic on B and for r1 ≤ r2, ur1 ≥ ur2 .
Therefore, {ur}0≤r<1 is decreasing in r. Let I∞v = (limr→0 ur)∗, where ∗
denotes the upper semicontinuous regularization.

Theorem 1.5. Let v be a negative function in PSH(B, 0). If I∞v(0) =
−∞, then I∞v is a fundamental solution of the Monge–Ampère equation.
Moreover , if v is maximal on B∗, then I∞v is equivalent to v at the origin.

P r o o f. Since ur ≤ 0, the function I∞v is plurisubharmonic on B.
By Theorem 6.3 and Lemma 8.2 of [8], each function ur is maximal on
{r < |z| < 1} and limz→∂B ur(z) = 0. Moreover, by Choquet’s topolog-
ical lemma, I∞v = (limj→∞ urj

)∗, where {rj} is a monotonic sequence
of positive numbers converging to 0. Therefore, by Proposition 5.2 of [2],
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I∞u is maximal on B∗ and, since I∞v ≥ ur, limz→∂B I
∞v(z) = 0. Since

I∞v(0) = −∞, by Theorem 1.2, I∞v is a fundamental solution of the
Monge–Ampère equation.

Now suppose that v is maximal on B∗. By the definition of I∞v we have
I∞v ≥ v near the origin. On the other hand, for any compact set K ⊂ B
containing the origin, there exists a smallest t, 0 < t < 1, such that K ⊂
B(0, t) = B(t), where B(t) is the ball of radius t and centered at z = 0. Let
c = infS(t) v(z), where S(t) is the sphere of radius t. Then, since v is locally
bounded, 0 > c > −∞. The function v − c is maximal on B∗. For any r,
0 < r < t, we have ur ≤ v − c on B(t), which implies that limr→0 ur(z) ≤
v(z) − c on B(t). Since the upper semicontinuous regularization does not
change this inequality, it follows that I∞v ≤ v(z)−c on B(t) and, therefore,
I∞v ∼ v at the origin.

2. Construction of fundamental solutions. We need the following
lemma.

Lemma 2.1. Let A = {aj}, j = 1, 2, . . . , be a countable Gδ-set in C and
{cj} be a sequence of positive real numbers. Then there are real numbers
αj > 0 such that :

(1)
∑∞
j=1 αj = 1;

(2) the series
∑
αjcj converges;

(3) the function

u(ζ) =
∞∑
j=1

αj log
|ζ − aj |
|aj |+ j + 1

is subharmonic on C;
(4) u(ζ) = −∞ if and only if ζ ∈ A;
(5) the functions

uk(ζ) =
∑
j 6=k

αj log
|ζ − aj |
|aj |+ j + 1

= −∞

if and only if ζ ∈ A \ {ak}.

P r o o f. Suppose that A is the intersection of open sets Fi. Let E1 = F c
1

and Ej = F c
j ∪{a1, . . . , aj−1}, where F c

j is the complement of Fj and j ≥ 2.
Choose 0 < αj < 2−j min{1, c−1

j } such that the functions

vj(ζ) = αj log
|ζ − aj |
|aj |+ j + 1

are less than 2−j in absolute value on the set Gj = Ej ∩ B(0, j). This is
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possible because this set is compact and does not contain aj . Let

u(ζ) =
∞∑
j=1

vj(ζ).

If ζ ∈ Ac then ζ belongs to all Gj when j is sufficiently large and, hence,
the series for u converges at ζ. Moreover, u(ζ) > −∞. Since vj(ζ) < 0 on
B(0, j), u is subharmonic on C. Clearly v(aj) = −∞ for all j.

Let α =
∑
αj . If we replace αj by αj/α in the definition of the function

vj , we get a subharmonic function u on C satisfying conditions (1)–(4) of
the lemma. To prove (5) we observe that uk(aj) = −∞ when j 6= k and
uk(ζ) > −∞ when ζ 6∈ A. Since

|vj(ak)| ≤ 1
α2j

when j > k, we see that uk(ak) > −∞.

In the following theorem we construct a fundamental solution on B with
a given order function which is equal to a constant c outside a countable
Gδ-set L in C and greater than c on L.

Theorem 2.2. Let L be a set of lines Lj = {(z1, z2) : ajz1 + bjz2 = 0,
|aj |2 + |bj |2 = 1} in C2, j = 1, 2, . . . , such that its projection to C is a
Gδ-set. Let d, c, c1, c2, . . . be real numbers satisfying d > cj > c > 0. Then
there is a plurisubharmonic function c log |z| ≥ u(z) ≥ d log |z| on B such
that u is maximal on B∗, ou(z) = cj if z ∈ Lj , and ou(z) = c if z 6∈ L.

P r o o f. Rotating coordinates if needed we may assume that all aj 6= 0.
We may also assume that c = 1. The projection of L into C is the Gδ-
set A = {−bj/aj}. By Lemma 2.1 for this set we choose numbers αj and
functions vj . We also require that

∞∑
j=1

αj log
|aj |

|bj |+ (j + 1)|aj |
> −∞.

Let z = (z1, z2), ṽ(z) =
∑∞
j=1 uj(z), where uj(z) = max{v′j(z), dj log |z|},

v′j(z) = αj log
|ajz1 + bjz2|
|bj |+ (j + 1)|aj |

=


vj

(
z1
z2

)
+ αj log |z2| if z2 6= 0,

αj log
|aj |

|bj |+ (j + 1)|aj |
+ αj log |z1| if z2 = 0,

and
dj = cj −

∑
k 6=j

αk = cj − 1 + αj > αj .



108 H. I. Celik and E. A. Poletsky

Note that since |ajz1 + bjz2| < 1 on B, the functions v′j are negative on B
and, therefore, ṽ is either plurisubharmonic on B or ṽ ≡ −∞. Let v(z) =
max{ṽ(z), d log |z|}.

Let us find ov(z) when |z| = 1. If z 6∈ L and z2 6= 0, then

ṽ(ζz) ≥
∞∑
j=1

v′j(ζz) = u(z1/z2) + log |z2|+ log |ζ|,

where u is the function from Lemma 2.1 and |ζ| > 0. Since u(z1/z2) > −∞,
we see that v(ζz) = ṽ(ζz) when ζ is small. If z2 = 0 then

ṽ(ζz) ≥ log |ζ|+
∞∑
j=1

αj log
|aj |

|bj |+ (j + 1)|aj |
> −∞

when |ζ| > 0, and again v(ζz) = ṽ(ζz) when ζ is small. Moreover,
v′j(ζz) > dj log |ζ| for every j when |ζ| is smaller than some εj > 0. Thus,
∆ζuj(ζz)({0}) = 2παj . Since ṽ(ζz) > −∞ when ζ 6= 0,

∆ζ ṽ(ζz)({0}) =
∞∑
j=1

∆ζuj(ζz)({0}) = 2π.

So ov(z) = 1. Therefore, the Lelong number of v is 1 and, since v is negative,
v(z) ≤ log |z|.

If z ∈ L, i.e., z1/z2 = −bj/aj for some j, then

ṽ(ζz) ≥ dj log |ζz|+
∑
k 6=j

(
vk

(
z1
z2

)
+ αk log |ζz2|

)

= cj log |ζ|+
∑
k 6=j

(
vk

(
z1
z2

)
+ αj log |z2|

)
and again v(ζz) = ṽ(ζz) when ζ is small. The same argument shows that
ov(z) = cj when z ∈ Lj .

Let u = I∞v. Note that u(z) ≥ v(z) ≥ d log(z). Since log |z| is maximal
and ur(z) ≤ log |z| on Sr = {z : |z| = r} and on S, we have ur(z) ≤ log |z|
on B \ Br. Hence, u(z) ≤ log |z| and u(0) = −∞. By Theorem 1.5, u is a
fundamental solution. Moreover, since v(z) ≤ u(z), we have ou(z) = 1 when
z 6∈ L.

Let us prove that ou(z) = ck when z ∈ Lk. There is a unitary change
of coordinates such that in the new coordinates, which we will continue to
denote by z1 and z2,

v′k(z1, z2) = αk log
|z1|

|bk|+ (k + 1)|ak|
and Lk = {z1 = 0}. Let a = |bk|+(k+1)|ak| and β = dk/αk. If |z1| ≤ a|z2|β
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then

max
{
αk log

|z1|
a
, dk log |z|

}
≤ dk log |z|.

Now

ṽ(z1, z2) = max
{
αk log

|z1|
a
, dk log |z|

}
+
∑
j 6=k

max{v′j(z1, z2), dj log |z|}.

The Lelong number of the sum in the expression above is equal to 1 − αk.
Hence this sum does not exceed (1− αk) log |z|. Therefore, v(z) ≤ ck log |z|
when |z1| ≤ a|z2|β .

Take m = [β] + 2, and for c ∈ C, |c| < 1, consider the mappings

gc(ζ) = 2−1(cζm, ζ)

of the unit disk U into B. Let A = {w ∈ B : w = gc(ζ), ζ, c ∈ U}. Clearly,
A ∩ B∗ is open and contains Lk ∩ B∗1/2. Since |2−1cζm| ≤ a|2−1ζ|β when
|ζ| ≤ a21−β , we see that the subharmonic function v(gc(ζ)) on U satisfies
the inequality

v(gc(ζ)) ≤ ck log |ζ|
when |ζ| ≤ a21−β . Hence,

ur(gc(ζ)) ≤ ck log |ζ| ≤ ck(log |gc(ζ)|+ log 2)

on U . Therefore, on A,

ur(z) ≤ ck(log |z|+ log 2),
u(z) ≤ ck(log |z|+ log 2).

This proves that ou(z) ≥ ck. But u(z) ≥ v(z), so ou(z) = ck.

This theorem implies the following corollary.

Corollary 2.3. Let ϕ be a bounded function on CP1 = C which is equal
to a constant c > 0 outside a countable Gδ-set E and is greater than c on E.
Then there is a fundamental solution u on B such that its order function is
equal to ϕ.
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