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On irreducible components of a Weierstrass-type variety

by Romuald A. Janik (Kraków)

Abstract. We give a characterization of the irreducible components of a Weierstrass-
type (W -type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois
group associated in a natural way to this variety. Since every irreducible variety of pure
dimension is (locally) a component of a W -type variety, this description may be applied
to any such variety.

1. Introduction. This work grew out of an attempt to provide an al-
gebraic description of analytic varieties of constant dimension. We study
Weierstrass type varieties introduced by Whitney in [6]. Since any analytic
set of constant dimension is a sum of irreducible components of a W -type
variety (see [6], p. 81), we can consider only the irreducible components of
a Weierstrass-type set.

The main aim of this paper is to characterize the irreducible components
of a W -type variety in terms of an action of a Galois group associated in a
natural way with the given variety.

Let U be an open connected subset in Cn. We denote by R one of the
following rings:

• C[u] = ring of polynomials in n variables,
• O(U) = ring of holomorphic functions on U ,
• N (U) = ring of Nash functions on U .

The ringN (U) is the algebraic closure of C[u] inO(U) (for further properties
of Nash functions cf. [5]).

Let W be a W -type (Weierstrass type) n-dimensional variety in a con-
nected open set U × Ck ⊂ Cn+k:

W = {(u, z1, . . . , zk) ∈ U × Ck | pi(u)(zi) = 0, i = 1, . . . , k}
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where

pi(u)(z) = zni +
ni−1∑
j=0

aijz
j ∈ R[z], aij ∈ R.

Let K be the field of fractions of the ring R, and L be a common splitting
field over K of the defining polynomials p1, . . . , pk of W . Then L/K is a
Galois extension. Let Xi ⊂ L be the zero-set of the polynomial pi in L. The
Galois group Gal(L/K) acts in a natural way on X1 × . . .×Xk. We prove
that the orbits of this action are in 1:1 correspondence with the irreducible
components of W (Theorem 6.1).

In Section 2 we introduce some notation and state a few basic facts from
Galois theory. In Section 3 we construct a covering space Hom(L,M) of
U ′ := U\{branching locus of W}, encoding the algebraic and topological
structure of the problem. We investigate its relations with W , which will
be exploited in the proof of the irreducibility of the variety associated with
an orbit of Gal(L/K). In Section 4 the properties of Hom(L,M) are used
to construct a homomorphism from the fundamental group π1(U ′) to the
Galois group Gal(L/K).

In Section 5, certain finite subsets of Lk are shown to correspond to
irreducible components of W . Finally, in Section 6, we state and prove our
main result. The proof is based on the observation that every irreducible
component of W can be obtained by the construction described in Section 5.

2. Algebraic preliminaries. We begin with two results from Galois
theory.

Lemma 2.1 ([2], p. 42). Let K be an algebraic extension of the field k
contained in the algebraic closure k of k. Then the following statements are
equivalent :

1. The field extension K/k is normal.
2. Every k-homomorphism σ : K → k is onto K.

Lemma 2.2. Let L/K be an algebraic field extension, and K ⊂ Ω an
arbitrary field extension. Then there is a K-homomorphism σ : L→ Ω.

Let u be a point in U . We shall use the following notation:

• Ou = ring of germs of holomorphic functions at u,
• Mu = field of fractions of the ring Ou,
• M(U) = field of fractions of the ring O(U),
• Ñ (U) = field of fractions of the ring N (U) of Nash functions.

Let δi ∈ O(U) be the discriminant of the polynomial pi(z) ∈ O(U)[z] (for
the definition and basic properties of the discriminant see e.g. [3], p. 25). Let
∆ be the discriminant variety ∆ := {u ∈ U : δ1(u) · . . . ·δk(u) = 0}. We shall
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denote its complement in U by U ′. Then U ′ is the biggest open set such that
π : (U ′×Ck)∩W 3 (u, z) 7→ u ∈ U ′ is an unbranched covering. Furthermore
all the defining polynomials of W split in the local rings Ou for all points
u ∈ U ′. If V is a set in Cn+k then V ′ is defined to be V ′ := V ∩ π−1(U ′)
where π : Cn+k → Cn is the standard projection on the first n variables.
The structure of a W -type variety is studied in detail in [6].

Recall that L is defined to be a common splitting field over K of the
polynomials p1, . . . , pk. Without loss of generality one can assume that L is
contained in a fixed algebraic closure of M(U).

R e m a r k 2.3. Let L be the common splitting field of the polynomials pi.
Take u ∈ U ′ (i.e. outside the discriminant variety) and put Ω := Mu.
Applying Lemma 2.2 we get a homomorphism σ : L→Mu which maps the
roots of the polynomials pi to germs of holomorphic functions.

The following simple observation on K-homomorphisms of L toMu will
be used extensively.

Lemma 2.4. Let L/K be a Galois extension and let σ1, σ2 : L→Mu be
K-homomorphisms. Then there exists g ∈ Gal(L/K) such that σ1 = σ2 ◦ g.

In the sequel we use the Riemann extension theorem to extend holo-
morphic functions through the discriminant locus. The assumptions of the
theorem are satisfied due to the lemma:

Lemma 2.5 ([3], p. 86). Let s ∈ C be a root of a monic polynomial :

sn + a1s
n−1 + . . .+ an = 0.

Then
|s| ≤ 2 max

i=1,...,n
|ai|1/i.

3. The covering Hom(L,M) → U ′. In this section the set of all K-
homomorphisms from L toMu is endowed with the structure of a covering
of U ′, and is used, in the next section, to define a homomorphism of the
fundamental group π1(U ′) into Gal(L/K).

Definition 3.1. Let Hom(L,Mu) be the set of K-homomorphisms from
L to Mu. We define Hom(L,M) :=

∐
u∈U ′ Hom(L,Mu) to be the disjoint

sum of Hom(L,Mu).

We introduce a topology on Hom(L,M) in a similar manner to the case
of the sheaf of germs of holomorphic functions (cf. [4], p. 203).

Let e1, . . . , em be a basis of the field extension L/K, and let σu ∈
Hom(L,M) be a K-homomorphism from L to Mu. Let fi := σu(ei) be
the images of basis elements of L in Mu. Without loss of generality we
can assume that the fi’s are germs of holomorphic functions. Let the pairs
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(Ui, fi) for i = 1, . . . ,m, where fi ∈ O(Ui), be representatives of the germs
fi such that U1 ∩ . . . ∩ Um is a connected open set. As the basis of the
topology in Hom(L,M) we take all the sets of the form

{σ : ei 7→ (Ui, fi)u′}u′∈U1∩...∩Um

where (Ui, fi)u′ denotes the germ of fi in the local ring Ou′ .

Proposition 3.2. (1) The family B of all sets defined above is a basis
of a topology.

(2) Hom(L,M) with the natural projection π : Hom(L,M) → U ′ is a
topological covering , i.e. for every u ∈ U ′ there exists an open, connected
neighborhood V of u such that π−1(V ) =

⋃
Uα where Uα are disjoint open

sets and π|Uα : Uα → V is a surjective homeomorphism.

P r o o f. The first part is obvious. We will give the proof of the second
statement. Take u ∈ U ′. Let σu be aK-homomorphism from L toMu (i.e. a
point lying in the fiber of u). Let {σu′ : u′ ∈ V } be an element of the basis of
neighborhoods of σu. Then for every g ∈ Gal(L/K) the set {σu′ ◦g : u′ ∈ V }
is a neighborhood of σu ◦ g lying above V .

In this way we obtain the inclusion π−1(V ) ⊃
⋃
g∈Gal(L/K){σu ◦ g}. The

sets {σu ◦ g} are disjoint (by the identity principle) and open. It remains
to show that π−1(V ) =

⋃
g∈Gal(L/K){σu ◦ g}. But by Lemma 2.4, given any

two K-homomorphisms σ1, σ2 to Mu0 , there is a g ∈ Gal(L/K) such that
σ1 = σ2 ◦ g. So for any K-homomorphism σ lying above u we can find an
element of the Galois group Gal(L/K) such that σ ∈ {σu′ ◦ g}.

Since Hom(L,M) is a covering, given a path γ : [0, 1] → U ′ and any
K-homomorphism σ0 from L to Mγ(0), there is a unique lifting of γ to a
path γ̃ : [0, 1] → Hom(L,M) such that γ̃(0) = σ0. This lifting has good
properties with respect to the action of Gal(L/K), namely we have

Proposition 3.3. Let γ be a path in U ′, and let γ̃ be its lifting to
Hom(L,M) such that γ̃(0) = σ0. Then the map t 7→ (γ̃(t)) ◦ g is a lift-
ing of γ to Hom(L,M) starting from σ0 ◦ g, for g ∈ Gal(L/K).

Furthermore, liftings of curves to W ′ can be constructed from a lifting
to Hom(L,M). To define the ith component of the path in W ′, first we lift
γ to Hom(L,M) obtaining a K-homomorphism from L to Mγ(t). We can
evaluate it on si (a root of the polynomial pi) to get a holomorphic function
in the neighborhood of γ(t). Finally, we take its value on γ(t) ∈ U ′ ⊂ Cn.

Proposition 3.4. If γ̃ is a lifting of γ to Hom(L,M), and si ∈ Xi, then
the map

t 7→ (γ(t), (γ̃(t)(s1))(γ(t)), . . . , (γ̃(t)(sk))(γ(t)))
is a lifting of γ to W ′.
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We have two natural covering spaces of U ′, namely the original W -type
variety W ′ and the covering Hom(L,M). The latter can be seen as encod-
ing the algebraic relations between the coordinate functions (projections)
restricted to W ′:

zi : U × Ck ⊃W ′ 3 (u, z1, . . . , zk) 7→ zi ∈ C.

Example 3.5. If W = {z2
1 − u = 0, . . . , z2

k − u = 0} ⊂ C × Ck then
W ′ is a 2k-sheeted covering of U ′ ⊂ C. The fiber over each point u ∈ U ′ of
the covering Hom(L,M) is, by construction, bijective with the Galois group
Gal(L/K). In this case L is the splitting field of the polynomial z2−u over
C(u). So the Galois group Gal(L/K) is Z2. The covering Hom(L,M) is
therefore 2-sheeted. We see therefore that in general W ′ is not isomorphic
to Hom(L,M).

Example 3.6. If W = {z2
1 − u1 = 0, . . . , z2

k − uk = 0} ⊂ Ck × Ck then
W ′ is also a 2k-sheeted covering of U ′ ⊂ Ck. But now L is the splitting field
of the polynomial (z2 − u1) · . . . · (z2 − uk) over the field C(u1, . . . , uk). The
Galois group is now Z2 × . . . × Z2. Here the covering Hom(L,M) is also
2k-sheeted, and one can show that it is in fact isomorphic to W ′.

In some cases the structure of Hom(L,M) can be richer than that of the
original variety W ′.

Example 3.7. Let W = {zn + u1z
n−1 + . . . + un = 0}. Hence W ′ is a

n-sheeted covering. But now the Galois group Gal(L/K) is isomorphic to
the permutation group Sn. Therefore Hom(L,M) is a n!-sheeted covering
of U ′.

4.Homomorphism π1(U ′)→Gal(L/K). In this section we define a ho-
momorphism of the fundamental group of U ′ to the Galois group Gal(L/K)
and establish some of its properties.

Let σ0 : L→Mu0 be a K-homomorphism, and γ be some representative
of [γ] ∈ π1(U ′, u0). There is a unique lifting of γ to Hom(L,M) starting from
σ0. Since γ is a closed loop, γ̃(1) is also a K-homomorphism from L toMu0 .
Then by Lemma 2.4 there is a unique g ∈ Gal(L/K) such that γ̃(1) = σ0 ◦g.
By the homotopy lifting property of coverings, g is independent of the choice
of a representative of [γ] ∈ π1(U ′, u0).

Definition 4.1. We shall denote by Gal the mapping of the fundamen-
tal group π1(U ′, u0) to the Galois group Gal(L/K) obtained by the above
construction.

Proposition 4.2. Let γ1, γ2 ∈ π1(U ′, u0). Then Gal(γ2◦γ1) = Gal(γ2)◦
Gal(γ1).
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Proposition 4.3. (1) If K = C(u) then Gal(π1(U ′)) = Gal(L/(L ∩
Ñ (U))) (here Ñ (U) denotes the field of fractions of N (U)).

(2) In the analytic or Nash case (R = O(U) or R = N (U)), the mapping
Gal is an epimorphism.

P r o o f. Take an element f ∈ L invariant with respect to Gal(π1(U ′)).
Since L is algebraic over K we have L = K(s1, . . . , sp) = K[s1, . . . , sp],
where si are the roots of the defining polynomials of W . Therefore we can
write f =

∑p
j=1 wjtj , where wj ∈ K and tj are monomials in s1, . . . , sp.

Multiplying by the denominators of wj we get F := hf =
∑p
j=1 vjtj , where

h, vj ∈ R (K is the field of fractions of R).
By Remark 2.3 we have σu(F ) ∈ Ou for every u ∈ U ′. We define F̂ :

U ′ → C in the following way:

F̂ (u) := σu(F )(u)

where σu is obtained from σ0 by a lifting along some path. It is defined only
up to the action of g ∈ Gal(π1(U ′)), but since F is Gal(π1(U ′))-invariant
the images of F in Ou coincide.

F̂ is clearly holomorphic in U ′, and locally bounded in U . By the Rie-
mann extension theorem it can be extended to a holomorphic function in
U . Now F̂ = F since σu0 is a monomorphism. This shows that f = F/h is
an element of M(U).

Conversely, if f ∈ L is holomorphic then it is Gal(π1(U ′))-invariant.

5. Algebraic set associated with an orbit of Gal(L/K). Recall that
L is the common splitting field of the defining polynomials p1, . . . , pk of W .
Let Xi ⊂ L be the zero-set of pi in L. The group Gal(L/K) acts in a natural
way on X1 × . . . ×Xk ⊂ Lk. An orbit is therefore a finite set of points in
Lk. Since L is an infinite field there exists a collection of polynomials in k
variables whose common zeroes are precisely the given finite set of points.

In the sequel we shall use a standard choice of these polynomials, called
the canonical equations.

Definition 5.1. ([6], Appendix V, p. 369, Canonical equations). Let
S := {(s(j)1 , . . . , s

(j)
k )}j=1,...,m ⊂ Lk be a set of m points. For every m-tuple

µ = (µ1, . . . , µm) ∈ Nm such that |µ| = µ1 + . . .+ µm = m, the polynomial
Φµ ∈ L[z1, . . . , zk] is defined by

Φµ(z) =
(µ)∑
ν

(zν1 − s(1)ν1 ) · . . . · (zνm − s(m)
νm )

where the summation is over all m-tuples ν such that every j ∈ {1, . . . , k}
appears exactly µj times in (ν1, . . . , νk). The set of common zeroes of the
above defined polynomials is precisely the set S.
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It is easy to see that the polynomials Φµ have coefficients in K when S is
taken to be Gal(L/K)-invariant. In fact, we shall use a more precise result.

Proposition 5.2. If K = C(u) then Φµ ∈ C[u][z1, . . . , zk].

P r o o f. For every irreducible polynomial P ∈ C[u] one can define a
valuation νP : C(u)− {0} → Z by

f = P νP (f) · Q
R
, f ∈ C(u)− {0},

where P , Q and R are relatively prime (cf. [1], p. 139). Since L/C(u) is
algebraic, one can extend this valuation to the field L (see [1], p. 144).

Let s ∈ L be a zero of one of the defining polynomials of W . We will
show that νP (s) ≥ 0. Suppose that νP (s) < 0; then, since sn +

∑
i ais

i = 0,
we have

nνP (s) = νP

(
−
∑
i

ais
i
)
≥ min
i=0,...,n−1

(νP (ai) + iνP (s)) > nνP (s).

This is a contradiction. In the last inequality we used the fact that, since
the ai are polynomials, νP (ai) ≥ 0.

The coefficients of the polynomials Φµ are linear combinations of mono-
mials in s, therefore νP (coefficients) ≥ 0. The coefficients are elements of
C(u), so the nonnegativity of νP for all irreducible polynomials P implies
that the coefficients lie in C[u].

Since the si are mapped locally to holomorphic functions in U ′ (locally
bounded in U) by K-homomorphisms σ ∈ Hom(L,M), the coefficients are
holomorphic in U ′ and can be extended by the Riemann extension theorem
to the whole of U . Thus the Φµ always define an analytic set.

Definition 5.3. Let S ⊂ X1 × . . .×Xk be an orbit of Gal(L/K), con-
sisting of m points. Define

VS := {(u, z) ∈ U × Ck | Φµ(u, z) = 0, |µ| = m},

where Φµ are the canonical equations of S.

Lemma 5.4. The algebraic (resp. analytic, Nash) variety VS has the fol-
lowing properties:

1. V ′S := π−1(U ′) ∩ VS is a covering of U ′ and V ′S ⊂W ,
2. V ′S is connected ,
3. VS = V ′S ⊂W .

P r o o f. (1) Choose u ∈ U ′ and a K-homomorphism σ0 : L→Mu. Since
the si ∈ S are mapped by σ0 to holomorphic functions in a neighborhood
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of u, one can evaluate them at u. Taking Ŝ to be the resulting set of points
in Ck and repeating the construction of the polynomials Φµ one obtains
π−1(u) ∩ VS = Ŝ. It follows immediately that V ′S ⊂ W ′, and that it is a
subcovering.

(2) Let u0 ∈ U ′ and σ0 : L → Mu0 be as in the definition of the
homomorphism Gal. We will show that any two points P = (u, z1, . . . , zk) ∈
V ′S and P ′ = (u′, z′1, . . . , z

′
k) ∈ V ′S can be connected by a path in V ′S . Without

loss of generality one can assume that u = u0.
(a) Take u′ = u = u0. From the proof of (1) one can find (s1, . . . , sk),

(s′1, . . . , s
′
k) ∈ S ⊂ X1 × . . .×Xk which map by σ0 to the points P and P ′.

There is a g ∈ Gal(L/K) which takes (s1, . . . , sk) to (s′1, . . . , s
′
k). There is a

corresponding loop [γ] ∈ π1(U ′, u0) which maps to g. Proposition 3.4 gives
a lifting of γ to V ′S ⊂W starting from P and ending at P ′.

(b) General case u′ 6= u = u0. Transporting σ0 from u0 to u′ gives a K-
homomorphism σ : L→Mu′ . One can find (s′1, . . . , s

′
k) ∈ S ⊂ X1×. . .×Xk

which σ maps to P ′. Using Proposition 3.4 again, we obtain a path in V ′S
joining P ′ and some point in the fiber over u0. This reduces the proof to
case (a).

(3) The inclusion VS ⊃ V ′S is obvious. Take u ∈ ∆. We construct the set
Ŝ ⊂ Ck in the following way. Take u0 ∈ U ′, σ0 : L→Mu0 and (s1, . . . , sk)
∈ S. For some path γ : [0, 1]→ U such that γ(0) = u0, γ(1) = u and γ([0, 1))
⊂ U ′ define

ŝi := lim
x→1

(γ̃(x))(si)(γ(x))

where γ̃ is a lifting of γ to Hom(L,M) starting from σ0.
The expression (γ̃(x))(si)(γ(x)) in the above limit is a lifting of γ to W

projected onto the ith variable. SinceW is bounded there is an accumulation
point. Since W is closed there are at most a finite number of such points.
But since (γ̃(x))(si)(γ(x)) is a continuous function in x, the limit exists.

Repeating the construction of Φµ using the set Ŝ gives π−1(u) ∩ VS ⊂
Ŝ ⊂ V ′S .

To obtain the inclusion VS ⊂ W note that since V ′S ⊂ W ′, we have
VS = V ′S ⊂W ′ = W .

6. The main theorem. Now, we are in a position to prove our main
theorem.

Let us recall the following notation and basic definitions. An algebraic
(resp. Nash, analytic) W -type variety in a connected open set U×Ck⊂Cn+k

is a set of the form

W = {(u, z1, . . . , zk) ∈ U × Ck | pi(u)(zi) = 0, i = 1, . . . , k}
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where

pi(u)(z) = zni +
ni−1∑
j=0

aijz
j ∈ R[z], aij ∈ R.

HereR denotes the ring C[u] (resp.N (U), O(U)), andK the field of fractions
of R. L is the common splitting field of the polynomials p1, . . . , pk over K.
And finally Xi ⊂ L is the zero-set of the polynomial pi ∈ R[z] in L.

Theorem 6.1. Suppose that one of the following holds:

1. W is a W -type algebraic variety in Cn × Ck,
2. W is a W -type Nash variety in a connected open set U ×Ck ⊂ Cn+k,
3. W is a W -type analytic variety in a connected open set U×Ck⊂ Cn+k.

Then the irreducible components of W are in 1:1 correspondence with the
orbits of Gal(L/K) in the set X1 × . . .×Xk.

P r o o f. Let VS = {Φµ = 0} be the set associated with an orbit as in
Definition 5.3. Then by Lemma 5.4, VS = V ′S where V ′S = π−1(U ′) ∩ VS .
Since V ′S is a connected submanifold (Lemma 5.4), VS is irreducible. Here
we have used the simple observation that V ′S is dense in the regular part
of VS .

Let V be an irreducible component of W . Then by ([3], p. 215), V
is the closure of a connected component of the regular part RegW of W ,
V = Z. Let (u, z) ∈ Z ′. Then (u, z) ∈ VS for some orbit of Gal(L/K). By
Lemma 5.4, V ′S is connected, so V ′S ⊂ Z ⊂ V . Taking closures, and using
the fact that V ′S = VS , we obtain VS ⊂ Z = V .

Since dimVS = dimV , the inclusion is indeed an equality.
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Reçu par la Rédaction le 20.5.1996
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