Only one of generalized gradients can be elliptic

by Jerzy Kalina, Antoni Pierzchalski and PaweeWalczak (Łódź)

Abstract

Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of $\mathrm{GL}(n)$ (or $\mathrm{O}(n)$ when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.

Introduction. We decompose a connection ∇ on an n-dimensional C^{∞} _ manifold M (in particular, a Riemannian connection on a Riemannian manifold $(M, g))$ into the sum of first order differential operators $\nabla^{\alpha \beta}$ acting on covariant k-tensors, $k=1,2, \ldots$, and arising from the decomposition of the space T^{k} of k-tensors into the direct sum of irreducible GL (n)-invariant (or, in the Riemannian case, $\mathrm{O}(n)$-invariant) subspaces. Following $[\mathrm{SW}]$ we shall call them $\mathrm{GL}(n)$ - and $\mathrm{O}(n)$-gradients, respectively.

Some of the gradients $\nabla^{\alpha \beta}$ have important geometric meaning. The best known is the exterior derivative d corresponding to skew-symmetric tensors. Its role in geometry and topology of manifolds cannot be overestimated. Another one, known as the Ahlfors operator $S: T^{1} \rightarrow S_{0}^{2}$, is defined for 1-forms ω by the splitting

$$
\nabla \omega=\frac{1}{2} d \omega+S \omega-\frac{1}{n} \delta \omega \cdot g
$$

and corresponds to the subbundle of traceless symmetric 2 -tensors. It appears to play an important role in conformal and quasi-conformal geometry (see the recent papers $[Ø \mathrm{P}],[\mathrm{P}]$, etc.).

In Section 1, we recall (after H. Weyl [We]) the theory of Young diagrams and schemes and define our operators $\nabla^{\alpha \beta}$. In Section 2, we consider

[^0]the ellipticity of operators corresponding to GL(n)-invariant subspaces. We distinguish a suitable extension of a Young diagram α and show that $\nabla^{\alpha \beta}$ is elliptic if and only if β is a distinguished extension of α. In Section 3, we get some particular ellipticity results for operators corresponding to $\mathrm{O}(n)$ invariant subspaces. We end with some remarks.

Similar problems could be considered for any connection ∇,

$$
\nabla: C^{\infty}(\xi) \rightarrow C^{\infty}\left(T^{*} M \otimes \xi\right)
$$

in any vector bundle ξ over a manifold M and any Lie group G acting simultaneously in $T^{*} M$ and ξ. Splitting ξ and $\widetilde{\xi}=T^{*} M \otimes \xi$ into the direct sums of irreducible G-invariant subbundles, $\xi=\bigoplus_{\alpha} \xi_{\alpha}$ and $\widetilde{\xi}=\bigoplus_{\beta} \widetilde{\xi}_{\beta}$, G-gradients could be defined as

$$
\nabla^{\alpha \beta}=\tilde{\pi}_{\beta} \circ \nabla \circ \iota_{\alpha}
$$

where $\iota_{\alpha}: \xi_{\alpha} \rightarrow \xi$ and $\widetilde{\pi}_{\beta}: \widetilde{\xi} \rightarrow \widetilde{\xi}_{\beta}$ are the canonical maps. One of interesting examples of this sort is the classical Dirac operator D which could be considered as an eliptic $\operatorname{Spin}(n)$-gradient in a spinor bundle over a manifold equipped with a spinor structure. Ellipticity of general G-gradients will be studied elsewhere.

1. Young diagrams. Let W be a vector space (over \mathbb{R} or \mathbb{C}) of dimension n. Fix $k \in \mathbb{N}$ and take a sequence of integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right), \alpha_{1} \geq \ldots \geq$ $\alpha_{r} \geq 1, \alpha_{1}+\ldots+\alpha_{r}=k$. Such an α is called a Young scheme of length k. In some references a Young scheme is called a decomposition. It can be represented by the figure consisting of r rows of squares and such that the number of squares in the j th row is α_{j}.

A Young scheme can be filled with numbers $1, \ldots, k$ distributed in any order. A scheme filled with numbers is called a Young diagram. Without loss of generality we can assume that the numbers grow both in rows and columns.

Take a Young diagram α and denote by H_{α} and V_{α} the subgroups of the symmetric group S_{k} consisting of all permutations preserving rows and columns, respectively. α determines the linear operator (called the Young symmetrizer) $P_{\alpha}: W^{k} \rightarrow W^{k}, W^{k}=\bigotimes_{k} W$, given by

$$
\begin{equation*}
P_{\alpha}=\sum_{\tau \in H_{\alpha}, \sigma \in V_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma, \tag{1}
\end{equation*}
$$

where the action of any permutation $\varrho \in S_{k}$ on simple tensors is given by

$$
\varrho\left(v_{1} \otimes \ldots \otimes v_{k}\right)=v_{\varrho^{-1}(1)} \otimes \ldots \otimes v_{\varrho^{-1}(k)}
$$

for all $v_{1}, \ldots, v_{k} \in W$. It is well known that

$$
\begin{equation*}
P_{\alpha}^{2}=m_{\alpha} P_{\alpha} \tag{2}
\end{equation*}
$$

for some $m_{\alpha} \in \mathbb{N}$ and that $W_{\alpha}=\operatorname{im} P_{\alpha}$ is an invariant subspace of W^{k} for the standard representation of GL (n) in W^{k}. This representation is irreducible on W_{α}. Moreover,

$$
\begin{equation*}
W^{k}=\bigoplus_{\alpha} W_{\alpha} \tag{3}
\end{equation*}
$$

If W is equipped with a scalar product $g=\langle\cdot, \cdot\rangle$, then g allows defining contractions in W^{k}. An element w of W^{k} is said to be traceless if $C(w)=$ 0 for any contraction $C: W^{k} \rightarrow W^{k-2}$. (In particular, all 1-tensors are traceless.) Traceless tensors form a linear subspace W_{0}^{k} of W^{k}. Its orthogonal complement consists of all the tensors of the form

$$
\begin{equation*}
\sum_{\sigma \in S_{k}} \sigma\left(g \otimes w_{\sigma}\right) \tag{4}
\end{equation*}
$$

where $w_{\sigma} \in W^{k-2}$. For simplicity, denote the space of tensors of the form (4) by $g \otimes W^{k-2}$ so that

$$
\begin{equation*}
W^{k}=W_{0}^{k} \oplus\left(g \otimes W^{k-2}\right) \tag{5}
\end{equation*}
$$

The intersection $W_{\alpha}^{0}=W_{\alpha} \cap W_{0}^{k}$ is non-trivial if and only if the sum of lenghts of the first two columns of a Young diagram α is $\leq n$. A diagram like this is called admissible and the corresponding space W_{α}^{0} is invariant and irreducible under the $\mathrm{O}(n)$-action. Moreover,

$$
\begin{equation*}
W_{0}^{k}=\bigoplus_{\alpha} W_{\alpha}^{0} \tag{6}
\end{equation*}
$$

where α ranges over the set of all admissible Young diagrams with numbers growing both in rows and columns. Comparing (5) and (6), and proceeding with the analogous decompositions of W^{k-2}, W^{k-4}, etc., one gets the decomposition of W^{k} into the direct (in fact, orthogonal) sum of irreducible $\mathrm{O}(n)$-invariant subspaces.
2. $\mathbf{G L}(n)$-gradients. Let $\beta=\left(\beta_{1}, \ldots, \beta_{s}\right)$ be a Young scheme of length $k+1$ obtained from α by an extension by a single square. The corresponding diagram should have $k+1$ in the added square, while the ordering in the other part of the diagram is the same as in α. We call β a distinguished extension of α if

$$
\begin{equation*}
s=r, \beta_{1}=\alpha_{1}+1, \beta_{2}=\alpha_{2}, \ldots, \beta_{s}=\alpha_{s} \tag{7}
\end{equation*}
$$

In other words, β is distinguished when the added square is situated at the end of the first row.

Take an arbitrary $v \in W$ and consider a linear mapping $\otimes_{v}: W^{k} \rightarrow$ W^{k+1} defined by

$$
\begin{equation*}
\otimes_{v}\left(v_{1} \otimes \ldots \otimes v_{k}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes v \tag{8}
\end{equation*}
$$

Theorem 1. For $v \neq 0$ the mapping

$$
\begin{equation*}
\left.P_{\beta} \circ \otimes_{v}\right|_{W_{\alpha}}: W_{\alpha} \rightarrow W_{\beta} \tag{9}
\end{equation*}
$$

is injective if and only if β is the distinguished extension of α.
Before the proof we make the following observations.
Lemma 1. Assume that $i, j, i \neq j$, are in the same column of a Young diagram α. Then

$$
\begin{equation*}
P_{\alpha}(v)=0, \tag{10}
\end{equation*}
$$

whenever $v=v_{1} \otimes \ldots \otimes v_{i} \otimes \ldots \otimes v_{j} \otimes \ldots \otimes v_{k+1}$ and $v_{j}=v_{i}$.
Proof. Denote by V_{α}^{+}and V_{α}^{-}the subsets of V_{α} consisting of odd and even permutations $\sigma \in V_{\alpha}$, respectively, $V_{\alpha}^{+} \cup V_{\alpha}^{-}=V_{\alpha}$. The mapping

$$
\begin{equation*}
\sigma \mapsto \widetilde{\sigma}=\sigma \circ t_{i j}, \tag{11}
\end{equation*}
$$

where $t_{i j}$ is the transposition, is a one-to-one map of V_{α}^{+}onto V_{α}^{-}. If $v_{i}=v_{j}$, then

$$
\begin{equation*}
\sum_{\sigma \in V_{\alpha}} \sigma(v)=\sum_{\sigma \in V_{\alpha}^{+}} \sigma(v)-\sum_{\sigma \in V_{\alpha}^{-}} \sigma(v)=0 \tag{12}
\end{equation*}
$$

because the terms corresponding to σ and $\widetilde{\sigma}$ are the same. Now, the statement follows from formulae (1) and (12).

Lemma 2. If β is the distinguished extension of α, then

$$
\begin{equation*}
P_{\beta}=m_{\alpha}\left[\mathrm{id}+\sum_{t \in T_{\alpha}} t \circ \mathrm{id}\right] \tag{13}
\end{equation*}
$$

on $W_{\alpha} \otimes W$, where T_{α} denotes the set of all transpositions of $k+1$ with the numbers from the first row.

Proof. Since $V_{\beta}=V_{\alpha}$ up to the canonical isomorphism and $H_{\beta}=$ $H_{\alpha} \cup \bigcup_{t \in T_{\alpha}} t H_{\alpha}$, we have

$$
\begin{equation*}
P_{\beta}=\sum_{\tau \in H_{\beta}, \sigma \in V_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma . \tag{14}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
P_{\beta}\left(P_{\alpha} v \otimes w\right) & =\sum_{\tau \in H_{\beta}} \tau\left(\sum_{\sigma \in V_{\alpha}} \operatorname{sgn} \sigma \cdot \sigma\left(P_{\alpha} v\right) \otimes w\right) \\
& =\sum_{\sigma \in V_{\alpha}, \tau \in H_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma\left(P_{\alpha} v\right) \otimes w
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{t \in T_{\alpha}} t\left(\sum_{\sigma \in V_{\alpha}, \tau \in H_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma\left(P_{\alpha} v\right) \otimes w\right) \\
& =P_{\alpha}^{2} v \otimes w+\sum_{t \in T_{\alpha}} t\left(P_{\alpha}^{2} v \otimes w\right)
\end{aligned}
$$

for any $v \in W^{k}$ and $w \in W$. Now, the proof is completed by applying (2).

Lemma 3. If $v_{1}, \ldots, v_{l} \in W$ are linearly independent, ϱ is a permutation mapping the numbers $1, \ldots, \alpha_{1}$ onto the numbers of the first row of the diagram $\alpha, \alpha_{1}+1, \ldots, \alpha_{1}+\alpha_{2}$ onto the numbers of the second row etc., and

$$
\begin{equation*}
\omega=\varrho^{-1}\left(\otimes^{\alpha_{1}} v_{1} \otimes \ldots \otimes^{\alpha_{l}} v_{l}\right) \tag{15}
\end{equation*}
$$

then $P_{\alpha} \omega \neq 0$.
Proof. The statement follows from (1) and the following:
(i) Any two permutations σ_{1} and σ_{2} of V_{α} satisfying $\tau \sigma_{1} \omega=\tau \sigma_{2} \omega$ for some $\tau \in H_{\alpha}$ have the same sign.
(ii) Any two products obtained from ω by permuting factors are linearly dependent if and only if they are equal.

Proof of Theorem 1. Assume first that β is the distinguished extension of α. If $\eta \in W_{\alpha}$ and $P_{\beta}(\eta \otimes w)=0$, then, by Lemma 2 ,

$$
\eta \otimes w+\sum_{t} t(\eta \otimes w)=0
$$

Take $w=e_{1}, \eta=\sum \eta_{i_{1} \ldots i_{k}} e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}$, where $\left\{e_{1}, \ldots, e_{k}\right\}$ is a basis of W. Then the last equality is equivalent to

$$
\begin{aligned}
\sum \eta_{i_{1} \ldots i_{k}}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}} \otimes e_{1}\right. & +e_{1} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{k}} \otimes e_{i_{1}} \\
& \left.+\ldots+e_{i_{1}} \otimes \ldots \otimes e_{i_{k-1}} \otimes e_{1} \otimes e_{i_{k}}\right)=0
\end{aligned}
$$

Now, if $i_{1}, \ldots, i_{k}>1$, then $\eta_{i_{1} \ldots i_{k}}=0$ because all the terms are linearly independent. If $i_{1}=1, i_{2}, \ldots, i_{k}>1$, then

$$
\begin{aligned}
2 \eta_{1 i_{2} \ldots i_{k}} e_{1} \otimes e_{i_{2}} \otimes & \ldots \otimes e_{i_{k}} \otimes e_{1} \\
& +(\text { terms linearly independent of the first one })=0
\end{aligned}
$$

so $\eta_{1 i_{2} \ldots i_{k}}=0$.
We can repeat the reasoning for the other coefficients. Consequently, $\eta=0$ and the mapping (9) is injective.

Assume now that β is a non-distinguished extension of α. Then, by Lemma 1,

$$
P_{\beta}\left(P_{\alpha} \omega \otimes v_{1}\right)=0
$$

where ω is of the form (15), while, by Lemma $3, P_{\alpha} \omega \neq 0$.

Now, consider any connection ∇ on a manifold M and extend it to covariant k-tensor fields, $k=1,2, \ldots$, in the standard way:

$$
\begin{equation*}
\nabla \omega\left(X_{1}, \ldots, X_{k+1}\right)=\left(\nabla_{X_{k+1}} \omega\right)\left(X_{1}, \ldots, X_{k}\right) \tag{16}
\end{equation*}
$$

For any two diagrams α and β of length k and $k+1$, respectively, denote by $\nabla^{\alpha \beta}$ the differential operator given by

$$
\begin{equation*}
\nabla^{\alpha \beta}=P_{\beta} \circ \nabla \mid T_{\alpha} \tag{17}
\end{equation*}
$$

where T_{α} denotes the space of all k-tensor fields ω such that $\omega(x) \in\left(T_{x}^{*} M\right)_{\alpha}$ for any $x \in M$. Since P_{β} is linear the symbol of the operator $\nabla^{\alpha \beta}$ is given by

$$
\begin{equation*}
\sigma\left(\nabla^{\alpha \beta}, w^{*}\right)(\omega)=P_{\beta}\left(\omega \otimes w^{*}\right) \tag{18}
\end{equation*}
$$

for any covector $w^{*} \in T_{x}^{*} M$, any $\omega \in\left(T_{x}^{*} M\right)_{\alpha}$ and $x \in M$. Theorem 1 together with (18) yields

Corollary. The operator $\nabla^{\alpha \beta}$ is elliptic if and only if β is the distinguished extension of α.
3. $\mathbf{O}(n)$-gradients. Given two admissible Young diagrams α and β of length k and $k+1$, respectively, and a Riemannian connection ∇ on a Riemannian manifold (M, g) one can consider the differential operator $\nabla^{\alpha \beta}$ given by

$$
\begin{equation*}
\nabla^{\alpha \beta}=\pi \circ P_{\beta} \circ \nabla \mid W_{\alpha}^{0} \tag{19}
\end{equation*}
$$

where W_{α}^{0} denotes the subspace of W_{α} consisting of all the traceless tensor fields and π is the projection of k-tensors to traceless k-tensors defined by the decomposition (5). The operator (19) differs from $\nabla^{\alpha \beta}$ of Section 2 but this should lead to no misunderstandings. Again, since π is a linear map, the symbol of $\nabla^{\alpha \beta}$ is given by the formula analogous to (18):

$$
\begin{equation*}
\sigma\left(\nabla^{\alpha \beta}, w\right)(\omega)=\pi\left(P_{\beta}(\omega \otimes w)\right) \tag{20}
\end{equation*}
$$

for any traceless ω and $w \in T M$. (Hereafter, vectors and covectors are identified by the Riemannian structure.)

Note that since ∇ is Riemannian, $\nabla_{X} \omega$ is traceless for any vector field X and any traceless k-tensor ω while $\nabla \omega$ itself can have non-vanishing contractions of the form $C_{k+1}^{i} \nabla \omega$, where $i \leq k$. Note also, that, in general, the distinguished extension of an admissible Young diagram is admissible again. The only exception is that of a one-column diagram of length n. These observations together with results of Section 2 motivate the following

Conjecture. $\nabla^{\alpha \beta}$ is elliptic if and only if β is the distinguished extension of α, both α and β being admissible.

An elementary proof of the conjecture seems unlikely, because there is no algorithm providing the traceless component of k-tensors, even of the
form $\omega \otimes v$ with ω being traceless and v a single vector. However, we can prove, in an elementary way, ellipticity of $\nabla^{\alpha \beta}$ in some particular cases and the "if" part completely.

Theorem 2. (i) If α is trivial, i.e. consits of a single row or of a single column, β is the distinguished extension of α and both α and β are admissible, then the operator $\nabla^{\alpha \beta}$ is elliptic.
(ii) If β is a non-distinguished extension of α, then $\nabla^{\alpha \beta}$ is not elliptic.

Proof. (i) Assume first that α is a single row. Then so is β and the spaces T_{α} and T_{β} consist of symmetric tensors. From (13) and (20) it follows that the ellipticity of $\nabla^{\alpha \beta}$ is equivalent to the following statement:
$(*)$ If ω is traceless and symmetric, v is a non-vanishing vector and

$$
\begin{equation*}
\omega \odot v \in g \otimes W^{k-1} \tag{21}
\end{equation*}
$$

then $\omega=0$.
Since β is admissible, $n>1$. To prove ($*$) take an orthonormal frame e_{1}, \ldots, e_{n} and assume, without loss of generality, that $v=e_{1}$. Since the symmetric algebra is isomorphic to the algebra of polynomials and the tensors in (21) are symmetric, we can replace (21) by the equality

$$
\begin{equation*}
x_{1} \cdot P\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot Q\left(x_{1}, \ldots, x_{n}\right) \tag{22}
\end{equation*}
$$

where P and Q are polynomials. From (22) it follows that Q is of the form $x_{1} \cdot Q^{\prime}$ for another polynomial Q^{\prime} and therefore, $P=\sum x_{i}^{2} \cdot Q^{\prime}$. Since P corresponds to ω, the last equality shows that $\omega \in\left(g \otimes W^{k-2}\right) \cap W_{0}^{k}=\{0\}$.

Assume now that α is a single column. The space W_{α} consists of skewsymmetric tensors and β is admissible if and only if $k<n$. Assume that $\omega \in W_{\alpha}$ and

$$
\begin{equation*}
\omega \otimes v+(-1)^{k-1} v \otimes \omega \in g \otimes W^{k-1} \tag{23}
\end{equation*}
$$

for some $v \neq 0$. (Note that, by Lemma 2, the tensor in (23) coincides with $P_{\beta} \omega$.) From (23) it follows that

$$
\begin{equation*}
\omega=v \wedge \eta \tag{24}
\end{equation*}
$$

for some ($k-1$)-form η. In fact, otherwise $\omega \otimes v \pm v \otimes \omega$, when decomposed into a sum of simple tensors, would contain a term $w_{1} \otimes \ldots \otimes w_{k+1}$ with all the factors w_{i} linearly independent while tensors of $g \otimes W^{k-1}$ do not admit terms of this sort. Moreover, one could choose η in (24) to be a $(k-1)$-form on the orthogonal complement $\{v\}^{\perp}$ of the one-dimensional space spanned by v. If so, $\omega \otimes v \pm v \otimes \omega$ would contain no non-trivial terms of the form

$$
\begin{equation*}
\varrho\left(w \otimes w \otimes w_{1} \otimes \ldots \otimes w_{k-1}\right) \tag{25}
\end{equation*}
$$

with $\varrho \in S_{k-1}$ and $w \in\{v\}^{\perp}$ while all the non-zero tensors of $g \otimes W^{k-1}$ do. Consequently, $\omega=0$.
(ii) Assume that α is admissible and put $m=\min \left\{\delta_{1}, n / 2\right\}$, where δ_{j} is the length of the j th column of α. Since $\delta_{1}+\delta_{2} \leq n$, it follows that $\beta_{2} \leq m$. Split the set $\{1,2, \ldots, k\}$ into the sum $A \cup B \cup C$ of pairwise disjoint subsets such that $\# A=\# B=m$. Set $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}$ and $C=\{2 m+1, \ldots, n\}$.

Fix an orthonormal frame $\left(e_{1}, \ldots, e_{n}\right)$ of W and denote by ω the sum of all the terms of the form

$$
\begin{equation*}
(-1)^{l} \cdot e_{i_{1}} \otimes \ldots \otimes e_{i_{k}} \tag{26}
\end{equation*}
$$

where $i_{r} \in\left\{a_{s}, b_{s}\right\}$ when r belongs to the s th row of the Young diagram α and $s \leq m, i_{r}=c_{s}$ when r belongs to the s th row of α and $s>m$, and

$$
l=\left[\frac{1}{2} \#\left\{r: i_{r} \in B\right\}\right] .
$$

It is easy to see that both tensors ω and $P_{\alpha} \omega$ are traceless while $P_{\alpha}(\omega) \neq 0$.
Take any non-distinguished extension β of α and denote by s the number of the column of β which contains $k+1$. Write ω in the form

$$
\begin{equation*}
\omega=\omega_{A}+\omega_{B} \tag{27}
\end{equation*}
$$

where ω_{A} (resp., ω_{B}) is the sum of all the terms of the form (26) for which $i_{r} \in A$ (resp., $i_{r} \in B$) for the r which appears in the first row and s th column of α. Let $v=e_{a_{1}}+e_{b_{1}}$. Then

$$
\begin{equation*}
\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma\left(\omega_{A} \otimes e_{a_{1}}\right)=\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma\left(\omega_{B} \otimes e_{b_{1}}\right)=0 \tag{28}
\end{equation*}
$$

by Lemma 1. Also,

$$
\begin{equation*}
\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma\left(\omega_{A} \otimes e_{b_{1}}\right)=-\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma\left(\omega_{B} \otimes e_{a_{1}}\right) \tag{29}
\end{equation*}
$$

because for any term in the first sum there exists a unique term in the second sum with $e_{a_{1}}$ and $e_{b_{1}}$ interchanged. Equalities (27)-(29) together with (1) and the definition of v imply that $P_{\beta}(\omega \otimes v)=0$.

Finally, following the proof of Lemma 2 one can show that

$$
\begin{equation*}
P_{\beta}=m_{\alpha} \sum_{t \in T^{v}} \sum_{t^{\prime} \in T^{h}} \operatorname{sgn} t \cdot t^{\prime} \circ\left(P_{\alpha} \otimes \mathrm{id}\right) \circ t, \tag{30}
\end{equation*}
$$

where T^{h} (resp., T^{v}) consists of the identity and all the transpositions of $k+1$ with the elements of the row (resp., column) containing it. It follows that

$$
\begin{equation*}
P_{\beta}\left(P_{\alpha} \omega \otimes v\right)=m_{\alpha} P_{\beta}(\omega \otimes v)=0 \tag{31}
\end{equation*}
$$

4. Final remarks. (i) Denote by $N(k)$ the number of components in the decomposition (3). It is easy to observe that $N(1)=1, N(2)=2, N(3)=4$, $N(4)=10, N(5)=26$, etc. The above observation motivates the recurrent formula

$$
\begin{equation*}
N(k)=N(k-1)+(k-1) \cdot N(k-2) . \tag{32}
\end{equation*}
$$

The authors could not find anything like this in the literature. A numerical experiment showed that (32) holds for small k, say $k \leq 20$.
(ii) As we said in Section 3, there is no explicit formula for the traceless part of a tensor. In some sense, a formula of this sort could be obtained in the following way. Put

$$
\begin{equation*}
E=\bigoplus_{\binom{k}{2}} T^{k-2} \tag{33}
\end{equation*}
$$

and define an endomorphism $K: E \rightarrow E$ by the formula

$$
\begin{equation*}
K\left(\left(\omega_{i j}\right)\right)=\left(C_{j}^{i}\left(\sum_{r, s} t_{r} \circ t_{s}(g \otimes \omega r s)\right)\right) \tag{34}
\end{equation*}
$$

where t_{r} (resp. t_{s}) is the transposition of the terms 1 and r (resp., 1 and s).
K is an isomorphism. In fact, if $K(\Omega)=0, \Omega=\left(\omega_{i j}\right)$, then the tensor

$$
\begin{equation*}
\Theta=\sum_{r, s} t_{r} \circ t_{s}\left(g \otimes \omega_{r s}\right) \tag{35}
\end{equation*}
$$

is traceless and-because of its form - orthogonal to the space of traceless tensors, and therefore, it vanishes. Decomposing tensors $\omega_{i j}$ according to (6) and proceeding inductively one would get $\omega_{i j}=0$ for all i and j, i.e. $\Omega=0$.

The traceless part ω_{0} of any k-tensor ω is given by the formula

$$
\begin{equation*}
\omega_{0}=\omega-\Theta, \tag{36}
\end{equation*}
$$

where Θ is given by (35) with $\left(\omega_{i j}\right)=K^{-1}\left(\left(C_{j}^{i} \omega\right)\right)$. In fact, from the definition of K it follows immediately that $C_{j}^{i} \Theta=C_{j}^{i} \omega$ for all i and j.

After submitting the paper, the authors, working jointly with B. Ørsted and G. Zhang, proved the Conjecture from Section 3 as well as formula (32). See Elliptic gradients and highest weights, Bull. Polish Acad. Sci. Math. 44 (1996), 527-535.

References

[ØР] B. Ørsted and A. Pierzchalski, The Ahlfors Laplacian on a Riemannian manifold, in: Constantin Carathéodory: An International Tribute, World Sci., Singapore, 1991, 1020-1048.
[P] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold, Manuscripta Math. 66 (1989), 113-127.
[SW] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation of the notation group, Amer. J. Math. 90 (1968), 163-197.
[We] H. Weyl, The Classical Groups, Princeton Univ. Press, Princeton, 1946.

Institute of Mathematics
Technical University of Łódź
Al. Politechniki 11
93-590 Łódź, Poland
E-mail: jkalina@imul.uni.lodz.pl

Institute of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: antoni@imul.uni.lodz.pl pawelwal@imul.uni.lodz.pl

[^0]: 1991 Mathematics Subject Classification: 53C05, 20G05.
 Key words and phrases: connection, group representation, Young diagram, elliptic operator.

 The authors were supported by the KBN grant 2 P301 03604.

