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On symmetry of the pluricomplex Green function
for ellipsoids

by W lodzimierz Zwonek (Kraków)

Abstract. We show that in the class of complex ellipsoids the symmetry of the
pluricomplex Green function is equivalent to convexity of the ellipsoid.

For a domain D ⊂ Cn we define

gD(w, z) := sup{u(z) : log u ∈ PSH(D), 0 ≤ u < 1 and there are M,R> 0
such that u(ζ) ≤M‖ζ − w‖ for ||ζ − w|| < R},

k̃∗D(w, z) := inf{m(λ1, λ2) : there is ϕ ∈ O(E,D)
with ϕ(λ1) = w, ϕ(λ2) = z}, w, z ∈ D,

where E is the open unit disk in C,

m(λ1, λ2) :=
∣∣∣∣ λ1 − λ2

1− λ1λ2

∣∣∣∣, λ1, λ2 ∈ E,

O(E,D) denotes the set of holomorphic functions from E to D and PSH(D)
is the set of plurisubharmonic functions on D.

gD (respectively, k̃∗D) is called the pluricomplex Green function (respec-
tively, the Lempert function).

Any holomorphic mapping ϕ : E → D such that k̃∗D(ϕ(λ1), ϕ(λ2)) =
m(λ1, λ2) for some λ1 6= λ2 is called a k̃D-geodesic for (ϕ(λ1), ϕ(λ2)).

Below we list some well-known properties of these functions that we shall
need in the sequel (for references see [Jar-Pfl], [Lem] and [Kli]):

(1) log gD(z, ·) ∈ PSH(D) for any z ∈ D;
(2) gD ≤ k̃∗D;
(3) ifD is a convex domain then gD = k̃∗D (in particular, gD is symmetric);
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(4) if D is a bounded pseudoconvex balanced domain, then gD(0, z) =
k̃∗D(0, z) = h(z) for any z ∈ D, where h is the Minkowski function
of D, and k̃∗D(λ1b, λ2b) ≤ m(λ1, λ2) for any b ∈ ∂D.

Let us also define for p = (p1, . . . , pn), where pj > 0, j = 1, . . . , n, n > 1,

E(p) := {z ∈ Cn : |z1|2p1 + . . .+ |zn|2pn < 1}
The domains E(p) are called complex elipsoids.

It is easy to check that a complex ellipsoid is convex iff pj ≥ 1/2 for
j = 1, . . . , n.

Our aim is the following:

Theorem 1. For a complex ellipsoid E(p) the following conditions are
equivalent :

(i) k∗E(p)(λ1b, λ2b) = m(λ1, λ2) for any b ∈ ∂E(p) and λ1, λ2 ∈ E,
(ii) gE(p)(λb, 0) = gE(p)(0, λb) for any b ∈ ∂E(p) and λ ∈ E,
(iii) gE(p) is symmetric,
(iv) E(p) is convex.

R e m a r k 2. Theorem 1 shows that the symmetry of the Green function
is a rare phenomenon. Non-convex ellipsoids turn out to be examples of
very “regular” domains failing to have the symmetry property (for other
examples of such domains see e.g. [Bed-Dem], [Pol], and [Jar-Pfl]). More-
over, our results and methods used in the proof suggest that in the class
of bounded pseudoconvex complete Reinhardt domains the symmetry of the
Green function is equivalent to the convexity of the domain.

First we state the following lemma, which is part of Exercise 8.1, p. 290
of [Jar-Pfl]; for completeness we give the proof below:

Lemma 3. Let D be a domain in Cn. Assume that for some λ0, λ1 ∈ E,
λ0 6= λ1,

(5) gD(ϕ(λ0), ϕ(λ1)) = m(λ0, λ1).

Then
gD(ϕ(λ0), ϕ(λ)) = m(λ0, λ) for any λ ∈ E.

P r o o f. Define

a(λ) :=
λ0 − λ
1− λ0λ

, λ ∈ E.

We obviously have a ◦ a = idE . Let

u : E 3 λ→ gD(ϕ(λ0), ϕ(a(λ))) ∈ [0, 1).

Clearly,
u(0) = 0, log u ∈ SH(E).
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Moreover,

u(λ) ≤ k̃∗D(ϕ(λ0), ϕ(a(λ))) ≤ m(λ0, a(λ)) = m(0, λ) = |λ|.
So

v(λ) := log u(λ)− log |λ| ∈ SH(E) and v ≤ 0.
But, in view of (5) and the definition of u, v(a(λ1)) = 0, so the maximum
principle implies that v ≡ 0, and u(λ) = |λ| for λ ∈ E. Finally,

gD(ϕ(λ0), ϕ(λ)) = gD(ϕ(λ0), ϕ(a(a(λ)))) = u(a(λ)) = |a(λ)| = m(λ0, λ).

Corollary 4. Let D be a balanced pseudoconvex bounded domain in Cn,
b ∈ ∂D, λ0 ∈ E, λ0 6= 0. Then the following conditions are equivalent :

(i) gD(λ0b, 0) = gD(0, λ0b),
(ii) gD(λ0b, λb) = k̃∗D(λ0b, λb) = m(λ0, λ) for any λ ∈ E.

P r o o f. This follows from gD(0, λ0b) = k̃∗D(0, λ0b) = |λ0|, the inequality
gD ≤ k̃∗D and Lemma 3.

Before we go on to the proof of the main theorem let us collect some
auxiliary results, which are similar to those in [Pfl-Zwo] (Lemmas 8 and 11)
but are adapted to our situation.

Lemma 5. Let ϕ : E → E(p) be a k̃E(p)-geodesic for (ϕ(λ1), ϕ(λ2)).
Assume that

ϕj(λ) = Bj(λ)ψj(λ), ϕj 6≡ 0, j = 1, . . . , n,

where ψj never vanishes on E and Bj is a Blaschke product (if ϕj never
vanishes, then Bj :≡ 1). Let 1 ≤ k < n and tk+1, . . . , tn be positive natural
numbers. Put qj := pj , j = 1, . . . , k, and qj := tjpj , j = k+1, . . . , n. Define

η(λ) := (ϕ1(λ), . . . , ϕk(λ), ψk+1(λ), . . . , ψn(λ)),

µ(λ) := (ϕ1(λ), . . . , ϕk(λ), (ψk+1(λ))1/tk+1 , . . . , (ψn(λ))1/tn), λ ∈ E.
Then

• if η is not constant , then η is a k̃E(p)-geodesic for (η(λ1), η(λ2)),
• if µ is not constant , then µ is a k̃E(q)-geodesic for (µ(λ1), µ(λ2)).

P r o o f. From a result of A. Edigarian (see [Edi], Theorem 4) we know
that each Bj has at most one zero and ϕ extends continuously to E. We
have clearly h̃ ◦ η(λ) ≤ 1 for λ ∈ ∂E (h̃(z) :=

∑n
j=1 |zj |2pj , z ∈ Cn). The

maximum principle for subharmonic functions implies that η(E) ⊂ E(p).
But from the form of k̃E(p)-geodesics (see [Edi], Theorem 4) we know that
η(E) ⊂ E(p) (one may also obtain the last inclusion without the use of the
results from [Edi] but applying the existence of local peak functions—cf.
[Pfl-Zwo]).
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If η were not a k̃E(p)-geodesic, then there would exist η̃ ∈ O(E, E(p))
such that η̃(E) b E(p) and η̃(λ1) = η(λ1), η̃(λ2) = η(λ2). But setting

η̂ := (η̃1, . . . , η̃k, Bk+1η̃k+1, . . . , Bnη̃n)

we find that η̂(E) b E(p) and η̂(λ1) = ϕ(λ1) and η̂(λ2) = ϕ(λ2), a contra-
diction with the fact that ϕ is a k̃E(p)-geodesic.

For the second part of the lemma we proceed similarly. Clearly µ(E) ⊂
E(q). If µ were not a k̃E(q)-geodesic, then there would exist µ̃ ∈ O(E, E(q))
such that µ̃(E) b E(q) and µ̃(λ1) = µ(λ1), µ̃(λ2) = µ(λ2). But setting

µ̂ := (µ̃1, . . . , µ̃k, . . . , (µ̃k+1)tk+1 , . . . , (µ̃n)tn),

we see that µ̂(E) b E(p) and µ̂(λ1) = η(λ1) and µ̂(λ2) = η(λ2), a contra-
diction with the fact that η is a k̃E(p)-geodesic.

Note that Lemma 5 may be proved without the use of the results of [Edi]
(precise description of k̃E(p)-geodesics). But in that case we have to proceed
a little more delicately. For the details consult the proof of Lemma 8 in
[Pfl-Zwo].

Below we present a special two-dimensional version of a result which, to
some extent, is analogous to Lemma 11 of [Pfl-Zwo].

Lemma 6. Let (z, 0) and (z, w) be distinct elements of E(p) ⊂ C2. Then

k̃∗E(p)((z, 0), (z, w)) =
|w|

(1− |z|2p1)1/(2p2)

and the mapping
E 3 λ→ (z, (1− |z|2p1)1/(2p2)λ) ∈ E(p)

is a k̃E(p)-geodesic for ((z, 0), (z, w)).

P r o o f. Take any holomorphic mapping ψ : E → E(p) such that ψ(0) =
(z, 0) and ψ(t) = (z, w), t > 0. Without loss of generality we may assume
that ψ is continuous on E. Write ψ(λ) = (ψ1(λ), λkψ̃2(λ)), where ψ̃2(0) 6= 0
and k≥1. Put ψ̃ := (ψ1, ψ̃2). Clearly |ψ1(λ)|2p1 + |ψ2(λ)|2p2 ≤ 1 for λ∈∂E,
so |ψ1(λ)|2p1 + |ψ̃2(λ)|2p2 ≤ 1 for λ ∈ ∂E. The maximum principle for
subharmonic functions implies that

|ψ1(λ)|2p1 + |ψ̃2(λ)|2p2 ≤ 1, λ ∈ E.
In particular, putting λ := t we have

|z|2p1 +
|w|2p2

t2p2k
≤ 1.

So we obtain

t ≥ tk ≥ |w|
(1− |z|2p1)1/(2p2)

.

This completes the proof.
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In connection with the last lemma observe that for any (z, u), (z, v) ∈
E(p) ⊂ C2,

k̃∗E(p)((z, u), (z, v)) ≤ m
(

u

(1− |z|2p1)1/(2p2)
,

v

(1− |z|2p1)1/(2p2)

)
.

It turns out that the sharp inequality above has far reaching consequences.

Lemma 7. Let (z, u) and (z, v) be in E(p) ⊂ C2. Assume that

(6) k̃∗E(p)((z, u), (z, v)) < m

(
u

(1− |z|2p1)1/(2p2)
,

v

(1− |z|2p1)1/(2p2)

)
.

Then there are b ∈ ∂E(p) and λ1, λ2 ∈ E such that

(7) k̃∗E(p)(λ1b, λ2b) < m(λ1, λ2).

P r o o f. Define

b := (b1, b2) := (z, (1− |z|2p1)1/(2p2)) ∈ ∂E(p).

If we had equality in (7) for all λ1, λ2 ∈ E, then the mapping E 3 λ →
λb ∈ E(p) would be a k̃E(p)-geodesic for any pair of points from the image.
But due to Lemma 5, so is the mapping (b1, b2λ) = (z, b2λ). This, however,
contradicts the assumption of the lemma.

P r o o f o f T h e o r e m 1. First notice that it is enough to prove the
theorem in dimension two, because by the contractivity of k̃D we have
k̃∗E(p1,p2)

= k̃∗E(p)|(E(p1,p2)×{0}n−2)2 .
By (3), (4), Corollary 4, and Lemma 7 it is sufficient to find, for any

non-convex ellipsoid E(p), points (z, u), (z, v) ∈ E(p) satisfying (6).
We consider two cases:

C a s e I: p1, p2 < 1/2. For t1, t2 ∈ (0, 1) define, on E,

ϕ(λ) :=
((

t2
(t2 + t1)(1 + t1t2)

)1/(2p1)

(1− t1λ)1/p1 ,(
t1

(t2 + t1)(1 + t1t2)

)1/(2p2)

(1 + t2λ)1/p2

)
.

Notice that ϕ is exactly of one of the forms from [Jar-Pfl-Zei] and [Edi] (with

aj =
(

t3−j

(t2 + t1)(1 + t1t2)

)1/(2pj)

, j = 1, 2,

α1 = t1, α2 = −t2, α0 = 0). One may easily verify that ϕ(E) ⊂ E(p).
The numbers t1 and t2 and consequently ϕ will be fixed later. Our aim

is to find ϕ (or equivalently t1, t2), λ1 = x+ iy ∈ E, λ2 = λ1 (with x, y > 0)
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such that

(8) ϕ1(λ1) = ϕ1(λ2) =: z,
(9) u := ϕ2(λ1) = ϕ2(λ2) =: v, Arg(ϕ2(λ1)) = Arg(λ1) ∈ (0, π/2),

(10)
|u|

(1− |z|2p1)1/(2p2)
> |λ1|.

In fact, assuming that the conditions (8)–(10) are satisfied, by elementary
properties of m and the definition of k̃∗ we have (remember the equality
λ1 = λ2)

m

(
u

(1− |z|2p1)1/(2p2)
,

v

(1− |z|2p1)1/(2p2)

)
> m(λ1, λ2) ≥ k̃∗E(p)(ϕ(λ1), ϕ(λ2)) = k̃∗E(p)((z, u), (z, v)),

which gives (6) and finishes the proof (in Case (I)).
To get properties (8) and (9) it is enough to have

(11)
1
p1

arctan
t1y

1− t1x
= π,

(12) arctan
y

x
=

1
p2

arctan
t2y

1 + t2x
(=: α ∈ (0, π/2)),

which gives

(13) y = x tanα =: a3x,

(14) t2 =
tan(p2α)

y − x tan(p2α)
=

tan(p2α)
x(tanα− tan(p2α))

=:
a2

x
,

(15) t1 =
tan(p1π)

x(tanα+ tan(p1π))
=:

a1

x
.

Let us recall the restrictions imposed on the numbers inolved:

x+ iy ∈ E, x, y > 0, t1, t2 ∈ (0, 1), α ∈ (0, π/2).

Therefore, we have, in particular, x < 1/
√

1 + tan2 α.
We impose on t2 the condition t2 < 1. Substituting x = 1/

√
1 + tan2 α

in (14) we have

t2 =
tan(p2α)

√
1 + tan2 α

tanα− tan(p2α)
<

tan(α/2)
√

1 + tan2 α

tanα− tan(α/2)
= 1

since p2 < 1/2. This implies that for x < 1/
√

1 + tan2 α close enough, t2
given by (14) is smaller than 1.

But we also want t1 < 1. Utilizing formula (15), after substituting as
previously x = 1/

√
1 + tan2 α we have

tan2(p1π) tanα < tanα+ 2 tan(p1π)
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for α > 0 small enough, so as before t1 < 1 for x < 1/
√

1 + tan2 α close
enough with α small.

We have proved so far the existence of x, y, t1, t2 such that (11) and (12)
are satisfied (with α > 0 small enough). In other words, to complete that
case it is sufficient to prove that (10) holds for α > 0 small enough, and
x < 1/

√
1 + tan2 α close enough. More precisely, we want to show that (see

(8)–(10))
t1

(t1 + t2)(1 + t1t2)
((1 + t2x)2 + t22y

2)(
1− t2

(t1 + t2)(1 + t1t2)
((1− t1x)2 + t21y

2)
) > (x2 + y2)p2 ,

which is equivalent to (use (13)–(15))

a1((1 + a2)2 + a2
2a

2
3)

> x2p2(1 + a2
3)p2

(
(a1 + a2)

(
1 +

a1a2

x2

)
− a2((1− a1)2 + a2

1a
2
3)
)
.

Equivalently,

0 > x2p2(1 + a2
3)p2(a1 + 2a1a2 − a2

1a2 − a2
1a2a

2
3)

+ x2p2−2(1 + a2
3)p2a1a2(a1 + a2)− a1((1 + a2)2 + a2

2a
2
3) =: ψ(x).

Our aim is to prove that if α is sufficiently small then for x < 1/
√

1 + a2
3

close enough, the above inequality holds.
One may easily verify that ψ(1/

√
1 + a2

3 ) = 0. To get the desired in-
equality it is sufficient to show that

ψ′(1/
√

1 + a2
3 ) > 0

if α is small enough. But the last inequality is equivalent to

p2(a1 + 2a1a2 − a2
1a2 − a2

1a2a
2
3) + (p2 − 1)a1a2(a1 + a2)(1 + a2

3) > 0,

or
p2((1 + a2)2 + a2

2a
2
3) > a2(a1 + a2)(1 + a2

3).
Substituting the formulas (13)–(15) we get

p2

(
tan2 α

(tanα− tan(p2α))2
+

tan2 α tan2(p2α)
(tanα− tan(p2α))2

)
>

tan(p2α)
tanα− tan(p2α)

tanα(tan(p2α) + tan(p1π))
(tanα+ tan(p1π))(tanα− tan(p2α))

(1 + tan2 α)

or equivalently

p2
tanα

1 + tan2 α

1 + tan2(p2α)
tan(p2α)

>
tan(p2α) + tan(p1π)

tanα+ tan(p1π)
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and, finally,

β(α) := p2 sin(2α)(tanα+ tan(p1π))− sin(2p2α)(tan(p2α) + tan(p1π)) > 0.

Note that (remember that 0 < p2 < 1/2 < 1)

β(0) = β′(0) = 0, β′′(0) = 4p2(1− p2) > 0,

which implies that β(α) > 0 for α > 0 small enough. This completes the
proof.

C a s e (II): p1 < 1/2 ≤ p2. There is an n ∈ N (n ≥ 2) such that
q2 := 1

np2 < 1
2 (q1 := p1). Then by the proof of Case (I), there are

(z, u), (z, v) ∈ E(q) such that (see (7))

(16) k̃∗E(q)((z, u), (z, v)) < m

(
u

(1− |z|2q1)1/(2q2)
,

v

(1− |z|2q1)1/(2q2)

)
.

Let ϕ be a k̃E(q)-geodesic for ((z, u), (z, v)) with ϕ(λ1) = (z, u) and ϕ(λ2) =
(z, v) and let B2 be the Blaschke product associated with ϕ2. We have clearly
ϕ1 6≡ z (a consequence of the Schwarz–Pick Lemma). By Lemma 5,

µ(λ) :=
(
ϕ1(λ),

(
ϕ2(λ)
B2(λ)

)1/n)
, λ ∈ E,

is a k̃E(p)-geodesic for (µ(λ1), µ(λ2)) := ((z, ũ), (z, ṽ)). It is enough to show
that

(17) k̃∗E(p)((z, ũ), (z, ṽ)) < m

(
ũ

(1− |z|2p1)1/(2p2)
,

ṽ

(1− |z|2p1)1/(2p2)

)
.

Consider the mapping

ψ : E 3 λ→ (z, λ(1− |z|2p1)1/(2p2)) ∈ E(p).

If (17) did not hold, then we would have equality there. Then ψ is a k̃E(p)-
geodesic for ((z, ũ), (z, ṽ)) =: (ψ(λ3), ψ(λ4)) with some λ3, λ4 ∈ E. Con-
sequently, the mapping ψ̃(λ) := (z, (ψ2(λ))nB2(λ)) is a k̃E(q)-geodesic for
((z, u), (z, v)) (because ψ̃(λ3) = ϕ(λ1) = (z, u), ψ̃(λ4) = ϕ(λ2) = (z, v),
m(λ1, λ2) = m(λ3, λ4) and ϕ is a k̃E(q)-geodesic for ((z, u), (z, v))). This,
however, contradicts the fact that no such geodesic has constant first com-
ponent (remember (17) and apply the Schwarz–Pick Lemma); one may al-
ternatively exclude that case using the description of geodesics from [Edi]:
namely, no geodesic has a component with more than one zero (counted with
multiplicities), which happens here. This finishes Case (II) and the proof of
Theorem 1.
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