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A set on which the Lojasiewicz exponent
at infinity is attained

by JACEK CHADZYNSKI and TADEUSZ KRASINSKI (L6d%)

Abstract. We show that for a polynomial mapping F = (f1,..., fm): C" — C™ the
Lojasiewicz exponent Lo (F) of F is attained on the set {z € C™ : f1(2)-...- fm(z) = 0}.

1. Introduction. The purpose of this paper is to prove that the Lo-
jasiewicz exponent at infinity of a polynomial mapping F' : C* — C™ is
attained on a proper algebraic subset of C™ defined by the components of
F (Thm. 1).

As a corollary we obtain a result of Z. Jelonek on testing sets for proper-
ness of polynomial mappings (Cor. 3) and a formula for the Lojasiewicz
exponent at infinity of F' in the case n = 2, m > 2, in terms of parametriza-
tions of branches (at infinity) of zeroes of the components of F' (Thm. 2).
This result is a generalization of the authors’ result for n = m = 2 ([CK],
Main Theorem).

Before the main considerations we show some basic properties of the
Lojasiewicz exponent at infinity for regular mappings, i.e. for polynomial
mappings restricted to algebraic subsets of C. We prove that the exponent
is a rational number, that it is attained on a meromorphic curve (Prop. 1),
and we give a condition equivalent to the properness of regular mappings
(Cor. 2). These properties are analogous to ones, known in folklore, for
polynomial mappings from C” into C™. We do not pretend to the originality
of proof methods; we only want to fill gaps in the literature.

The results obtained by Z. Jelonek in [J] played an inspiring role in
undertaking this research. On the other hand, the idea of the proof of the
main theorem was taken from A. Ploski ([P2], App.).
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2. The Lojasiewicz exponent. Let F': C" — C™, n > 2, be a poly-
nomial mapping and let S C C” be an unbounded algebraic set. Put

N(F|S):={veR:3A>0, IB>0, Vz€ S (|z| > B = Alz|" <|F(2)])},

where || is the polycylindric norm. If S = C" we define N(F') := N(F|C").

By the Lojasiewicz exponent at infinity of F|S we mean L (F|S) :=
sup N(F|S). Analogously L (F') := sup N(F).

Before we pass to properties of the Lojasiewicz exponent we quote the
known curve selection lemma at infinity (cf. [NZ], Lemma 2). We begin with
a definition. A curve ¢ : (R, +00) — R¥ is called meromorphic at +oo if ¢
is the sum of a Laurent series of the form

p(t) = apt? +ap 1’ P4 a; €RE
By || - || we denote the euclidian norm in R¥.

LEMMA 1 (Curve Selection Lemma). If X C R* is an unbounded semi-
algebraic set, then there exists a curve ¢ : (R, +00) — R¥ meromorphic at
+o0, such that o(t) € X fort € (R,400) and ||¢(t)|| — oo as t — +o0.

Notice that the Lojasiewicz exponent at infinity of a regular mapping
F'|S does not depend on the norm in C™. So, in the rest of this section, we
shall use the euclidian norm || - || in the definition of N(F|S).

Let us introduce one more definition. A curve ¢ = (p1,...,¢0m) : {t €
C:|t| > R} — C™ is called meromorphic at oo if p; are meromorphic at co.

Let F: C" — C™, n > 2, be a polynomial mapping and let S C C" be
an unbounded algebraic set.

PROPOSITION 1. If #(F|S)71(0) < +oo, then Lo.(F|S) € N(F|S)NQ.
Moreover, there exists a curve ¢ : {t € C: [t| > R} — C™, meromorphic at
00, such that p(t) € S, ||¢(t)|| — +oo fort — oo and

(1) IF o)l ~ [lo)]|~=F19 as t — occ.
Proof. Notice first that the set
{(z;w) € Sx S |[F(2)|> < [|[F(w)|I* V|2l # w]?*}

is semi-algebraic in C" x C" =2 R*". Then by the Tarski-Seidenberg theorem
(cf. [BR], Rem. 3.8) the set

X:={ze8:Ywes (|[FQ)|* < |F)]*V[2I* # [w]*)}
~{z€5:|F@] = min_[1F@w)])
is also semi-algebraic and obviously unbounded in C* =2R?". So, by Lemma 1
there exists a curve ¢ : (R,4+00) — X, meromorphic at +oo, such that
lle(t)|| — 400 as t — 4o00. Then there exists a positive integer p such that
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¢ is the sum of a Laurent series
(2) o) = apt? +ap_1tP T+ ..., a; €C") a, #0.

Since #(F|S)~1(0) < oo, there exists an integer g such that F o ¢ is the
sum of a Laurent series

(3) Fo@(t)=Bgt? + Bg—1t" " +..., B, €C™, B, #£0.

From (2) and (3) we have

(4) 1F o 3)l ~ 2()|1 as t — +oo,

where A := q/p. Let I':= {z€C": z = 3(t), t € (R,+00)}. Then from (4),
() IF)| ~ llzI*  as ||zl| = +o0, z€ T

Now, we shall show that Lo (F|S) = A. From (5) we have L (F|S) < A.
Since I' C X is unbounded, there exist positive constants A, B such that
| F(2)] > A|z||* for every z € S and ||z|| > B. Then A € N(F|S) and in
consequence Lo (F|S) > A. Summing up, Lo.(F|S) =X € N(F|S)NQ.

Now, we shall prove the second part of the assertion. Let ¢ be an exten-
sion of ¢ to the complex domain, that is,

(6) o(t) = apt?! + ap 1P

where ¢ € C and |t| > R. Obviously, series (6) is convergent and, as above,
a; € C", o # 0. Hence ¢ is a curve, meromorphic at oo, and clearly
llp(t)|| — 400 as t — co. Moreover, F o ¢ is an extension of F o ¢ to the
complex domain and

(7) Fogt) = Bt + Byt + ...,

where ¢t € C and |t| > R. Obviously, the series (7) is convergent and, as
above, ; € C™, B, # 0. From (6), (7) and the definition of X\ we get (1).
Since S is an algebraic subset of C™ and ¢(t) € S for t € (R,+00), also
o(t) e Sfort eC, |t| > R.

This ends the proof of the proposition.

Let FF : C" — C™, n > 2, be a polynomial mapping and S C C" an
algebraic unbounded set.
Directly from Proposition 1 we get

COROLLARY 1. L (F|S) > —oc if and only if #(F|S)~1(0) < +o0.
From Proposition 1 we also easily get
COROLLARY 2. The mapping F|S is proper if and only if Lo (F|S) > 0.

In fact, if Lo (F|S) > 0, then obviously F|S is a proper mapping. If,
in turn, Lo(F|S) < 0 then from the second part of Proposition 1 and
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Corollary 1 it follows that there exists a sequence z, € S such that ||z,| —
+oo and the sequence F'(z,) is bounded. Hence F'|S is not a proper mapping
in this case.

3. The main result. Now, we formulate the main result of the paper.

THEOREM 1. Let F' = (f1,..., fm) : C" — C™, n > 2, be a polynomial
mapping and S :={z € C": fi(2)-... - fm(z) =0}. If S # 0, then

The proof will be given in Section 4.
Directly from Theorem 1 and Corollary 2 we get

COROLLARY 3 ([J], Cor. 6.7). If F = (f1,..-,fm) : C* = C™, n > 2,
is a polynomial mapping and S := {z € C" : fi1(z) - ... fm(2) = 0} is not
empty, then F is proper if and only if F'|S is proper.

Another corollary from Theorem 1 is an effective formula for the Lo-
jasiewicz exponent, generalizing an earlier result of the authors ([CK], Main
Theorem).

Let us introduce some notions. If ¥ : {z € C: |z| > R} — CF is the sum
of a Laurent series of the form

lp(t):aptp—l—ap_ltp_l—l-..., o; G(Ck, ap;éO,

then we put deg¥ := p. Additionally, deg¥ := —oo if ¥ = 0. For an
algebraic curve in C2, the notions of its branches in a neighbourhood of oo
and parametrizations of these branches are defined in [CK].

Let now F = (f1,..., fm) : C* — C™ be a polynomial mapping and
S:={2€C?: fi(2) ...  fm(2) = 0}. Assume that S # () and S # C2.

THEOREM 2. If I, ..., Is are branches of the curve S in a neighbourhood

Y of infinity and @; : U; — Y, i =1,...,s, are their parametrizations, then
s degFo®;
9) Lool ) = min = fo G

Proof. Define \; := deg F o®;/ deg ®;. If \; = —oc for some i, then (9)
holds. So, assume that \; # —oo, ¢ =1,...,s. Then

|[F(2)] ~ |2

as |z| = +o0, z € I;.
Hence, taking into account the equality SNY =17 U...U s we get (9).
4. Proof of the main theorem. Let us begin with a lemma on polyno-

mial mappings from C into C™. Tt is a generalization of a result by A. Ploski
([P1], Lemma 3.1) and plays a key role in the proof of the main theorem.
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LEMMA 2. Let @ = (p1,...,¢m) : C— C™ be a polynomial mapping and
Oi=Q1 ... Om. If @ is a polynomial of positive degree and T is its set of
zeroes, then for every t € C,

> —deg® _ : .
[P(t)] = 2 min |$(7)|
Proof. Fixty € C. Let min,¢r [to—7| be attained for some 75 € T'. If ¢,

is a polynomial of positive degree and has the form ¢;(t) = ¢; H;-iigl% (t—Tij),
then we have

2|to — 7ij| = |to — 7ij| + [to — Tz > [to — 10| + |[to — Tij| > |70 — s

Hence
2deg ®i

@i(to)| = li(7o)l-
Obviously, this inequality is also true for y; being a constant. Since deg® >
deg ¢;, from the above we get

292 |0(t9)| > |&(70)| > min |&(r)],

which ends the proof.

In the sequel, z = (21,...,2,) € C", n > 2, and for every i € {1,...,n}
we put 2} := (21, ..., Zic1, Zit1y- - 2n)-

We state an easy lemma without proof.

LEMMA 3. Let f: C™ — C be a non-constant polynomial function and S
its set of zeroes. If deg f = deg,. f for everyi € {1,...,n}, then there evist
constants C > 1, D > 0 such that for everyi € {1,...,n},

|zi| < C|2i|  forz€ S and |2}] > D.

Proof of Theorem 1. Without loss of generality we may assume
that

(i) S+ C,
(i) #(FIS)~1(0) < .

In fact, if (i) does not hold then (8) is obvious, whereas if (ii) does not
hold then (8) follows from Corollary 1.
Obviously N(F) C N(F|S). So, to prove (8) it suffices to show

(10) N(F|S) c N(F).

Put f:= fi1-...: fm. From (i) we have deg f > 0. Since the sets N(F|S)
and N(F') are invariant with respect to linear changes of coordinates in C"
we may assume that

(11) degf=deg, f, i=1,...,n
This obviously implies
(12) deg fj =deg, fj, j=1,....m, i=1,...,n
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It follows from (ii) and Corollary 1 that N(F|S) is not empty. Take
v € N(F|S). Then there exist A > 0, B > 0 such that

(13) [F(Q) = Al¢]” for €S, [¢[>B.

By (11) and Lemma 3 there exist C' > 1, D > 0 such that for every i €
{1,...,n},

(14) |zi| < C|zi| for z €8, |zi| > D.

Put A; := 279 F Amin(1,C") and B; := max(B, D). Take arbitrary
z € C" such that |z| > B;. Clearly, |2| = |Z]| for some i. Define ¢;(t) :=
fi(Z1, oozt Zig, oo 20), @ 2= (@1, ..., m). Then from (12) we have
(15) deg F' = deg @.

Moreover, from (11) it follows that ¢ := ¢1 - ... ¢, is a polynomial of

positive degree. Then, from Lemma 2 (7 is defined as in Lemma 2) and
(15) we have

(16) [F(2)] = |@(2)] > 27 %% min |&(r)| = 2745 F P (Q)|

for sogneé' = (21,43 2i—1,70, Zit1s---+2n), To € T. So, QO'ES. Since |z| > By
and [C] > |z}| = |2|, from (16) and (13) we get

(17) |[F(2)] > 27 48 P A)Y,

whereas from (14),

(18) 5 < E < Clzl.

Considering two cases, when v > 0 and v < 0, from (17) and (18) we easily
get
[F(2)] = Ay
Since z is arbitrary we have v € N(F').
This ends the proof of the theorem.

z|”.
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