ANNALES POLONICI MATHEMATICI LXVII.2 (1997)

Normal structure of Lorentz–Orlicz spaces

by PEI-KEE LIN (Memphis, Tenn.) and HUIYING SUN (Harbin)

Abstract. Let $\phi : \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ be an even convex continuous function with $\phi(0) = 0$ and $\phi(u) > 0$ for all u > 0 and let w be a weight function. u_0 and v_0 are defined by

 $u_0 = \sup\{u : \phi \text{ is linear on } (0, u)\}, \quad v_0 = \sup\{v : w \text{ is constant on } (0, v)\}$

(where $\sup \emptyset = 0$). We prove the following theorem.

THEOREM. Suppose that $\Lambda_{\phi,w}(0,\infty)$ (respectively, $\Lambda_{\phi,w}(0,1)$) is an order continuous Lorentz-Orlicz space.

(1) $\Lambda_{\phi,w}$ has normal structure if and only if $u_0 = 0$ (respectively, $\int_0^{v_0} \phi(u_0) \cdot w < 2$ and $u_0 < \infty$).

(2) $\Lambda_{\phi,w}$ has weakly normal structure if and only if $\int_0^{v_0} \phi(u_0) \cdot w < 2$.

1. Introduction. Let Ω denote either [0,1] or $[0,\infty)$ and m denote the Lebesgue measure on Ω . For a measurable function x on Ω , the distribution function d_x and the decreasing rearrangement x^* are defined by

 $d_x(t) = m(|x| > t), \quad x^*(t) = \inf\{s > 0 : d_x(s) \le t\}.$

An even convex continuous function $\phi : \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ is said to be a Young function if $\phi(0) = 0$ and $\phi(u) > 0$ for all $u \neq 0$. A function $w : \Omega \to \mathbb{R}_+$ is called a *weight function* if it is a nonincreasing left continuous function and

$$\int_{0}^{1} w(t) dt = 1.$$

For a Young function ϕ and a weight function w, the associated Lorentz-Orlicz space $\Lambda_{\phi,w}(\Omega)$ (or $\Lambda_{\phi,w}$ for short) is the set of all real measurable functions x on Ω such that

$$\varrho_{\phi}(\lambda x) = \int_{\Omega} \phi(\lambda x^{*}(t))w(t) dt \equiv \int_{\Omega} \phi(\lambda x^{*})w < \infty$$

¹⁹⁹¹ Mathematics Subject Classification: 46B20, 46B42.

Key words and phrases: Lorentz–Orlicz space, normal sturcture, order continuous, Young function.

^[147]

for some $\lambda > 0$. The norm of $x \in \Lambda_{\phi,w}$ is defined by

$$||x|| = \inf\{\varepsilon > 0 : \varrho_{\phi}(x/\varepsilon) \le 1\}.$$

Recall that a mapping $\sigma : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be a *measure preserving* transformation if for any measurable set $D, m(D) = m(\sigma^{-1}(D))$. It is known that for any measure preserving transformation σ and any $x \in \Lambda_{\phi,w}, x^* =$ $(x \circ \sigma)^*$ and

$$\int \phi(x^*)w \ge \int \phi(x)w \circ \sigma.$$

It is also known that for $z \in \Lambda_{\phi,w}$ if $m(\operatorname{supp}(z)) < \infty$ (or respectively, $m(\operatorname{supp}(z)) = \infty$), then there is (cf. [2]) a measure preserving transformation $\sigma: \mathbb{R}^+ \to \mathbb{R}^+$ (respectively, $\sigma: \operatorname{supp}(z) \to \mathbb{R}_+$) such that

(i) $\int_0^\infty \phi(z) w \circ \sigma = \int_0^\infty \phi(z^*) w;$ (ii) if |z(t)| < |z(s)|, then $\sigma(t) \ge \sigma(s)$.

For a Lorentz–Orlicz space $\Lambda_{\phi,w}(\Omega)$, ϕ is said to satisfy the Δ_2 condition if one of the following holds:

(iii) $\Omega = [0,\infty)$ and there exists l > 0 such that $\phi(2u) < l\phi(u)$ for all u > 0.

(iv) $\Omega = [0,1]$ and there are l > 0 and $u_0 > 0$ such that $\phi(2u) \le l\phi(u)$ for all $u \ge u_0$.

In [7], Kamińska proved the following theorem.

THEOREM A. For a Lorentz–Orlicz space $\Lambda_{\phi,w}$, the following are equivalent:

(1) $\Lambda_{\phi,w}$ is order continuous. So the Köthe dual of $\Lambda_{\phi,w}$ is the dual of $\Lambda_{\phi,w}.$

(2) $\Lambda_{\phi,w}$ does not contain any isometric copy of ℓ_{∞} .

- (3) ϕ satisfies the Δ_2 condition and $\int_0^\infty w = \infty$ if $\Omega = (0, \infty)$.
- (4) For any $x \in \Lambda_{\phi,w}$, $\varrho_{\phi}(x) = 1$ if and only if ||x|| = 1.

Let X be a Banach space. For any bounded subset A of X, define

$$\begin{aligned} r(x, A) &= \sup\{\|x - y\| : y \in A\} & \text{ for any } x \in A; \\ R(A) &= \inf\{r(x, A) : x \in A\}; \\ \delta(A) &= \sup\{r(x, A) : x \in A\} = \operatorname{diam} A. \end{aligned}$$

A bounded closed convex set A is said to have *normal structure* if for any closed convex subset B of A either R(B) = 0 or $R(B) < \delta(B)$. X is said to have (*weakly*) normal structure if every bounded (weakly compact) closed convex subset of X has normal structure. Kirk [9] showed that every nonexpansive mapping on a weakly compact convex set with normal structure has the fixed point property.

Recall that a sequence $\{x_n\}$ in X is said to be a *limit-constant sequence* if for any $x \in co\{x_n\}$,

$$\lim_{n \to \infty} \|x - x_n\| = \operatorname{diam}\{x_n\}.$$

Note that here we require the limit to converge to the diameter of $co\{x_n : n \in \mathbb{N}\}$ (cf. [10]). A sequence $\{x_n\}$ is said to be a unit limit-constant sequence if $\{x_n\}$ is a limit-constant sequence with diam $\{x_n\} = 1$. It is known that a Banach space X has (weakly) normal structure if and only if X contains no (weakly convergent) unit limit-constant sequence [10]. In [3], Chen showed that if ϕ is an N-function (for definition see [3]) which satisfies the Δ_2 condition, then the Orlicz space L_{ϕ} has weakly normal structure. Recently, Carothers, Dilworth, Hsu, Lennard and Trautman [1, 5] studied the uniform Kadec–Klee property for the Lorentz space $L_{w,1}$. They proved that $L_{w,1}$ does not have normal structure and they also gave a sufficient condition for $L_{w,1}$ to have weakly normal structure. In this article, we study (weakly) normal structure for Lorentz–Orlicz spaces and give a characterization of the Lorentz–Orlicz spaces with (weakly) normal structure. For more results about normal structure of Orlicz function (respectively, sequence) spaces and Lorentz function spaces, see [1, 3, 5, 6, 8, and 11].

It is known that L_1 does not have weakly normal structure and ℓ_{∞} contains an isometric copy of L_1 . Hence $\Lambda_{\phi,w}$ does not have weakly normal structure if $\Lambda_{\phi,w}$ is not order continuous. For a fixed Young function ϕ : $\mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ and a fixed weight function w, let u_0 and v_0 be defined by

$$u_0 = \sup\{u : \phi \text{ is linear on } (0, u)\},\$$

$$v_0 = \sup\{v : w \text{ is constant on } (0, v)\},\$$

where $\sup \emptyset = 0$. The following are three examples of unit limit-constant sequences in Lorentz–Orlicz spaces. The first two are well-known.

EXAMPLE 1 [1]. Suppose that ϕ is linear on $(0, \infty)$ and a_n is the number such that

$$\phi(n)\int_{0}^{a_n} w(t)\,dt = \frac{1}{2}$$

Let $e_n = n \mathbb{1}_{(0,a_n)}$. It is easy to see that $\{e_n\}$ is a unit limit-constant sequence. So if $\Lambda_{\phi,w}(0,1)$ has normal structure, then $u_0 < \infty$.

Suppose that $\Omega = (0, \infty)$ and ϕ is linear on $(0, u_0)$ for some $u_0 > 0$. Let b_n be the number such that

$$\phi\left(\frac{u_0}{n}\right)\int\limits_0^{b_n} w(t)\,dt = \frac{1}{2}$$

A similar proof shows that $\{e_n = (u_0/n)\mathbf{1}_{(0,b_n)}\}$ is a unit limit-constant sequence. Hence if $\Lambda_{\phi,w}(0,\infty)$ has normal structure, then $u_0 = 0$.

EXAMPLE 2. Suppose that there exist two positive numbers u and v such that ϕ is linear on (0, u), w is constant on (0, v), and $\int_0^v \phi(u/2)w \ge 1$. Without loss of generality, we may assume that $\int_0^v \phi(u/2)w = 1$. Let

$$x_n(t) = \begin{cases} \frac{u}{2} \cdot \operatorname{sgn}\left(\sin\left(\frac{2^n \pi t}{v}\right)\right) & \text{if } t \le v, \\ 0 & \text{otherwise} \end{cases}$$

Then for any $x \in \overline{\operatorname{co}}\{x_i : i \leq k\}$ and n > k, $||x - x_n|| = 1$. This implies that $\{x_n\}$ is a unit limit-constant sequence. It is known that $\Lambda_{\phi,w}(0,v)$ is not equal to $L_{\infty}(0,1)$ up to equivalent norm. By Proposition 2.c.10 in [13] (p. 160), $\{x_n\}$ is a weakly null sequence. Hence if $\Lambda_{\phi,w}$ has weakly normal structure, then $\int_0^{v_0} \phi(u_0) \cdot w < 2$.

EXAMPLE 3. Suppose that $u_0 > 0$ and for some v > 0, w is constant on (v, ∞) . Then there are $0 < u < u_0$ and v' > v such that

$$\int_{0}^{2v'} \phi(u)w = 1.$$

Let $e_n = u \mathbb{1}_{((n-1)v', nv')}$. If $a_k \ge 0$ and $\sum_{k=1}^N a_k = 1$, then

$$\varrho_{\phi} \Big(e_{N+1} - \sum_{k=1}^{N} a_k e_k \Big) = \int_{0}^{v'} \phi(u) w(t) \, dt + \sum_{k=1}^{N} \int_{kv'}^{(k+1)v'} \phi(a_k u) w(t) \, dt$$
$$= \int_{0}^{2v'} \phi(u) w = 1.$$

So $\{e_n\}$ is a unit limit-constant sequence.

We claim that $\{e_n\}$ is equivalent to the natural basis of ℓ_1 . So it cannot be a weakly convergent sequence.

In fact, for any finite sequence $\{a_k\}_{k=1}^N$ with

$$\sum_{k=1}^{N} |a_k| \ge \frac{1}{\int_{v'}^{2v'} \phi(u)w},$$

we have

$$\varrho_{\phi}\left(\sum_{k=1}^{N} a_k e_k\right) \ge \sum_{k=1}^{N} |a_k| \int_{v'}^{2v'} \phi(u)w \ge 1.$$

Hence

$$\left\|\sum_{k=1}^{N} a_k e_k\right\| \ge \frac{\sum_{k=1}^{N} |a_k|}{\int_{v'}^{2v'} \phi(u) w}.$$

This implies that $\{e_n\}$ is equivalent to the natural basis of ℓ_1 .

From the above examples, it is natural to ask the following questions:

(1) Does $\Lambda_{\phi,w}(0,\infty)$ (respectively, $\Lambda_{\phi,w}(0,1)$) have normal structure if $u_0 = 0$ (respectively, $u_0 < \infty$ and $\int_0^{v_0} \phi(u_0) \cdot w < 2$)?

(2) Does $\Lambda_{\phi,w}$ have weakly normal structure if $\int_0^{v_0} \phi(u_0) w < 2$?

The following theorem shows that the answer to the above questions is affirmative.

THEOREM 1. Suppose that $\Lambda_{\phi,w}$ is an order continuous Lorentz-Orlicz space.

(1) $\Lambda_{\phi,w}$ has normal structure if $u_0 = 0$ (respectively, $\int_0^{v_0} \phi(u_0)w < 2$ and $u_0 < \infty$).

(2) $\Lambda_{\phi,w}$ has weakly normal structure if $\int_0^{v_0} \phi(u_0) w < 2$.

2. Basic properties of unit limit-constant sequences in $\Lambda_{\phi,w}$. First, we need the following three lemmas. The first one easily follows from the definition and the second one was proved in [12].

LEMMA 2. Suppose that $v > \varepsilon > 0$ and $u_2 > u_1 > 0$. If x is an element of $\Lambda_{\phi,w}$ such that

$$m(\{t \in (0,v) : |x(t)| \le u_1\}) > \varepsilon, \qquad m(\{t \in (v,\infty) : |x(t)| \ge u_2\}) > \varepsilon,$$

then

$$\int \phi(|x|)w \le \varrho_{\phi}(x) - (\phi(u_2) - \phi(u_1)) \Big(\int_{v-\varepsilon}^{v} w - \int_{v}^{v+\varepsilon} w\Big).$$

R e m a r k 1. Suppose that either w is not constant on $(v-\varepsilon, v)$ or w is not constant on $(v, v+\varepsilon)$. Then $\int_{v-\varepsilon}^{v} w - \int_{v}^{v+\varepsilon} w > 0$. Hence there is $\delta > 0$ such that $\rho_{\phi}(x) \ge \delta + \int \phi(x) w$ whenever x satisfies the assumption of Lemma 2.

LEMMA 3. Let $\Lambda_{\phi,w}$ be an order continuous Lorentz–Orlicz space and E be a set of positive measure and λ be a positive number. Suppose that x, y and z are three elements of $\Lambda_{\phi,w}$ such that $\varrho_{\phi}(x-y) \leq 1$, $\varrho_{\phi}(x-z) \leq 1$ and

$$\phi\left(x(t) - \frac{1}{2}(y(t) + z(t))\right) \le \frac{\phi\left(x(t) - y(t)\right) + \phi\left(x(t) - z(t)\right)}{2} - \lambda$$

for every $t \in E$. Then there is $\nu > 0$ such that

$$\varrho_{\phi}\left(x - \frac{y+z}{2}\right) \le 1 - \nu.$$

LEMMA 4. Let ϕ be a Young function. For any given $\delta > 0$, there exists $\varepsilon > 0$ such that

$$\phi\left(d_2 - \frac{d_1}{2}\right) < \frac{1}{2}(\phi(d_2 - d_1) + \phi(d_2))$$

whenever $d_1 > u_0 + \delta$ and $0 < d_2 < d_1 + \varepsilon$.

Proof. If $u_0 = 0$, then there is $\varepsilon < \delta/3$ such that ϕ is not linear on $(\varepsilon, 2\varepsilon)$. If $u_0 > 0$, let $\varepsilon = \frac{1}{3} \min\{u_0, \delta\}$. Then ϕ is not linear on $(\varepsilon, u_0 + \varepsilon)$. Hence if $d_3 > 2\varepsilon + u_0$ and $0 \le d_4 < \varepsilon$, then

$$\phi\left(\frac{d_3+d_4}{2}\right) < \frac{1}{2}(\phi(d_3)+\phi(d_4)).$$

Case 1: $d_1 \leq d_2$. In this case, $d_2 - d_1 < \varepsilon$, and $d_2 \geq d_1 > u_0 + \delta > u_0 + 2\varepsilon$. So

$$\phi\left(d_2 - \frac{d_1}{2}\right) = \phi\left(\frac{d_2 + d_2 - d_1}{2}\right) < \frac{1}{2}(\phi(d_2 - d_1) + \phi(d_2)).$$

Case 2: $d_1 > d_2$. If $d_2 < d_1/2$, then

$$\phi\left(d_2 - \frac{d_1}{2}\right) = \phi\left(\frac{d_1}{2} - d_2\right) \le \phi\left(\frac{d_1 - d_2}{2}\right) \le \frac{1}{2}\phi(d_1 - d_2).$$

If $d_2 \geq d_1/2$, then

$$\phi\left(d_2 - \frac{d_1}{2}\right) \le \phi\left(d_2 - \frac{d_2}{2}\right) = \phi\left(\frac{d_2}{2}\right) \le \frac{1}{2}\phi(d_2).$$

Hence

$$\phi\left(d_2 - \frac{d_1}{2}\right) < \frac{1}{2}(\phi(d_2 - d_1) + \phi(d_2)).$$

It seems that the following proposition is known. But we cannot find a reference. So we present a proof.

PROPOSITION 5. Let $\{x_n\}$ be a sequence in the unit ball of an order continuous Köthe space E and $\{B_n\}$ be a sequence of disjoint measurable subsets. If $\{x_n 1_{B_n}\}$ is equivalent to the natural basis of ℓ_1 , then $\{x_n\}$ does not converge weakly.

Proof. Since $\{x_n 1_{B_n}\}$ is equivalent to the natural ℓ_1 basis, there is x^* in the dual of $\Lambda_{\phi,w}$ such that $\langle x^*, x_n 1_{B_n} \rangle = 1$. We claim that

(1)
$$\lim_{j \to \infty} \lim_{n \to \infty} \langle x^* 1_{B_j}, x_n \rangle = 0.$$

By passing to further subsequences of $\{x_n\}$, we may assume that for any $j \in \mathbb{N}$, $\lim_{n\to\infty} \langle x^* 1_{B_j}, x_n \rangle$ exists. Suppose the claim is not true. Then there exist c > 0, $L \ge ||x^*||/c$, l and $F \subseteq \mathbb{N}$ such that $\operatorname{card}(F) \ge L$ and for any $j \in F$,

$$\langle x^* 1_{B_i}, x_l \rangle | > c.$$

This implies $\langle |x^*|, |x_l| \rangle > Lc \ge ||x^*||$, which contradicts $||x_l|| \le 1$.

We claim that there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$|\langle x^* 1_{B_{n_i}}, x_{n_l} \rangle| < \frac{1}{4} \quad \text{for any } l \ge i+1;$$

152

$$||x_{n_i} 1_{\bigcup_{j=n_i}^{\infty} B_{n_j}}|| \le \frac{1}{4^{i+1} ||x^*||}.$$

By (1), there is n_1 such that

$$\lim_{k \to \infty} |\langle x^* 1_{B_{n_1}}, x_k \rangle| < \frac{1}{4}.$$

We can find an $n_2 > n_1$ such that

$$\begin{split} |\langle x^* \mathbf{1}_{B_{n_1}}, x_l \rangle| &< \frac{1}{4} & \text{for any } l \ge n_2; \\ \|x_{n_1} \mathbf{1}_{\bigcup_{j=n_2}^{\infty} B_{n_j}}\| &\leq \frac{1}{4^2 \|x^*\|} & \text{(since } E \text{ is order continuous}); \\ \lim_{k \to \infty} |\langle x^* \mathbf{1}_{B_{n_2}}, x_k \rangle| &< \frac{1}{4^2} & \text{by (1).} \end{split}$$

Assume that n_1, \ldots, n_i are selected. Then there is $n_{i+1} > n_i$ such that

$$\begin{split} |\langle x^* 1_{B_{n_i}}, x_l \rangle| &< \frac{1}{4^i} & \text{for any } l \ge n_{i+1}; \\ \|x_{n_i} 1_{\bigcup_{j=n_{i+1}}^{\infty} B_{n_j}}\| \le \frac{1}{4^{i+1}} \|x^*\| & (\text{since } E \text{ is order continuous}); \\ \lim_{k \to \infty} |\langle x^* 1_{B_{n_{i+1}}}, x_k \rangle| &< \frac{1}{4^{i+1}} & \text{by (1).} \end{split}$$

We have constructed a subsequence $\{x_{n_k}\}$ which satisfies our claim. Let $\{a_j: 1 \le j \le N\}$ be any finite real sequence, and let

 $E_1 = \bigcup \{B_j : a_j > 0 \text{ and } j \le N\}, \quad E_2 = \bigcup \{B_j : a_j \le 0 \text{ and } j \le N\}.$ Then

$$\begin{aligned} \|x^*\| \cdot \left\| \sum_{j=1}^N a_j x_{n_j} \right\| &\geq \left\langle x^* \mathbf{1}_{E_1} - x^* \mathbf{1}_{E_2}, \sum_{j=1}^N a_j x_{n_j} \right\rangle \\ &\geq \sum_{j=1}^N \left(|a_j| \langle x^*, \mathbf{1}_{B_j} x_{n_j} \rangle \\ &- \sum_{i=1}^{j-1} |a_j| \cdot |\langle x^*, \mathbf{1}_{B_i} x_{n_j} \rangle |- |a_j| \cdot \|x_{n_j} \mathbf{1}_{\bigcup_{l=j+1}^\infty B_{n_l}} \| \right) \\ &\geq \sum_{j=1}^N |a_j| \left(1 - \sum_{i=1}^{j+1} \frac{1}{4^i} \right) \geq \frac{2}{3} \sum_{j=1}^N |a_j|. \end{aligned}$$

This implies that $\{x_{n_k}\}$ is equivalent to the natural basis of ℓ_1 . So $\{x_n\}$ cannot converge weakly.

Suppose that $\Lambda_{\phi,w}$ is an order continuous Lorentz–Orlicz function space without (weakly) normal structure. There exists a (weakly convergent) unit

limit-constant sequence $\{x_n\}$ in $\Lambda_{\phi,w}$. (From now on, $\{x_n\}$ is a fixed (weakly convergent) unit limit-constant sequence.) Let

$$\overline{x}_n = \frac{1}{n} \sum_{k=1}^n x_k, \quad z'_n = \sup\{x_1, \dots, x_n\}, \quad z''_n = \inf\{x_1, \dots, x_n\}$$

Then $\{z'_n\}$ is an increasing sequence. It converges in measure to an extended measurable function

$$z' = \sup\{x_n : n \in \mathbb{N}\} \equiv \lim_{n \to \infty} z'_n.$$

Similarly, $\{z_n''\}$ is a decreasing sequence, and it converges in measure to another extended measurable function

$$z'' = \inf\{x_n : n \in \mathbb{N}\} \equiv \lim_{n \to \infty} z_n''$$

Lemma 6. $m(\{t: |z'(t) - z''(t)| > u_0\}) = 0.$

Proof. If $u_0 = \infty$, then there is nothing to be proved. So we may assume that $u_0 < \infty$. Suppose that the lemma is not true. Since

$$\{t: |z'(t) - z''(t)| > u_0\} = \bigcup_{m,n \in \mathbb{N}} \{t: |x_n(t) - x_m(t)| > u_0\},\$$

there are n and m such that

$$m(\{t: |x_n(t) - x_m(t)| > u_0\}) > 0$$

By passing to a subsequence, we may assume that $x_n = x_1$ and $x_m = x_2$. Let $A = \{t : x_2(t) - x_1(t) \ge 0\}$. Replacing x_k by $(x_k - x_1)\mathbf{1}_A - (x_k - x_1)\mathbf{1}_{\Omega \setminus A}$, we may assume that $x_2 \ge 0$. By measure theory, there is $\delta > 0$ such that

$$m(\{t: |x_1(t) - x_2(t)| > u_0 + \delta\}) > c > 0.$$

By Lemma 4, there is $\varepsilon > 0$ such that

(2)
$$\phi\left(d_2 - \frac{d_1}{2}\right) < \frac{1}{2}(\phi(d_2 - d_1) + \phi(d_2))$$

provided $d_1 > u_0 + \delta$ and $0 < d_2 < d_1 + \varepsilon$.

CLAIM. There are a subsequence $\{y_k\}_{k=1}^{\infty}$ of $\{x_n\}$ and a decreasing sequence $\{C_k\}_{k=2}^{\infty}$ of measurable sets such that

- (a) $y_1 = x_1, y_2 = x_2;$
- (b) $m(C_n) \ge (1/2 + 1/2^n)c;$
- (c) for any $t \in C_n$, there is k < n such that

$$|y_n(t) - y_k(t)| \ge \varepsilon + \sup\{|y_{n-1}(t) - y_j(t)| : j < n\}$$
$$= \varepsilon + \sup\{|y_i(t) - y_j(t)| : i, j < n\}.$$

Suppose the claim were proved. Note that if $n > 2, t \in C_n$ and $y_n(t) > 0$, then

$$y_n(t) - \inf\{y_i(t) : 1 \le i \le n - 1\} \ge \varepsilon + \sup\{|y_{n-1}(t) - y_i(t)| : 1 \le i < n\}.$$

Similarly, if $y_n(t) < 0$, then

 $\sup\{y_i(t) : 1 \le i \le n-1\} - y_n(t) \ge \varepsilon + \sup\{|y_{n-1}(t) - y_i(t)| : 1 \le i < n\}.$ So for any $t \in C_n$ and $k < m \le n-1$, we have

$$(y_n(t) - y_m(t))(y_n(t) - y_k(t)) \ge 0,$$

and

$$|y_n(t) - y_m(t)| \ge \sup\{|y_n(t) - y_j(t)| : j \le n - 1\} - \sup\{|y_m(t) - y_j(t)| : j \le n - 1\} \ge \varepsilon$$

This implies

$$\operatorname{card}(\{j \le n-1 : |y_n(t) - y_j(t)| < l\varepsilon\}) \le l-1,$$

and

$$|y_n(t) - \overline{y}_{n-1}(t)| = \frac{1}{n-1} \sum_{i=1}^{n-1} |y_n(t) - y_i(t)| \ge \frac{1}{n-1} \sum_{i=1}^{n-1} i\varepsilon = \frac{n\varepsilon}{2}.$$

Therefore,

$$\int_{\Omega} \phi((y_n - \overline{y}_{n-1})^*) w \ge \int_{0}^{m(C_n)} \phi\left(\frac{n\varepsilon}{2}\right) w \ge \phi\left(\frac{n\varepsilon}{2}\right) \int_{0}^{c/2} w,$$

which is impossible if n is large enough. Hence the lemma must be true.

Proof of Claim. Let $C_2 = \{t : |y_1(t) - y_2(t)| > u_0 + \delta\}$. (So $m(C_2) < \infty$.) Suppose that $y_1, \ldots, y_k = x_{n_k}$ and C_2, \ldots, C_k have been constructed. For j < k, let

$$D_j = \{t \in C_k : |y_k(t) - y_j(t)| \\ = \sup\{|y_k(t) - y_i(t)| : i < k\} > \sup\{|y_k(t) - y_i(t)| : i < j\}\}.$$

Then $C_k = \bigcup_{j=1}^{k-1} D_j$.

SUBCLAIM. There is $M_j > n_k$ such that for any $n \ge M_j$,

$$m(\{t \in D_j : \sup\{|x_n(t) - y_i(t)| : i \le k\} \\ \ge \sup\{|y_k(t) - y_i(t)| : i < k\} + \varepsilon\}) \ge (1 - 1/2^{k+1})m(D_j)$$

Suppose that the subclaim were proved. Let $n_{k+1} = \sup\{M_j : j < k\}, y_{k+1} = x_{n_{k+1}}, \text{ and }$

$$C_{k+1} = \{ t \in C_k : \sup\{ |y_{k+1}(t) - y_j(t)| : j \le k \} \\ \ge \sup\{ |y_k(t) - y_j(t)| : j < k \} + \varepsilon \}.$$

Then C_{k+1} and y_{k+1} satisfy (b) and (c), hence the claim is proved.

Proof of Subclaim. If $m(D_j) = 0$, then let $M_j = n_k + 1$. So we may assume that $m(D_j) > 0$. By measure theory, there exists $L > \delta + u_0$ such that

$$m(\{t \in D_j : |y_k(t) - y_j(t)| \le L\}) > (1 - 1/2^{k+2})m(D_j)$$

for any $m(D_j) > 0$, $j \le k$. Note that if $t \in D_j$, then $u_0 + \delta < |y_k(t) - y_j(t)|$. Suppose the subclaim is not true. Then for any $N > n_k$, there is m > N such that

$$E_{m,j} = \{t \in D_j : \max\{|x_m(t) - y_k(t)|, |x_m(t) - y_j(t)|\} \\ < |y_k(t) - y_j(t)| + \varepsilon \text{ and } u_0 + \delta < |y_k(t) - y_j(t)| \le L\}$$

has measure greater than $2^{-(k+2)}m(D_j)$. For any $t \in E_{m,j}$, either $y_k(t) > y_j(t)$ or $y_k(t) < y_j(t)$. Without loss of generality, we assume that $y_k(t) > y_j(t)$ and $y_k(t) + \varepsilon \ge x_m(t) \ge y_j(t) - \varepsilon$. Let $d_1 = y_k(t) - y_j(t)$ and

$$d_2 = \begin{cases} y_k(t) - x_m(t) & \text{if } x_m(t) \le y_k(t), \\ x_m(t) - y_j(t) & \text{otherwise.} \end{cases}$$

Since [0, L] is compact and ϕ is continuous, by (2), there is $\lambda > 0$ such that

$$\phi\left(d_2 - \frac{d_1}{2}\right) \le \frac{1}{2}(\phi(d_2 - d_1) + \phi(d_2)) - \lambda$$

whenever $L \ge d_1 > u_0 + \delta$ and $d_2 \le d_1 + \varepsilon$. So

$$\phi\left(\frac{1}{2}(y_k(t) + y_j(t)) - x_m(t)\right) \\ = \phi\left(y_k(t) - x_m(t) - \frac{y_k(t) - y_j(t)}{2}\right) \\ \le \frac{1}{2}(\phi(y_k(t) - x_m(t)) + \phi(y_j(t) - x_m(t))) - \lambda$$

Note that $\rho_{\phi}(x_m - \frac{1}{2}(y_j + y_k)) \leq 1$ and $\int_0^{\infty} w = \infty$. By Lemma 3, there is $\nu > 0$ (which depends on λ , w and $m(D_j)$, but is independent of x_m) such that

$$\int_{0}^{\infty} \phi\left(\left(x_m - \frac{1}{2}(y_j + y_k)\right)^*\right) w \le 1 - \nu.$$

Since ϕ satisfies the Δ_2 condition, by Theorem A,

$$\liminf_{m\to\infty} \left\| x_m - \frac{1}{2}(y_k + y_j) \right\| < 1,$$

which contradicts the fact that $\{x_n\}$ is a unit limit-constant sequence. So the subclaim must be true and the proof of Lemma 6 is complete.

 $\operatorname{Remark} 2$. Since $\{x_n\}$ is not a constant sequence, we have $u_0 > 0$.

LEMMA 7. For any $l \in \mathbb{N}$ and $\varepsilon > 0$,

$$\lim_{n \to \infty} m(\{t : z_l''(t) + \varepsilon < x_n(t) < z_l'(t) - \varepsilon\}) = 0.$$

Proof. Suppose the lemma is not true. By passing to a further subsequence of $\{x_n\}$, we may assume that there are $\varepsilon > 0$ and $\delta > 0$ such that for all m > l, the set

$$F_m = \{t : z_l''(t) + \varepsilon < x_m(t) < z_l'(t) - \varepsilon\}$$

has measure at least δ . Let σ be a measure preserving transformation such that

(i) $\int_0^\infty \phi(x_m - \overline{x}_l) w \circ \sigma = \int_0^\infty \phi((x_m - \overline{x}_l)^*) w;$ (ii) if $|(x_m - \overline{x}_l)(t)| < |(x_m - \overline{x}_l)(s)|$, then $\sigma(t) \ge \sigma(s)$.

Since for any $t \in F_m$,

$$\frac{1}{l}\sum_{k=1}^{l}|x_m(t)-x_k(t)| \ge \frac{\varepsilon}{l} + |x_m(t)-\overline{x}_l(t)|,$$

by Lemma 3, there is $\nu > 0$ (dependent only on l, δ and ε) such that

$$\int_{0}^{\infty} \phi((x_m - \overline{x}_l)^*) w = \int_{0}^{\infty} \phi\left(x_m - \frac{1}{l} \sum_{k=1}^{l} x_k\right) w \circ \sigma$$
$$\leq \frac{1}{l} \sum_{k=1}^{l} \varrho_{\phi}(|x_m - x_k|) - \nu \leq 1 - \nu$$

This contradicts $\lim_{m\to\infty} ||x_m - \overline{x}_l|| = 1$.

LEMMA 8. Suppose that there are two positive numbers v_1, u_1 such that

- (1) either $w(t) < w(v_1)$ for all $t > v_1$ or $w(t) > w(v_1)$ for all $t < v_1$;
- (2) for any $i \neq j$, $m(\{t : |x_i(t) x_j(t)| \ge u_1\}) \le v_1$.

Then for any $u_2 > u_1$, $m(\{t : z'(t) - z''(t) \ge u_2\}) \le v_1$.

Proof. Since the proofs are similar, we can assume that $w(t) < w(v_1)$ for all $t > v_1$. Suppose that the lemma is not true. There is $\nu > 0$ such that $u_2 - u_1 > 2\nu$ and

$$m(\{t: z'(t) - z''(t) > u_1 + 2\nu\}) > v_1 + 2\nu.$$

Let

$$F_l = \{t : z'_l(t) - z''_l(t) > u_1 + 3\nu/2\}.$$

Clearly, $m(F_k) < \infty$ for all $k \in \mathbb{N}$. Since $\{F_k\}$ is an increasing sequence and $\bigcup_{k=1}^{\infty} F_k \supseteq \{t : z'(t) - z''(t) > u_1 + 2t\}, \text{ there is } l \text{ such that } m(F_l) \ge v_1 + 3\nu/2.$ Let

$$G_n = \{t \in F_l : x_n(t) \ge z'_l(t) - \nu/4 \text{ or } x_n(t) \le z''_l(t) + \nu/4\}.$$

By Lemma 6, $\lim_{n\to\infty} m(F_l \setminus G_n) = 0$. So there is $N_1 > l$ such that if $n > N_1$, then $m(G_n) \ge v_1 + \nu$. This implies that for any measure preserving transformation σ of Ω ,

$$m(\{t \in G_n : t \in \sigma^{-1}(v_1, \infty)\}) \ge \nu.$$

Fix $n > N_1$. By the definition of G_n , for any $t \in G_n$, either $x_n(t) \ge z'_l(t) - \nu/4$ or $x_n(t) \le z''_l(t) + \nu/4$. Without loss of generality, $x_n(t) \ge z'_l(t) - \nu/4$. Let $j \le l$ such that $x_j(t) = z''_l(t)$. Then

$$|x_n(t) - x_j(t)| \ge z_l'(t) - z_l''(t) - \nu/4 > u_1 + 5\nu/4$$

Note that $\{x_n\}$ is a unit limit-constant sequence. For any $\lambda > 0$, there are $n > N_1$ and a measure preserving transformation σ such that

(i)
$$\int \phi(x_n - \overline{x}_l) w \circ \sigma = \int \phi((x_n - \overline{x}_l)^*) w \ge 1 - \lambda;$$

(ii) if
$$|(x_n - \overline{x}_l)(t)| \ge |(x_n - \overline{x}_l)(s)|$$
, then $\sigma(t) \ge \sigma(s)$.

For any $k \leq l$, let

$$H_k = \sigma^{-1}(v_1, \infty) \cap \{t : |x_n(t) - x_k(t)| > u_1 + 5\nu/4\}.$$

Clearly, $\bigcup_{k=1}^{l} H_k \supseteq \{t \in G_n : t \in \sigma^{-1}(v_1, \infty)\}$. Hence there is $k \leq l$ such that $m(H_k) \geq \nu/l$. By (2), the set $\{t \in \sigma^{-1}(0, v_1) : |x_n(t) - x_k(t)| < u_1\}$ has measure at least $m(H_k)$. By Lemma 2 and Remark 1, there is $\delta > 0$ such that δ is only dependent on u_1, ν, v_1, l , and

$$\int \phi(|x_n(t) - x_k(t)|) w \circ \sigma(t) \, dt \le \varrho_\phi(x_n - x_k) - \delta.$$

This implies, for any $\lambda > 0$,

$$1 - \lambda \leq \int \phi(x_n - \overline{x}_l) w \circ \sigma \leq \frac{1}{l} \sum_{j=1}^l \int \phi(x_n - x_j) w \circ \sigma$$
$$\leq \frac{1}{l} \sum_{j=1}^l \varrho_\phi(x_n - x_j) - \frac{\delta}{l} \leq 1 - \frac{\delta}{l}$$

It is impossible if $\lambda < \delta/l$.

We have the following two corollaries.

COROLLARY 9. If $v_0 = 0$, then z' and z'' are finite almost everywhere.

Proof. Since $v_0 = 0$ and w is left continuous, for any $\delta > \delta_1 > 0$, there are $0 < \delta_2 < \delta_1$ and $u_1 > 0$ such that $\rho_{\phi}(u_1 \mathbf{1}_{(0,\delta_2)}) > 1$ and $w(t) < w(\delta_2)$ if $t > \delta_2$. Since $\{x_n\}$ is a unit limit-constant sequence, for any m, n we have $\rho_{\phi}(x_m - x_n) \leq 1$. So

$$m(\{t: |x_n(t) - x_m(t)| > u_1\}) \le \delta_2 \quad \text{for all } n, m \in \mathbb{N}.$$

By Lemma 8, we have

$$m(\{t: z'(t) - z''(t) \ge u_2\}) \le \delta_2$$

for any $u_2 > u_1$. Since δ_2 is arbitrary, z' and z'' are finite almost everywhere.

COROLLARY 10. Suppose that w is not constant on (v, ∞) for any v > 0. Then for any $\varepsilon > 0$,

$$m(\{t: z'(t) - z''(t) > 2\varepsilon\}) < \infty.$$

Proof. Since $\int_0^\infty w = \infty$ and w is not constant on (v, ∞) for any v > 0, it follows that for any $\varepsilon > 0$, there is L > 0 such that w(t) > w(L) for all t > L and

$$m\{t: |x_n(t) - x_m(t)| \ge \varepsilon\} < L$$

for all n, m. By Lemma 8, we have

$$m(\{t: z'(t) - z''(t) > 2\varepsilon\}) < L < \infty. \blacksquare$$

PROPOSITION 11. Suppose that there is $1 > \delta > 0$ such that one of the following conditions holds:

- (1) For any M > 0, there is a such that $\varrho_{\phi}(x_n \mathbb{1}_{\{t:|x_n(t)|>M\}}) > \delta$.
- (2) For any $\varepsilon > 0$ there is n such that $\varrho_{\phi}(x_n \mathbb{1}_{\{t:|x_n(t)| < \varepsilon\}}) > \delta$.

Then $\{x_n\}$ does not converge weakly.

Proof. Since the proofs are similar, we only prove the proposition when (1) holds.

Suppose the proposition is not true. Then there is a weakly convergent unit limit-constant sequence $\{x_n\}$ satisfying (1). Lemma 6 yields $u_0 = \infty$. By assumption, there exist sequences $\{D_k\}$, $\{d_k\}$ and $\{n_k\}$ such that for all $k \in \mathbb{N}$ we have $8^k d_k < 8^k D_k < \delta d_{k+1} < \delta D_{k+1}$ and $\rho_{\phi}(x_{n_k} \mathbf{1}_{\{t:d_k \leq |x_{n_k}(t)| \leq D_k\}})$ $> \delta$. Let

$$A_k = \{t : d_k \le |x_{n_k}(t)| \le D_k\}, \quad B_k = A_k \setminus \bigcup_{j=k+1}^{\infty} A_j$$

Since $\varrho_{\phi}(x_{n_k}) \leq 1$ and $|x_{n_k}(t)| \geq d_k$ for every $t \in A_k$, $\int_0^{m(A_k)} w(t) dt \leq 1/\phi(d_k)$. So

$$\varrho_{\phi}(x_{n_k} \mathbb{1}_{B_k}) \ge \varrho_{\phi}(x_{n_k} \mathbb{1}_{A_k}) - \sum_{j=k+1}^{\infty} \varrho_{\phi}(x_{n_k} \mathbb{1}_{A_j})$$
$$\ge \delta - \sum_{j=k+1}^{\infty} \phi(D_k) \frac{1}{\phi(d_j)} \ge \delta - \frac{\delta}{3} = \frac{2\delta}{3}$$

We claim that $\{x_{n_k} \mathbb{1}_{B_k}\}$ is equivalent to the natural basis of ℓ_1 . Without loss of generality, we assume that

$$B_k = \Big(\sum_{j=k+1}^{\infty} m(B_j), \sum_{j=k}^{\infty} m(B_j)\Big),$$

and $|x_{n_k}||_{B_k}$ is decreasing on B_k . Then

 $\int \phi(x_{n_k} \mathbf{1}_{B_k}) w$

$$= \int_{B_k} \phi(x_{n_k})w$$

$$= \int_{0}^{m(B_k)} \phi(x_{n_k}) \left(t + \sum_{j=k+1}^{\infty} m(B_j)\right) w \left(t + \sum_{j=k+1}^{\infty} m(B_j)\right)$$

$$\geq \int_{0}^{m(B_k)} \phi(x_{n_k}) \left(t + \sum_{j=k+1}^{\infty} m(B_j)\right) w(t) - \phi(D_k) \sum_{j=k+1}^{\infty} 1/\phi(d_j)$$

$$\geq \varrho_{\phi}(x_{n_k} \mathbf{1}_{B_k}) - \frac{\delta}{3} \geq \frac{2\delta}{3} - \frac{\delta}{3} = \frac{\delta}{3}.$$

Hence, for any sequence $\{a_n\} \in \ell_1$ with $\sum_{n=1}^{\infty} |a_n| \ge 1/(3\delta)$,

$$\varrho_{\phi} \Big(\sum_{j=1}^{\infty} a_j x_{n_j} \mathbf{1}_{B_j} \Big) \ge \int \phi \Big(\sum_{j=1}^{\infty} a_j x_{n_j} \mathbf{1}_{B_j} \Big) w = \sum_{j=1}^{\infty} \int_{B_j} \phi(a_j x_{n_j}) w$$
$$= \sum_{j=1}^{\infty} \int_{B_j} a_j \phi(x_{n_j}) w \ge \sum_{j=1}^{\infty} |a_j| \frac{\delta}{3} \ge 1.$$

This implies that $\{x_{n_k} 1_{B_k}\}$ is equivalent to the natural basis of ℓ_1 . By Proposition 5, $\{x_n\}$ does not converge weakly.

PROPOSITION 12. Suppose that for any $\nu > 0$, there are a sequence $\{n_i\}$ and a measurable set A such that $0 < m(A) \le v_0$ and

$$\varrho_{\phi}((x_{n_k} - x_{n_j})\mathbf{1}_A) \ge 1 - \nu \quad \text{whenever } i > j.$$

Then $\int_0^{v_0} \phi(u_0) w \ge 2$.

Proof. It is clear that $v_0 > 0$. If $u_0 = \infty$, then there is nothing to be proved. So we may assume that $u_0 < \infty$. Replacing x_n by $x_n - x_1$ if necessary, we may also assume that $x_1 \equiv 0$. By Lemma 6, both z' and z'' are bounded. Since ϕ is linear on $(0, v_0)$, without loss of generality, we further assume that $\phi(t) = t$ for all $0 < t \le u_0$ and w(t) = 1 for all $t \le v_0$. To prove the proposition, it is enough to show that $v_0 \ge 2/u_0$.

Let K be a fixed natural number. For any a < b and any $0 \le l \le 2K$, let $\{a_k : 1 \le k \le 2K\}$ be a finite sequence such that

$$a_k = \begin{cases} a & \text{if } k \le l, \\ b & \text{otherwise.} \end{cases}$$

160

Then

$$\sum_{1 < j \le 2K} |a_j - a_i| = (2K - l + 1)(l - 1)(b - a) \le K^2(b - a).$$

Let $0 < \delta < v_0$ be any positive number such that

$$\int_{0}^{\delta} u_0 \, dt \le \frac{1}{K^4}.$$

By assumption, there are a measurable set A and a natural number N such that $0 < m(A) \leq v_0$ and

$$\varrho_{\phi}((x_{n_k} - x_{n_j})\mathbf{1}_A) \ge 1 - 1/K^4 \quad \text{whenever } k > j \ge N.$$

By the definition of z' and z'', there exists l such that

$$m\left\{t \in A : |z'(t) - z_l'(t)| > \frac{1}{2K^4 v_0}\right\} < \frac{\delta}{3},$$
$$m\left\{t \in A : |z''(t) - z_l''(t)| > \frac{1}{2K^4 v_0}\right\} < \frac{\delta}{3}.$$

By Lemma 7, there exists a finite subsequence $\{k_1, \ldots, k_{2K}\}$ of $\{n_k\}$ such that for any $j \leq 2K$,

$$m\left(\left\{t \in A : z_l''(t) + \frac{1}{2K^4 v_0} < x_{k_j} < z_l' - \frac{1}{2K^4 v_0}\right\}\right) < \frac{\delta}{3}.$$

Let

$$B_i = \left\{ t \in A : |z''(t) - x_{k_i}(t)| \ge \frac{1}{K^4 v_0} \text{ and } |x_{k_i}(t) - z'(t)| \ge \frac{1}{K^4 v_0} \right\}.$$

Then for all $i \leq 2K$, B_i has measure at most δ . For each $i \leq 2K$, let y_i be a measurable function such that $y_i(t) \in \{z'(t), z''(t)\}$ and for any $t \in A \setminus B_i$, $|y_i(t) - x_{k_i}(t)| < \frac{1}{K^4 v_0}$. Then

$$\begin{split} K(2K-1)\bigg(1-\frac{1}{K^4}\bigg) &\leq \sum_{i< j \leq 2K} \varrho_{\phi}((x_{k_i} - x_{k_j})1_A) \\ &= \sum_{i< j \leq 2K} \int_{A} |x_{k_i} - x_{k_j}| \, dt \\ &\leq \sum_{i< j \leq 2K} \int_{A} |x_{k_i} - y_i| + |y_i - y_j| + |y_j - x_{k_j}| \, dt \\ &\leq \sum_{i< j \leq 2K} \bigg(\int_{B_i} u_0 \, dt + \int_{B_j} u_0 \, dt + \int_{A \setminus B_i} \frac{dt}{K^4 v_0} \\ &+ \int_{A \setminus B_j} \frac{dt}{K^4 v_0} + \int_{A} |y_i - y_j| \, dt \bigg) \end{split}$$

$$\leq K(2K-1)\frac{4}{K^4} + \int_A \sum_{i < j \leq 2K} |y_i - y_j|$$

$$\leq \frac{16}{K^2} + K^2 u_0 v_0.$$

This implies

$$v_0 \ge (u_0)^{-1} \left(2K^2 - K - \frac{2}{K^2} - \frac{16}{K^2} \right) \frac{1}{K^2}.$$

Since K is arbitrary, $v_0 \ge 2/u_0$.

For any subsequence $\{x_{n_k}\}$ of $\{x_n\}$, define

$$p(x_{n_k}) = \sup\{u : m(\{t : \sup\{x_{n_k}\}(t) - \inf\{x_{n_k}\}(t) > u\}) = \infty\}.$$

LEMMA 13. Suppose z' and z'' are finite almost everywhere. Then there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that for any further subsequence $\{y_k\}$ of $\{x_{n_k}\}$, $p(x_{n_k}) = p(y_k)$.

 $\mathbf{P}\,\mathbf{r}\,\mathbf{o}\,\mathbf{o}\,\mathbf{f}.$ For any subsequence $\{x_{n_k}\}$ of $\{x_n\},$ clearly, $p(x_n)\!\geq\!p(x_{n_k}).$ Let

$$q(x_{n_k}) = \inf\{p(y_k) : \{y_k\} \text{ is a subsequence of } \{x_{n_k}\}\}.$$

By induction, there exists a sequence $\{x_{j,n} : n \in \mathbb{N}\}_{j=1}^{\infty}$ of sequences such that

(a) for any j, $\{x_{j,n} : n \in \mathbb{N}\}$ is a subsequence of $\{x_{j-1,n} : n \in \mathbb{N}\}$;

(b) for any j,

$$p_j = p(\{x_{j,n} : j \in \mathbb{N}\}) \le q_{j-1} + 1/2^j$$

where $q_{j-1} = q(\{x_{j-1,n} : n \in \mathbb{N}\}).$

Note that $\{p_n\}$ is a decreasing sequence, $\{q_n\}$ is an increasing sequence and $|p_n - q_{n-1}| \leq 1/2^n$. Further,

$$u_4 = \lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n$$

exists. We claim that $p(\{x_{n,n} : n \in \mathbb{N}\}) = u_4 = q(\{x_{n,n} : n \in \mathbb{N}\}).$

Let $\{y_k\}$ be any subsequence of $\{x_{n,n} : n \in \mathbb{N}\}$. Then for any $m \in \mathbb{N}$, $\{y_k : k \ge m\}$ is a subsequence of $\{x_{m,n} : n \in \mathbb{N}\}$. So

$$p(y_k) \ge \lim_{m \to \infty} p(\{y_k : k \ge m\}) \ge \lim_{m \to \infty} q_m = u_4.$$

For any $\varepsilon > 0$, there is m such that $p_m < u_4 + \varepsilon/4$. Let

$$A = \{t : \sup\{x_{n,n} : n \ge m\}(t) - \inf\{x_{n,n} : n \ge m\}(t) \ge u_4 + \varepsilon/4\}$$
$$B = \{t : |x_{i,j}(t)| \ge \varepsilon/4 \text{ for some } j \le m\}.$$

 $B = \{t : |x_{j,j}(t)| \ge \varepsilon/4 \text{ for some } j \le m\}.$ Since $\int_0^\infty w = \infty$ and $p(\{x_{n,n} : n \ge m\}) < u_4 + \varepsilon/4$, both A and B have finite measure.

162

If $j, k \leq m$ and $t \notin A \cup B$, then

$$|x_{j,j}(t) - x_{k,k}(t)| \le \varepsilon/2 \le u_4 + 3\varepsilon/4;$$

 $|\sup\{x_{n,n}: n \ge m\}(t) - x_{j,j}(t)|$

$$\leq |\sup\{x_{n,n} : n \geq m\}(t) - x_{m,m}(t)| + |x_{m,m}(t) - x_{j,j}(t)| \leq u_4 + 3\varepsilon/4$$

and

$$\begin{aligned} &\inf\{x_{n,n} : n \ge m\}(t) - x_{j,j}(t)| \\ &\le &\inf\{x_{n,n} : n \ge m\}(t) - x_{m,m}(t)| + |x_{m,m}(t) - x_{j,j}(t)| \le u_4 + 3\varepsilon/4. \end{aligned}$$

This implies that for any $t \notin A \cup B$, $\sup\{x_{n,n}\}(t) - \inf\{x_{n,n}\}(t) \le u_4 + 3\varepsilon/4. \end{aligned}$

This implies that for any $t \notin A \cup B$, $\sup\{x_{n,n}\}(t) - \inf\{x_{n,n}\}(t) \le u_4 + 3\varepsilon/4$, and

$$p(\{x_{n,n}:n\in\mathbb{N}\})\leq u_4+\varepsilon.$$

But ε is arbitrary, so $p(\{x_{n,n} : n \in \mathbb{N}\}) \leq u_4$.

LEMMA 14. Let u_4 , δ and ν be positive real numbers. Suppose that $\{x_n\}$ is a unit limit-constant sequence such that for any subsequence $\{x_{n_k}\}$ of $\{x_n\}$, we have

(3)
$$u_4 = p(\{x_n : n \in \mathbb{N}\}) = p(\{x_{n_k} : k \in \mathbb{N}\}),$$

 $m(\{t: \sup\{x_{n_k}: k \in \mathbb{N}\}(t) - \inf\{x_{n_k}: k \in \mathbb{N}\}(t) > 3\nu\}) \ge v_0 + 3\delta.$

Then there is a further subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that for almost all t,

$$\sup\{x_{n_k}\}(t) - \inf\{x_{n_k}\}(t) \le u_4.$$

Proof. We only prove the lemma when $v_0 = 0$. Suppose the lemma is not true. Then there is $\nu/6 > \varepsilon > 0$ such that the set

$$G_1 = \{t : z'(t) - z''(t) > u_4 + \varepsilon\}$$

has measure at least ε . Replace δ by $\varepsilon/2$ if necessary. We may assume that $\delta \leq \varepsilon$. Since $v_0 = 0$, there is $0 < \delta_1 < \delta/6$ such that if $t > \delta_1$, then $w(t) < w(\delta_1)$. Note that for any subsequence $\{x_{n_k}\}, p(x_{n_k}) = u_4$. Applying Lemma 8 and passing to subsequences, we may assume that for any $n \neq m$,

(4)
$$m(\{t : |x_n(t) - x_m(t)| \ge u_4 + 2\varepsilon/3\}) \ge \delta_1.$$

Let

$$G_2 = \{t : z'(t) - z''(t) > u_4 + \varepsilon/2\}.$$

Then $\delta_1 < m(G_2) < \infty$, and there is l such that

$$G_3 = \{ t \in G_2 : z'(t) - z'_l(t) > \varepsilon/12 \text{ and } z''_l(t) - z''(t) > \varepsilon/12 \}$$

has measure less than $\delta_1/10$. By Lemma 7, there is N_3 such that for any $n > N_3$, the set

$$G_4 = \{t \in G_2 \setminus G_3 : \text{ either } |z_l'(t) - x_n(t)| < \varepsilon/6 \text{ or } |z_l''(t) - x_n(t)| < \varepsilon/6 \}$$

has measure at least $m(G_2) - \delta_1/5$. Let

$$G_5 = G_4 \cap G_1 = \{ t \in G_1 \setminus G_3 : \text{either } |z'_l(t) - x_n(t)| < \varepsilon/6 \\ \text{or } |z''_l(t) - x_n(t)| < \varepsilon/6 \}.$$

Then $m(G_5) \ge m(G_1) - \delta_1/5$ and for any $t \in G_5$ (respectively, $t \in G_4$), there exists $k_1 \le l$ (respectively, $k_2 \le l$) such that

 $|x_n(t) - x_{k_1}(t)| = \max\{|x_n(t) - z'_l(t)|, |x_n(t) - z''_l(t)|\} \ge u_4 + \varepsilon - \varepsilon/3,$ or respectively,

$$x_n(t) - x_{k_2}(t)| = \min\{|x_n(t) - z_l'(t)|, |x_n(t) - z_l''(t)|\} \le \varepsilon/6).$$

Since $\{x_n\}$ is a unit limit-constant sequence, for any $\lambda > 0$, there are $n > N_3$ and a measure preserving transformation σ such that

(i)
$$\int_0^\infty \phi(x_n - \overline{x}_l) w \circ \sigma = \int_0^\infty \phi((x_n - \overline{x}_l)^*) w \ge 1 - \lambda;$$

(ii) if $|(x_n - \overline{x}_l)(t)| \ge |(x_n - \overline{x}_l)(s)|$, then $\sigma(t) \ge \sigma(s)$.
Case 1: $m(\sigma^{-1}(0, \delta_1) \cap G_4) \ge 2\delta_1/5$. For any $k \le l$, let
 $H_k = \{t : t \in \sigma^{-1}(0, \delta_1) \text{ and } |x_n(t) - x_k(t)| \le \varepsilon/6\}.$

Since $\bigcup_{k=1}^{l} H_k \supseteq G_4 \cap \sigma^{-1}(0, \delta_1)$, there exists $k \leq l$ such that $m(H_k) \geq 2\delta_1/(5l)$. By (4),

$$m(\{t \in \sigma^{-1}(\delta_1, \infty) : |x_n(t) - x_k(t)| \ge u_4 + 2\varepsilon/3\}) \ge 2\delta_1/(5l).$$

Case 2: $m(\sigma^{-1}(0, \delta_1)) \cap G_4 < 2\delta_1/5$. Note that $G_5 \subseteq G_4 \subseteq G_2$ and $m(G_2) \leq \delta_1/5 + m(G_4)$. We have

$$m(\sigma^{-1}(0,\delta_1) \setminus G_2) \ge \delta_1 - m(\sigma^{-1}(0,\delta_1) \cap G_4) - \delta_1/5 \ge 2\delta_1/5,$$

and

$$\begin{aligned} 4\delta_1/5 &\leq m(G_1) - \delta_1/5 \\ &\leq m(G_5) = m(\sigma^{-1}(\delta_1, \infty) \cap G_5) + m(\sigma^{-1}(0, \delta_1) \cap G_5) \\ &\leq m(\sigma^{-1}(\delta_1, \infty) \cap G_5) + m(\sigma^{-1}(0, \delta_1) \cap G_4) \\ &\leq m(\sigma^{-1}(\delta_1, \infty) \cap G_5) + 2\delta_1/5. \end{aligned}$$

This yields

(5)
$$m(\sigma^{-1}(\delta_1, \infty) \cap G_5) \ge 4\delta_1/5 - 2\delta_1/5 = 2\delta_1/5.$$

Let

$$H'_{k} = \{ t \in \sigma^{-1}(\delta_{1}, \infty) : |x_{n}(t) - x_{k}(t)| \ge u_{4} + 2\varepsilon/3 \}.$$

Let t be an element of $G_5 \cap \sigma^{-1}(\delta_1, \infty)$. Then

$$z'(t) - z''(t) > u_4 + \varepsilon$$

with either $|z'_l(t) - x_n(t)| < \varepsilon/6$ or $|z''_l(t) - x_n(t)| < \varepsilon/6$. So $t \in H'_k$ for some $k \leq l$. By (5), there is $k \leq l$ such that $m(H'_k) \geq \delta_1/(5l)$. On the other hand, if $t \in \sigma^{-1}(0, \delta_1) \setminus G_2$, then $|x_n(t) - x_k(t)| \leq z'(t) - z''(t) \leq u_4 + \varepsilon/2$.

By Lemma 2 and Remark 1, for both cases, there is $\delta_2 > 0$ (which is dependent only on $\delta_1, l, u_4, \varepsilon$) such that

$$\varrho_{\phi}(x_n - x_k) \ge \int \phi(x_n - x_k) w \circ \sigma + \delta_2.$$

This implies, for any $\lambda > 0$,

$$1 - \lambda \leq \int \phi \left(x_n - \frac{1}{l} \sum_{j=1}^l x_j \right) w \circ \sigma \leq \frac{1}{l} \sum_{j=1}^l \int \phi(x_n - x_j) w \circ \sigma$$
$$\leq \frac{1}{l} \sum_{j=1}^l \varrho_\phi(x_n - x_j) - \frac{\delta_2}{l} \leq 1 - \frac{\delta_2}{l}.$$

This is impossible if $\lambda < \delta_2/l$.

3. Proof of Theorem 1. Let $\Lambda_{\phi,w}$ be an order continuous Lorentz– Orlicz space such that $\int_0^{v_0} \phi(u_0)w < 2$. We claim that if $\Lambda_{\phi,w}$ contains a unit limit-constant sequence $\{x_n\}$, then

- (a) $\{x_n\}$ does not converge weakly;
- (b) if $\Lambda_{\phi,w} \equiv \Lambda_{\phi,w}(0,1)$, then $u_0 = \infty$.

Condition (a) implies that if $\int_0^{v_0} \phi(u_0)w < 2$, then $\Lambda_{\phi,w}$ has weakly normal structure. By Lemma 6 (cf. Remark 2), (b) yields that $u_0 > 0$ if $\Lambda_{\phi,w}$ does not have normal structure. Moreover, if $\Lambda_{\phi,w} \equiv \Lambda_{\phi,w}(0,1)$ does not have normal structure, then either $\int_0^{v_0} \phi(u_0)w \ge 2$ or $u_0 = \infty$.

Let $\{x_n\}$ be a unit limit-constant sequence in $\Lambda_{\phi,w}$. Suppose that $\{x_n\}$ satisfies one of the following conditions:

- (c) For any M > 0, there is n such that $\varrho_{\phi}(x_n \mathbb{1}_{\{t:|x_n(t)|>M\}}) > \delta$.
- (d) For any $\varepsilon > 0$ there is *n* such that $\rho_{\phi}(x_n \mathbb{1}_{\{t:|x_n(t)| < \varepsilon\}}) > \delta$.

By Proposition 11, $\{x_n\}$ does not contain any weakly covergent subsequence. By Lemma 6, (c) yields $u_0 = \infty$.

Suppose (d) holds. Since $\Lambda_{\phi,w}$ is order continuous, for any $\delta > 0$ there is $\varepsilon > 0$ such that $\rho_{\phi}(\varepsilon 1_{(0,1)}) < \delta/2$. Hence, if $\rho_{\phi}(x_n 1_{\{t:|x_n(t)| < \varepsilon\}}) > \delta$, then we must have $\Lambda_{\phi,w} \equiv \Lambda_{\phi,w}(0,\infty)$. Hence we may assume that neither (c) nor (d) holds.

Since $\int_0^{v_0} \phi(u_0) w < 2$, by Proposition 12, there exists $\nu > 0$ such that for any subsequence $\{x_{n_k}\}$ of $\{x_n\}$,

(6)
$$m(\{t: \sup\{x_{n_k}: k \in \mathbb{N}\}(t) - \inf\{x_{n_k}: k \in \mathbb{N}\}(t) > 3\nu\}) \ge v_0 + 3\nu.$$

The same assumption yields either $u_0 < \infty$ or $v_0 = 0$. By Lemma 6 and Corollary 9, both z' and z'' are finite almost everywhere. Applying Lemmas 13 and 14 and passing to further subsequences of $\{x_n\}$, we may assume that for any subsequence $\{x_{n_k}\}$ of $\{x_n\}$,

$$u_4 = p(x_n) = p(x_{n_k}),$$

and

(7)
$$\sup\{x_n\}(t) - \inf\{x_n\}(t) \le u_4.$$

If $u_4 = 0$, then $\{x_n\}$ contains a constant subsequence. This contradicts the fact that $\{x_n\}$ is a unit limit-constant sequence. So u_4 must be positive,

(8)
$$m(\{t: \sup\{x_n\}(t) - \inf\{x_n\}(t) > 15u_4/16\}) = \infty,$$

and $\Omega = (0, \infty)$. By Corollary 10, there is v such that w is constant on (v, ∞) . Let

$$v_1 = \inf\{v : w \text{ is constant on } (v, \infty)\}.$$

If $v_1 = 0$, then $v_0 = \infty$. This contradicts our assumption $\int_0^{v_0} \phi(u_0) w < 2$. So $v_1 \ge v_0$ and $v_1 > 0$.

By (8) and Lemma 8, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that for any j < m,

$$m(\{t: |x_{n_i} - x_{n_m}| \ge 7u_4/8)\}) \ge v_1.$$

Replacing $\{x_k\}$ by $\{x_{n_k}\}$ if necessary, we may assume that for any n > m, (9) $m(\{t : |x_n(t) - x_m(t)| \ge 7u_4/8)\}) \ge v_1.$

CLAIM. There are a subsequence
$$\{x_{n_k}\}$$
 of $\{x_n\}$ and a sequence of pairwise disjoint measurable sets $\{B_k\}$ such that $m(B_k) \ge 2v_1/3$, and for any $m \in \mathbb{N}, t \in B_m$,

$$|x_{n_m}(t) - x_{n_k}(t)| \ge 3u_4/4$$
 if $k < m_4$

Suppose the claim were proved. By the proof of Example 3, $\{(x_{n_k} - x_{n_{k-1}})1_{B_k}\}$ is equivalent to the natural basis of ℓ_1 . By Proposition 5, $\{x_n\}$ does not converge weakly. Hence we only need to prove our claim.

Proof of Claim. Let $n_1 = 2$. Suppose that n_1, \ldots, n_k are selected. For any $l > n_k$ with $\rho_{\phi}(x_l - (1/k) \sum_{j=1}^k x_{n_j}) > 1 - \lambda$, let σ be the measure preserving transformation such that

(i)
$$\int_{0}^{\infty} \phi(x_{l} - (1/k) \sum_{j=1}^{k} x_{n_{j}}) w \circ \sigma = \int_{0}^{\infty} \phi((x_{l} - (1/k) \sum_{j=1}^{k} x_{n_{j}})^{*}) w \ge 1 - \lambda;$$

(ii) if $|(x_{l} - (1/k) \sum_{j=1}^{k} x_{n_{j}})(t)| \ge |x_{l} - (1/k) \sum_{j=1}^{k} x_{n_{j}})(s)|$, then $\sigma(t) \ge 0$

(II) If
$$|(x_l - (1/k) \sum_{j=1} x_{n_j})(t)| \ge |x_l - (1/k) \sum_{j=1} x_{n_j})(s)|$$
, then $\sigma(t) \ge \sigma(s)$.

If $m(\{t \in \sigma^{-1}((0, v_1)) : |x_l(t) - x_{n_j}(t)| \le 3u_4/4\}) \ge v_1/4^j$ for some $j \le k$, then by (9), we have

$$m(\{t \in \sigma^{-1}(v_1, \infty) : |x_l(t) - x_{n_j}(t)| \ge 7u_4/8\}) \ge v_1/4^j.$$

166

By Lemma 2 and Remark 1, there is $\delta_3 > 0$ independent of σ such that

$$\int_{0}^{\infty} \phi\left(x_{l} - \frac{1}{k} \sum_{j=1}^{k} x_{n_{j}}\right) w \circ \sigma \leq 1 - \delta_{3}.$$

Since $\Lambda_{\phi,w}$ is order continuous and $\{x_n\}$ is a unit limit-constant sequence, there is $n_{k+1} > n_k$ such that

$$\int_{0}^{\infty} \phi\left(x_{l} - \frac{1}{k} \sum_{j=1}^{k} x_{n_{j}}\right) w \circ \sigma \ge 1 - \frac{\delta_{3}}{2}$$

The above proof shows that for any $j \leq k$,

$$m(\{t \in \sigma^{-1}(0, v_1) : |x_{n_{k+1}}(t) - x_{n_j}(t)| \le 3u_4/4\}) \le v_1/4^j.$$

Let

$$B_{k+1} = \{t \in \sigma^{-1}(0, v_1) : \text{ for any } j \le k, |x_l(t) - x_{n_j}(t)| > 3u_4/4\}.$$

Then

$$m(B_{k+1}) \ge v_1 - \sum_{j=1}^k \frac{v_1}{4^j} \ge \frac{2v_1}{3}.$$

Let t be an element in B_k and i, j two natural numbers such that i < j < k. Then $(1 + 1/16)w > |w_k(t)| > 2w_k/4 \quad \text{by} (7)$

$$(1+1/16)u_4 \ge |x_{n_k}(t) - x_{n_j}(t)| > 3u_4/4 \quad \text{by (7).}$$

If $(x_{n_k}(t) - x_{n_j}(t))(x_{n_k}(t) - x_{n_i}(t)) < 0$, then
 $|x_{n_i}(t) - x_{n_j}(t)| = |x_{n_k}(t) - x_{n_j}(t)| + |x_{n_k}(t) - x_{n_i}(t)|$
 $\ge 2\frac{3u_4}{4} = \frac{3u_4}{2}.$

This is impossible. So for almost all $t \in B_{k+1}$ and for i < j < k, $\operatorname{sgn}(x_{n_k}(t) - x_{n_j}(t)) = \operatorname{sgn}(x_{n_k}(t) - x_{n_i}(t))$, and

$$|x_{n_i}(t) - x_{n_j}(t)| \le u_4/4.$$

This implies $t \notin B_j$ and $\{B_k\}$ is pairwise disjoint. We proved our claim, and hence also Theorem 1.

R e m a r k 3. (1) The results in Sections 2 and 3 are still true for Lorentz– Orlicz sequence spaces $\ell_{\phi,w}$. Hence if $\ell_{\phi,w}$ is an order continuous Lorentz– Orlicz sequence space (i.e. ϕ satisfies the Δ_2 condition for small values and $\sum_{i=1}^{\infty} w(i) = \infty$), then $\ell_{\phi,w}$ has normal structure if and only if $u_0 = 0$.

(2) Let $\{x_n\}$ be a limit-constant sequence in an order continuous Lorentz– Orlicz sequence space $\ell_{\phi,w}$. We claim that $\{x_n\}$ does not converge weakly. By passing to a subsequence and then translating it, we may assume that for any n > m,

$$|||x_n| \wedge |x_m|||_{\infty} \le 1/n$$

If for any $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $||x_n||_{\infty} < \varepsilon$, then by Proposition 11, $\{x_n\}$ does not converge weakly. In this case, we are done. So we may assume that there is N and $\varepsilon > 0$ such that $||x_n||_{\infty} \ge \varepsilon$ for all n > N. By Corollary 10, there is $v \ge 0$ such that w is constant on (v, ∞) . By Proposition 5 (cf. Example 3), $\{x_n\}$ does not converge weakly. Hence every order continuous Lorentz–Orlicz sequence space $\ell_{\phi,w}$ has weakly normal structure.

References

- [1] N. L. Carothers, S. J. Dilworth, C. J. Lennard and D. A. Trautman, A fixed point property for the Lorentz space $L_{p,1}(\mu)$, Indiana Univ. Math. J. 40 (1991), 345–352.
- [2] N. L. Carothers, R. Haydon and P.-K. Lin, On the isometries of the Lorentz function spaces, Israel J. Math. 84 (1993), 265–287.
- [3] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).
- [4] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- [5] S. J. Dilworth and Y.-P. Hsu, The uniform Kadec-Klee property for the Lorentz space $L_{w,1}$, J. Austral. Math. Soc. Ser. A 60 (1996), 7–17.
- [6] D. V. van Dulst and V. D. de Valk, (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces, Canad. J. Math. 38 (1986), 728–750.
- [7] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29–38.
- [8] A. Kamińska, P.-K. Lin and H. Y. Sun, Uniformly normal structure of Orlicz-Lorentz spaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability, N. Kalton, E. Saab and S. Montgomery-Smith (eds.), Lecture Notes in Pure and Appl. Math. 175, Dekker, New York, 1996, 229–238.
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006.
- [10] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125–143.
- [11] —, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1984), 523–534.
- [12] P.-K. Lin and H. Y. Sun, Some geometric properties of Lorentz-Orlicz spaces, Arch. Math. (Basel) 64 (1995), 500–511.
- [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
- [14] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker, 1991.

Department of Mathematics University of Memphis Memphis, Tennessee 38152, U.S.A. E-mail: linpk@hermes.msci.memphis.edu

Department of Mathematics Harbin Institute of Technology Harbin, China

Reçu par la Rédaction le 30.8.1996 Révisé le 7.4.1997