Only one of generalized gradients can be elliptic

by Jerzy Kalina, Antoni Pierzchalski and PawełWalczak (Łódź)

Abstract. Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.

Introduction. We decompose a connection ∇ on an *n*-dimensional C^{∞} manifold M (in particular, a Riemannian connection on a Riemannian manifold (M, g)) into the sum of first order differential operators $\nabla^{\alpha\beta}$ acting on covariant k-tensors, $k = 1, 2, \ldots$, and arising from the decomposition of the space T^k of k-tensors into the direct sum of irreducible $\operatorname{GL}(n)$ -invariant (or, in the Riemannian case, O(n)-invariant) subspaces. Following [SW] we shall call them $\operatorname{GL}(n)$ - and O(n)-gradients, respectively.

Some of the gradients $\nabla^{\alpha\beta}$ have important geometric meaning. The best known is the exterior derivative *d* corresponding to skew-symmetric tensors. Its role in geometry and topology of manifolds cannot be overestimated. Another one, known as the Ahlfors operator $S: T^1 \to S_0^2$, is defined for 1-forms ω by the splitting

$$\nabla \omega = \frac{1}{2} d\omega + S \omega - \frac{1}{n} \delta \omega \cdot g$$

and corresponds to the subbundle of traceless symmetric 2-tensors. It appears to play an important role in conformal and quasi-conformal geometry (see the recent papers [OP], [P], etc.).

In Section 1, we recall (after H. Weyl [We]) the theory of Young diagrams and schemes and define our operators $\nabla^{\alpha\beta}$. In Section 2, we consider

¹⁹⁹¹ Mathematics Subject Classification: 53C05, 20G05.

 $Key\ words\ and\ phrases:$ connection, group representation, Young diagram, elliptic operator.

The authors were supported by the KBN grant 2 P301 036 04.

^[111]

J. Kalina et al.

the ellipticity of operators corresponding to $\operatorname{GL}(n)$ -invariant subspaces. We distinguish a suitable extension of a Young diagram α and show that $\nabla^{\alpha\beta}$ is elliptic if and only if β is a distinguished extension of α . In Section 3, we get some particular ellipticity results for operators corresponding to O(n)-invariant subspaces. We end with some remarks.

Similar problems could be considered for any connection ∇ ,

$$\nabla: C^{\infty}(\xi) \to C^{\infty}(T^*M \otimes \xi),$$

in any vector bundle ξ over a manifold M and any Lie group G acting simultaneously in T^*M and ξ . Splitting ξ and $\tilde{\xi} = T^*M \otimes \xi$ into the direct sums of irreducible G-invariant subbundles, $\xi = \bigoplus_{\alpha} \xi_{\alpha}$ and $\tilde{\xi} = \bigoplus_{\beta} \tilde{\xi}_{\beta}$, G-gradients could be defined as

$$\nabla^{\alpha\beta} = \widetilde{\pi}_{\beta} \circ \nabla \circ \iota_{\alpha},$$

where $\iota_{\alpha}: \xi_{\alpha} \to \xi$ and $\tilde{\pi}_{\beta}: \tilde{\xi} \to \tilde{\xi}_{\beta}$ are the canonical maps. One of interesting examples of this sort is the classical Dirac operator D which could be considered as an eliptic $\operatorname{Spin}(n)$ -gradient in a spinor bundle over a manifold equipped with a spinor structure. Ellipticity of general G-gradients will be studied elsewhere.

1. Young diagrams. Let W be a vector space (over \mathbb{R} or \mathbb{C}) of dimension n. Fix $k \in \mathbb{N}$ and take a sequence of integers $\alpha = (\alpha_1, \ldots, \alpha_r), \alpha_1 \geq \ldots \geq \alpha_r \geq 1, \alpha_1 + \ldots + \alpha_r = k$. Such an α is called a *Young scheme of length* k. In some references a Young scheme is called a *decomposition*. It can be represented by the figure consisting of r rows of squares and such that the number of squares in the jth row is α_j .

A Young scheme can be filled with numbers $1, \ldots, k$ distributed in any order. A scheme filled with numbers is called a *Young diagram*. Without loss of generality we can assume that the numbers grow both in rows and columns.

Take a Young diagram α and denote by H_{α} and V_{α} the subgroups of the symmetric group S_k consisting of all permutations preserving rows and columns, respectively. α determines the linear operator (called the *Young* symmetrizer) $P_{\alpha}: W^k \to W^k, W^k = \bigotimes_k W$, given by

(1)
$$P_{\alpha} = \sum_{\tau \in H_{\alpha}, \, \sigma \in V_{\alpha}} \operatorname{sgn} \, \sigma \cdot \tau \sigma,$$

where the action of any permutation $\rho \in S_k$ on simple tensors is given by

$$\varrho(v_1 \otimes \ldots \otimes v_k) = v_{\varrho^{-1}(1)} \otimes \ldots \otimes v_{\varrho^{-1}(k)}$$

for all $v_1, \ldots, v_k \in W$. It is well known that

(2)
$$P_{\alpha}^2 = m_{\alpha} P_{\alpha}$$

 $Generalized \ gradients$

for some $m_{\alpha} \in \mathbb{N}$ and that $W_{\alpha} = \operatorname{im} P_{\alpha}$ is an invariant subspace of W^k for the standard representation of $\operatorname{GL}(n)$ in W^k . This representation is irreducible on W_{α} . Moreover,

(3)
$$W^k = \bigoplus_{\alpha} W_{\alpha}.$$

If W is equipped with a scalar product $g = \langle \cdot, \cdot \rangle$, then g allows defining contractions in W^k . An element w of W^k is said to be *traceless* if C(w) =0 for any contraction $C : W^k \to W^{k-2}$. (In particular, all 1-tensors are traceless.) Traceless tensors form a linear subspace W_0^k of W^k . Its orthogonal complement consists of all the tensors of the form

(4)
$$\sum_{\sigma \in S_k} \sigma(g \otimes w_{\sigma}),$$

where $w_{\sigma} \in W^{k-2}$. For simplicity, denote the space of tensors of the form (4) by $g \otimes W^{k-2}$ so that

(5)
$$W^k = W_0^k \oplus (g \otimes W^{k-2}).$$

The intersection $W_{\alpha}^{0} = W_{\alpha} \cap W_{0}^{k}$ is non-trivial if and only if the sum of lenghts of the first two columns of a Young diagram α is $\leq n$. A diagram like this is called *admissible* and the corresponding space W_{α}^{0} is invariant and irreducible under the O(n)-action. Moreover,

(6)
$$W_0^k = \bigoplus_{\alpha} W_{\alpha}^0,$$

where α ranges over the set of all admissible Young diagrams with numbers growing both in rows and columns. Comparing (5) and (6), and proceeding with the analogous decompositions of W^{k-2} , W^{k-4} , etc., one gets the decomposition of W^k into the direct (in fact, orthogonal) sum of irreducible O(n)-invariant subspaces.

2. $\operatorname{GL}(n)$ -gradients. Let $\beta = (\beta_1, \ldots, \beta_s)$ be a Young scheme of length k+1 obtained from α by an extension by a single square. The corresponding diagram should have k+1 in the added square, while the ordering in the other part of the diagram is the same as in α . We call β a *distinguished* extension of α if

(7)
$$s = r, \ \beta_1 = \alpha_1 + 1, \ \beta_2 = \alpha_2, \dots, \beta_s = \alpha_s.$$

In other words, β is distinguished when the added square is situated at the end of the first row.

Take an arbitrary $v \in W$ and consider a linear mapping $\otimes_v : W^k \to W^{k+1}$ defined by

(8)
$$\otimes_v (v_1 \otimes \ldots \otimes v_k) = v_1 \otimes \ldots \otimes v_k \otimes v_k$$

THEOREM 1. For $v \neq 0$ the mapping

(9)
$$P_{\beta} \circ \otimes_{v}|_{W_{\alpha}} : W_{\alpha} \to W_{\beta}$$

is injective if and only if β is the distinguished extension of α .

Before the proof we make the following observations.

LEMMA 1. Assume that $i, j, i \neq j$, are in the same column of a Young diagram α . Then

(10)
$$P_{\alpha}(v) = 0,$$

whenever $v = v_1 \otimes \ldots \otimes v_i \otimes \ldots \otimes v_j \otimes \ldots \otimes v_{k+1}$ and $v_j = v_i$.

Proof. Denote by V_{α}^+ and V_{α}^- the subsets of V_{α} consisting of odd and even permutations $\sigma \in V_{\alpha}$, respectively, $V_{\alpha}^+ \cup V_{\alpha}^- = V_{\alpha}$. The mapping

(11)
$$\sigma \mapsto \widetilde{\sigma} = \sigma \circ t_{ij},$$

where t_{ij} is the transposition, is a one-to-one map of V_{α}^+ onto V_{α}^- . If $v_i = v_j$, then

(12)
$$\sum_{\sigma \in V_{\alpha}} \sigma(v) = \sum_{\sigma \in V_{\alpha}^{+}} \sigma(v) - \sum_{\sigma \in V_{\alpha}^{-}} \sigma(v) = 0,$$

because the terms corresponding to σ and $\tilde{\sigma}$ are the same. Now, the statement follows from formulae (1) and (12).

LEMMA 2. If β is the distinguished extension of α , then

(13)
$$P_{\beta} = m_{\alpha} \Big[\operatorname{id} + \sum_{t \in T_{\alpha}} t \circ \operatorname{id} \Big]$$

on $W_{\alpha} \otimes W$, where T_{α} denotes the set of all transpositions of k+1 with the numbers from the first row.

Proof. Since $V_{\beta} = V_{\alpha}$ up to the canonical isomorphism and $H_{\beta} = H_{\alpha} \cup \bigcup_{t \in T_{\alpha}} tH_{\alpha}$, we have

(14)
$$P_{\beta} = \sum_{\tau \in H_{\beta}, \, \sigma \in V_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma.$$

Consequently,

$$P_{\beta}(P_{\alpha}v \otimes w) = \sum_{\tau \in H_{\beta}} \tau \Big(\sum_{\sigma \in V_{\alpha}} \operatorname{sgn} \sigma \cdot \sigma(P_{\alpha}v) \otimes w\Big)$$
$$= \sum_{\sigma \in V_{\alpha}, \tau \in H_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma(P_{\alpha}v) \otimes w$$

114

 $Generalized \ gradients$

$$+\sum_{t\in T_{\alpha}} t\Big(\sum_{\sigma\in V_{\alpha},\,\tau\in H_{\alpha}} \operatorname{sgn} \sigma \cdot \tau \sigma(P_{\alpha}v) \otimes w\Big)$$
$$= P_{\alpha}^{2}v \otimes w + \sum_{t\in T_{\alpha}} t(P_{\alpha}^{2}v \otimes w),$$

for any $v \in W^k$ and $w \in W$. Now, the proof is completed by applying (2).

LEMMA 3. If $v_1, ..., v_l \in W$ are linearly independent, ϱ is a permutation mapping the numbers $1, ..., \alpha_1$ onto the numbers of the first row of the diagram $\alpha, \alpha_1 + 1, ..., \alpha_1 + \alpha_2$ onto the numbers of the second row etc., and

(15)
$$\omega = \varrho^{-1} (\otimes^{\alpha_1} v_1 \otimes \ldots \otimes^{\alpha_l} v_l),$$

then $P_{\alpha}\omega \neq 0$.

Proof. The statement follows from (1) and the following:

(i) Any two permutations σ_1 and σ_2 of V_{α} satisfying $\tau \sigma_1 \omega = \tau \sigma_2 \omega$ for some $\tau \in H_{\alpha}$ have the same sign.

(ii) Any two products obtained from ω by permuting factors are linearly dependent if and only if they are equal. \blacksquare

Proof of Theorem 1. Assume first that β is the distinguished extension of α . If $\eta \in W_{\alpha}$ and $P_{\beta}(\eta \otimes w) = 0$, then, by Lemma 2,

$$\eta\otimes w+\sum_t t(\eta\otimes w)=0$$

Take $w = e_1$, $\eta = \sum \eta_{i_1...i_k} e_{i_1} \otimes ... \otimes e_{i_k}$, where $\{e_1, \ldots, e_k\}$ is a basis of W. Then the last equality is equivalent to

$$\sum \eta_{i_1\dots i_k} (e_{i_1} \otimes \dots \otimes e_{i_k} \otimes e_1 + e_1 \otimes e_{i_2} \otimes \dots \otimes e_{i_k} \otimes e_{i_1} + \dots + e_{i_1} \otimes \dots \otimes e_{i_{k-1}} \otimes e_1 \otimes e_{i_k}) = 0.$$

Now, if $i_1, \ldots, i_k > 1$, then $\eta_{i_1 \ldots i_k} = 0$ because all the terms are linearly independent. If $i_1 = 1, i_2, \ldots, i_k > 1$, then

 $2\eta_{1i_2...i_k}e_1\otimes e_{i_2}\otimes\ldots\otimes e_{i_k}\otimes e_1$

+ (terms linearly independent of the first one) = 0,

so $\eta_{1i_2...i_k} = 0.$

We can repeat the reasoning for the other coefficients. Consequently, $\eta = 0$ and the mapping (9) is injective.

Assume now that β is a non-distinguished extension of α . Then, by Lemma 1,

$$P_{\beta}(P_{\alpha}\omega\otimes v_1)=0,$$

where ω is of the form (15), while, by Lemma 3, $P_{\alpha}\omega \neq 0$.

Now, consider any connection ∇ on a manifold M and extend it to covariant k-tensor fields, $k = 1, 2, \ldots$, in the standard way:

(16)
$$\nabla \omega(X_1, \dots, X_{k+1}) = (\nabla_{X_{k+1}} \omega)(X_1, \dots, X_k)$$

For any two diagrams α and β of length k and k+1, respectively, denote by $\nabla^{\alpha\beta}$ the differential operator given by

(17)
$$\nabla^{\alpha\beta} = P_{\beta} \circ \nabla | T_{\alpha},$$

where T_{α} denotes the space of all k-tensor fields ω such that $\omega(x) \in (T_x^*M)_{\alpha}$ for any $x \in M$. Since P_{β} is linear the symbol of the operator $\nabla^{\alpha\beta}$ is given by

(18)
$$\sigma(\nabla^{\alpha\beta}, w^*)(\omega) = P_{\beta}(\omega \otimes w^*)$$

for any covector $w^* \in T^*_x M$, any $\omega \in (T^*_x M)_{\alpha}$ and $x \in M$. Theorem 1 together with (18) yields

COROLLARY. The operator $\nabla^{\alpha\beta}$ is elliptic if and only if β is the distinguished extension of α .

3. $\mathbf{O}(n)$ -gradients. Given two admissible Young diagrams α and β of length k and k + 1, respectively, and a Riemannian connection ∇ on a Riemannian manifold (M, g) one can consider the differential operator $\nabla^{\alpha\beta}$ given by

(19)
$$\nabla^{\alpha\beta} = \pi \circ P_{\beta} \circ \nabla | W_{\alpha}^{0}$$

where W^0_{α} denotes the subspace of W_{α} consisting of all the traceless tensor fields and π is the projection of k-tensors to traceless k-tensors defined by the decomposition (5). The operator (19) differs from $\nabla^{\alpha\beta}$ of Section 2 but this should lead to no misunderstandings. Again, since π is a linear map, the symbol of $\nabla^{\alpha\beta}$ is given by the formula analogous to (18):

(20)
$$\sigma(\nabla^{\alpha\beta}, w)(\omega) = \pi(P_{\beta}(\omega \otimes w))$$

for any traceless ω and $w \in TM$. (Hereafter, vectors and covectors are identified by the Riemannian structure.)

Note that since ∇ is Riemannian, $\nabla_X \omega$ is traceless for any vector field X and any traceless k-tensor ω while $\nabla \omega$ itself can have non-vanishing contractions of the form $C_{k+1}^i \nabla \omega$, where $i \leq k$. Note also, that, in general, the distinguished extension of an admissible Young diagram is admissible again. The only exception is that of a one-column diagram of length n. These observations together with results of Section 2 motivate the following

CONJECTURE. $\nabla^{\alpha\beta}$ is elliptic if and only if β is the distinguished extension of α , both α and β being admissible.

An elementary proof of the conjecture seems unlikely, because there is no algorithm providing the traceless component of k-tensors, even of the form $\omega \otimes v$ with ω being traceless and v a single vector. However, we can prove, in an elementary way, ellipticity of $\nabla^{\alpha\beta}$ in some particular cases and the "if" part completely.

THEOREM 2. (i) If α is trivial, i.e. consits of a single row or of a single column, β is the distinguished extension of α and both α and β are admissible, then the operator $\nabla^{\alpha\beta}$ is elliptic.

(ii) If β is a non-distinguished extension of α , then $\nabla^{\alpha\beta}$ is not elliptic.

Proof. (i) Assume first that α is a single row. Then so is β and the spaces T_{α} and T_{β} consist of symmetric tensors. From (13) and (20) it follows that the ellipticity of $\nabla^{\alpha\beta}$ is equivalent to the following statement:

(*) If ω is traceless and symmetric, v is a non-vanishing vector and

(21)
$$\omega \odot v \in g \otimes W^{k-1},$$

then $\omega = 0$.

Since β is admissible, n > 1. To prove (*) take an orthonormal frame e_1, \ldots, e_n and assume, without loss of generality, that $v = e_1$. Since the symmetric algebra is isomorphic to the algebra of polynomials and the tensors in (21) are symmetric, we can replace (21) by the equality

(22)
$$x_1 \cdot P(x_1, \dots, x_n) = \left(\sum_{i=1}^n x_i^2\right) \cdot Q(x_1, \dots, x_n)$$

where P and Q are polynomials. From (22) it follows that Q is of the form $x_1 \cdot Q'$ for another polynomial Q' and therefore, $P = \sum x_i^2 \cdot Q'$. Since P corresponds to ω , the last equality shows that $\omega \in (g \otimes W^{k-2}) \cap W_0^k = \{0\}$.

Assume now that α is a single column. The space W_{α} consists of skewsymmetric tensors and β is admissible if and only if k < n. Assume that $\omega \in W_{\alpha}$ and

(23)
$$\omega \otimes v + (-1)^{k-1} v \otimes \omega \in g \otimes W^{k-1}$$

for some $v \neq 0$. (Note that, by Lemma 2, the tensor in (23) coincides with $P_{\beta}\omega$.) From (23) it follows that

(24)
$$\omega = v \wedge \eta$$

for some (k-1)-form η . In fact, otherwise $\omega \otimes v \pm v \otimes \omega$, when decomposed into a sum of simple tensors, would contain a term $w_1 \otimes \ldots \otimes w_{k+1}$ with all the factors w_i linearly independent while tensors of $g \otimes W^{k-1}$ do not admit terms of this sort. Moreover, one could choose η in (24) to be a (k-1)-form on the orthogonal complement $\{v\}^{\perp}$ of the one-dimensional space spanned by v. If so, $\omega \otimes v \pm v \otimes \omega$ would contain no non-trivial terms of the form

(25)
$$\varrho(w \otimes w \otimes w_1 \otimes \ldots \otimes w_{k-1})$$

with $\rho \in S_{k-1}$ and $w \in \{v\}^{\perp}$ while all the non-zero tensors of $g \otimes W^{k-1}$ do. Consequently, $\omega = 0$.

(ii) Assume that α is admissible and put $m = \min\{\delta_1, n/2\}$, where δ_j is the length of the *j*th column of α . Since $\delta_1 + \delta_2 \leq n$, it follows that $\beta_2 \leq m$. Split the set $\{1, 2, \ldots, k\}$ into the sum $A \cup B \cup C$ of pairwise disjoint subsets such that #A = #B = m. Set $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_m\}$ and $C = \{2m + 1, \ldots, n\}$.

Fix an orthonormal frame (e_1, \ldots, e_n) of W and denote by ω the sum of all the terms of the form

(26)
$$(-1)^l \cdot e_{i_1} \otimes \ldots \otimes e_{i_k},$$

where $i_r \in \{a_s, b_s\}$ when r belongs to the sth row of the Young diagram α and $s \leq m$, $i_r = c_s$ when r belongs to the sth row of α and s > m, and

$$l = \left\lceil \frac{1}{2} \# \{r : i_r \in B\} \right\rceil.$$

It is easy to see that both tensors ω and $P_{\alpha}\omega$ are traceless while $P_{\alpha}(\omega) \neq 0$.

Take any non-distinguished extension β of α and denote by s the number of the column of β which contains k + 1. Write ω in the form

(27)
$$\omega = \omega_A + \omega_B,$$

where ω_A (resp., ω_B) is the sum of all the terms of the form (26) for which $i_r \in A$ (resp., $i_r \in B$) for the r which appears in the first row and sth column of α . Let $v = e_{a_1} + e_{b_1}$. Then

(28)
$$\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma(\omega_A \otimes e_{a_1}) = \sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma(\omega_B \otimes e_{b_1}) = 0$$

by Lemma 1. Also,

(29)
$$\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma(\omega_A \otimes e_{b_1}) = -\sum_{\sigma \in H_{\beta}} \operatorname{sgn} \sigma \cdot \sigma(\omega_B \otimes e_{a_1})$$

because for any term in the first sum there exists a unique term in the second sum with e_{a_1} and e_{b_1} interchanged. Equalities (27)–(29) together with (1) and the definition of v imply that $P_{\beta}(\omega \otimes v) = 0$.

Finally, following the proof of Lemma 2 one can show that

(30)
$$P_{\beta} = m_{\alpha} \sum_{t \in T^{v}} \sum_{t' \in T^{h}} \operatorname{sgn} t \cdot t' \circ (P_{\alpha} \otimes \operatorname{id}) \circ t,$$

where T^h (resp., T^v) consists of the identity and all the transpositions of k+1 with the elements of the row (resp., column) containing it. It follows that

(31)
$$P_{\beta}(P_{\alpha}\omega \otimes v) = m_{\alpha}P_{\beta}(\omega \otimes v) = 0. \blacksquare$$

Generalized gradients

4. Final remarks. (i) Denote by N(k) the number of components in the decomposition (3). It is easy to observe that N(1) = 1, N(2) = 2, N(3) = 4, N(4) = 10, N(5) = 26, etc. The above observation motivates the recurrent formula

(32)
$$N(k) = N(k-1) + (k-1) \cdot N(k-2).$$

The authors could not find anything like this in the literature. A numerical experiment showed that (32) holds for small k, say $k \leq 20$.

(ii) As we said in Section 3, there is no explicit formula for the traceless part of a tensor. In some sense, a formula of this sort could be obtained in the following way. Put

(33)
$$E = \bigoplus_{\binom{k}{2}} T^{k-2}$$

and define an endomorphism $K: E \to E$ by the formula

(34)
$$K((\omega_{ij})) = \left(C_j^i \left(\sum_{r,s} t_r \circ t_s(g \otimes \omega rs)\right)\right),$$

where t_r (resp. t_s) is the transposition of the terms 1 and r (resp., 1 and s). K is an isomorphism. In fact, if $K(\Omega) = 0$, $\Omega = (\omega_{ij})$, then the tensor

(35)
$$\Theta = \sum_{r,s} t_r \circ t_s(g \otimes \omega_{rs})$$

is traceless and—because of its form—orthogonal to the space of traceless tensors, and therefore, it vanishes. Decomposing tensors ω_{ij} according to (6) and proceeding inductively one would get $\omega_{ij} = 0$ for all *i* and *j*, i.e. $\Omega = 0$.

The traceless part ω_0 of any k-tensor ω is given by the formula

(36)
$$\omega_0 = \omega - \Theta,$$

where Θ is given by (35) with $(\omega_{ij}) = K^{-1}((C_j^i \omega))$. In fact, from the definition of K it follows immediately that $C_j^i \Theta = C_j^i \omega$ for all *i* and *j*.

After submitting the paper, the authors, working jointly with B. Ørsted and G. Zhang, proved the Conjecture from Section 3 as well as formula (32). See *Elliptic gradients and highest weights*, Bull. Polish Acad. Sci. Math. 44 (1996), 527–535.

References

- [ØP] B. Ørsted and A. Pierzchalski, The Ahlfors Laplacian on a Riemannian manifold, in: Constantin Carathéodory: An International Tribute, World Sci., Singapore, 1991, 1020–1048.
 - [P] A. Pierzchalski, Ricci curvature and quasiconformal deformations of a Riemannian manifold, Manuscripta Math. 66 (1989), 113–127.

J. Kalina et al.

[SW] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation of the notation group, Amer. J. Math. 90 (1968), 163-197.
[We] H. Weyl, The Classical Groups, Princeton Univ. Press, Princeton, 1946.

Institute of Mathematics Technical University of Łódź Al. Politechniki 11 93-590 Łódź, Poland E-mail: jkalina@imul.uni.lodz.pl Institute of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: antoni@imul.uni.lodz.pl pawelwal@imul.uni.lodz.pl

Reçu par la Rédaction le 10.2.1995

120