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On the local Cauchy problem for nonlinear hyperbolic

functional differential equations

by Tomasz Cz lapiński (Gdańsk)

Abstract. We consider the local initial value problem for the hyperbolic partial func-
tional differential equation of the first order

Dxz(x, y) = f(x, y, z(x, y), (Wz)(x, y),Dyz(x, y)) on E,(1)

z(x, y) = φ(x, y) on [−τ0, 0]× [−b, b],(2)

where E is the Haar pyramid and τ0 ∈ R+, b = (b1, . . . , bn) ∈ R
n

+. Using the method
of bicharacteristics and the method of successive approximations for a certain functional
integral system we prove, under suitable assumptions, a theorem on the local existence of
weak solutions of the problem (1), (2).

1. Introduction. For any interval I ⊂ R let L(I, R+) denote the class
of all Lebesgue integrable functions from I to R+ = [0,∞), and let C(X,Y )
denote the class of all continuous functions from X to Y , where X, Y are
any metric spaces.

Suppose that the function M = (M1, . . . ,Mn) ∈ C([0, a], Rn
+), a > 0, is

nondecreasing and M(0) = 0. Let E be the Haar pyramid

E = {(x, y) ∈ R
1+n : x ∈ [0, a], y = (y1, . . . , yn),

−b + M(x) ≤ y ≤ b − M(x)},

where b = (b1, . . . , bn) and bi > Mi(a) for i = 1, . . . , n. Here and subse-
quently the inequality between two vectors means that the same inequalities
hold between their corresponding components. Write E0 = [−τ0, 0]× [−b, b],
τ0 ∈ R+, and

Ex = {(t, s) = (t, s1, . . . , sn) ∈ E0 ∪ E : t ≤ x} for x ∈ [0, a],

E∗
x = {(t, s) = (t, s1, . . . , sn) ∈ E : t ≤ x} for x ∈ [0, a].

Put I[x, y] = {t : (t, y) ∈ E∗
x} where (x, y) ∈ [0, a] × [−b, b].
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Given functions

f : E × R
2+n → R, φ : E0 → R,

we consider the Cauchy problem

Dxz(x, y) = f(x, y, z(x, y), (Wz)(x, y),Dyz(x, y)) on E,(1)

z(x, y) = φ(x, y) on E0.(2)

where Dyz = (Dy1
z, . . . ,Dyn

z) and W : C(E0 ∪ E, R) → C(E, R) is some
operator satisfying the Volterra condition. This means that for all (x, y) ∈ E
and z, z ∈ C(E0 ∪ E, R) if z(t, s) = z(t, s) for (t, s) ∈ Ex then (Wz)(x, y) =
(Wz)(x, y).

We will consider weak solutions of problem (1), (2). More precisely we
call z : Ec → R, where 0 < c ≤ a, a solution of (1), (2) if

(i) z ∈ C(Ec, R) and the derivatives Dyz(x, y) = (Dy1
z(x, y), . . . ,

Dyn
z(x, y)) exist for (x, y) ∈ E∗

c ,

(ii) the function z(·, y) : I[c, y] → R is absolutely continuous for each
y ∈ (−b, b),

(iii) for each y ∈ (−b, b) system (1) is satisfied for almost all x ∈ I[c, y]
and condition (2) holds.

In the theory of functional differential equations the existence results
for initial value problems are obtained mainly by means of the method of
successive approximations or the fixed point method. We mention the re-
sults of Myshkis and Slopak [18] and of Szarski [21] as classical references.
From other results concerning classical (C1) solutions we recall here those
of Brandi and Ceppitelli [4, 5], Salvadori [20] and Jaruszewska-Walczak [15].

The existence result (global with respect to x) for generalized (in the
“almost everywhere” sense) solutions of equations with deviated argument
was obtained by Kamont and Zacharek [16] with the help of the difference
method. An extension of this result to functional equations was given in [13].
For other concepts of a solution in non-functional setting we refer to Olĕınik
[19] with a survey on the best results obtained for distributional solutions
of almost-linear problems and to Kiguradze [17] where a solution of a linear
system is defined on the basis of Picone’s canonical representation.

In this paper we use the method of bicharacteristics which was intro-
duced and developed in non-functional setting by Cinquini Cibrario [10–12]
for quasilinear as well as nonlinear problems. This method was adapted
by Cesari [8, 9] and Bassanini [1, 2] to quasilinear systems in the second
canonical form. Some extensions of Cesari’s results to functional differential
systems were given in [3, 14, 22]. The results obtained in the papers men-
tioned above by means of the method of bicharacteristics concern generalized
solutions which are global with respect to the variable y. The local initial
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problem for non-functional semilinear systems in the second canonical form
was investigated in [7]. Existence of generalized solutions to nonlinear func-
tional differential equations was proved by Brandi, Kamont and Salvadori
[6]. An existence result for such equations was also obtained by Brandi and
Ceppitelli [5] by means of the method of successive approximations.

In this paper we deal with the problem in which the functional depen-
dence of the differential equation is based on the use of an abstract operator
of the Volterra type. Differential equations with a deviated argument and
differential-integral equations are particular cases of (1). Note that since this
equation is local with respect to y the model of functional dependence intro-
duced in [6] is not suitable in our case. Analogously to [6] we use the method
of bicharacteristics together with the method of successive approximations
for a certain functional integral system.

2. Bicharacteristics. For y = (y1, . . . , yn) ∈ R
n we set ‖y‖ =

∑n

i=1 |yi|
and for a matrix A = [aij ]i,j=1,...,n we put ‖A‖ = max1≤i≤n

∑n

j=1 |aij |.

Let C0,1(Ex, R) be the set of all functions z ∈ C(Ex, R) of the variables
(t, s) = (t, s1, . . . , sn) such that the derivatives Dsz = (Ds1

z, . . . ,Dsn
z)

exist and are continuous on Ex. If ‖ · ‖(x;0) denotes the supremum norm
in the space C(Ex, R), where 0 < x ≤ a, then the norm in C0,1(Ex, R) is
defined by ‖z‖(x;1) = ‖z‖(x;0) + ‖Dsz‖(x;0). For any w ∈ C(Ex, Rm) let

‖w‖(x;L) = sup{‖z(t, s) − z(t, s)‖ · ‖s − s‖−1 : (t, s), (t, s) ∈ Ex}.

Putting ‖z‖(x;0.L) = ‖z‖(x;0)+‖z‖(x;L), ‖z‖(x;1.L) = ‖z‖(x;1)+‖Dsz‖(x;L), we
denote by C0,i+L(Ex, R), i = 0, 1, the space of all functions z ∈ C0,i(Ex, R)
such that ‖z‖(x;i.L) < ∞ with the norm ‖ · ‖(x;i.L). Analogously we define
the spaces C0,i(E∗

x, R), C0,i+L(E∗
x, R), for i = 0, 1.

Assumption H[φ]. (i) φ ∈ C(E0, R) and the derivatives Dyφ = (Dy1
φ,

. . . ,Dyn
φ) exist on E0;

(ii) there are constants Λ0, Λ1, Λ2 ∈ R+ such that

|φ(x, y)| ≤ Λ0, |Dyφ(x, y)| ≤ Λ1 on E0,

|Dyφ(x, y) − Dyφ(x, y)| ≤ Λ2|y − y| for (x, y), (x, y) ∈ E0.

We define two function spaces such that the solution z of (1) will belong
to the first space, while Dyz to the second.

Suppose that c ∈ (0, a], Q = (Q0, Q1, Q2) ∈ R
3
+, where Qi ≥ Λi for

i = 0, 1, 2 and µ = (µ1, µ2) ∈ L([0, c], R2
+). If φ satisfies Assumption H[φ]

then we denote by C0,1+L

c.φ (Q,µ) the set of all functions z ∈ C0,1(Ec, R) such
that

(i) z(x, y) = φ(x, y) on E0;
(ii) |z(x, y)| ≤ Q0 and ‖Dyz(x, y)‖ ≤ Q1 on E∗

c ;
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(iii) for (x, y), (x, y), (x, y) ∈ E∗
c we have

|z(x, y) − z(x, y)| ≤
∣∣∣

x̄\
x

µ1(τ) dτ
∣∣∣,

‖Dyz(x, y) − Dyz(x, y)‖ ≤
∣∣∣

x̄\
x

µ2(τ) dτ
∣∣∣ + Q2‖y − y‖.

Suppose that c ∈ (0, a], P = (P0, P1) ∈ R
2
+, where Pi ≥ Λi+1 for i =

0, 1, and ν ∈ L([0, c], R+). We denote by C0,L
c (P, ν) the set of all functions

u ∈ C(E∗
c , R) such that

(i) |u(x, y)| ≤ P0 on E∗
c ;

(ii) for (x, y), (x, y) ∈ E∗
c we have

|u(x, y) − u(x, y)| ≤
∣∣∣

x̄\
x

ν(τ) dτ
∣∣∣ + P1‖y − y‖.

Assumption H[W ]. W : C0,1+L(E ∪ E0, R) → C0,1+L(E, R) and there
are constants Ai, Bi, Lj ∈ R+, i = 0, 1, 2, j = 0, 1, such that for all z, z ∈
C0,1+L(E ∪ E0, R) and x ∈ (0, a] we have

‖Wz‖(x;0) ≤ A0 + B0‖z‖(x;0), ‖Dy(Wz)‖(x;0) ≤ A1 + B1‖Dyz‖(x;0),

‖Dy(Wz)‖(x;L) ≤ A2 + B2‖Dyz‖(x;L),

‖Wz − Wz‖(x;0) ≤ L0‖z − z‖(x;0),

‖Dy(Wz) − Dy(Wz)‖(x;0) ≤ L1‖Dyz − Dyz‖(x;0).

R e m a r k 2.1. From Assumption H[W ] it follows that W satisfies the
Volterra condition. Although W is defined on the space C0,1+L(E ∪E0, R),
we may also define Wz for z ∈ C(Ec, R), where c ∈ (0, a], by the formula

(Wz)(x, y) = (Wz̃)(x, y) for (x, y) ∈ E,

where z̃ is any extension of z into the set E∪E0. It follows from the Volterra
condition that the above definition does not depend on the extension of z.

Assumption H[Dqf ]. The function f : E × R2+n → R of the variables
(x, y, p, w, q) is such that

(i) the derivative Dqf = (Dq1
f, . . . ,Dqn

f) exists on E × R
2+n and for

every (y, p, w, q) ∈ [−b, b] × R
2+n we have Dqf(·, y, p, w, q) ∈ L(I[a, y], Rn);

(ii) there is γ = (γ1, . . . , γn) ∈ L([0, a], Rn
+) such that

|Dqi
f(x, y, p, w, q)| ≤ γi(x), 1 ≤ i ≤ n, on E × R

2+n;

(iii) there exists β ∈ L([0, a], R+) such that

‖Dqf(x, y, p, w, q) − Dqf(x, y, p, w, q)‖

≤ β(x)[‖y − y‖ + |p − p| + |w − w| + ‖q − q‖]

for (x, y), (x, y) ∈ Ea, p, p, w,w ∈ R, q, q ∈ R
n;
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(iv) for x ∈ [0, a] we have

M(x) ≥

x\
0

γ(τ) dτ.

We now give the notion of bicharacteristics for system (1). Suppose that

Assumption H[φ] holds and that z, z ∈ C0,1+L
c.φ (Q,µ), u, u ∈ C0,L

c (P, ν),
where c ∈ (0, a].

We consider the Cauchy problem

(3) η′(t) = −Dqf(t, η(t), z(t, η(t)), (Wz)(t, η(t)), u(t, η(t))), η(x) = y,

where (x, y) ∈ E∗
c . Let g[z, u](·, x, y) = (g1[z, u](·, x, y), . . . , gn[z, u](·, x, y))

denote the solution of problem (3).

Write

R1 = 1 + Q1 + A1 + B1Q1 + P1, Υ (t, x) = exp
{

R1

∣∣∣
x\
t

‖γ(τ)‖ dτ
∣∣∣
}

.

Lemma 2.2. Suppose that Assumptions H[φ], H[W ] and H[Dqf ] are

satisfied and that z, z ∈ C0,1+L
c.φ (Q,µ) and u, u ∈ C0,L

c (P, ν), where c ∈ (0, a].
Then there exist unique solutions g[z, u](·, x, y) and g[z, u](·, x, y), which are

defined on intervals [0, c(x, y)] and [0, c(x, y)] such that

(c(x, y), g[z, u](c(x, y), x, y)) ∈ ∂0E
∗
c ,

(c(x, y), g[z, u](c(x, y), x, y)) ∈ ∂0E
∗
c ,

where ∂0E
∗
c = {(x, y) ∈ E∗

c : |yi| = bi − Mi(x) for some i = 1, . . . , n}.
Moreover , we have the estimates

(4) ‖g[z, u](t, x, y) − g[z, u](t, x, y)‖ ≤ Υ (t, x)
{∣∣∣

x̄\
x

‖γ(τ)‖ dτ
∣∣∣ + ‖y − y‖

}
,

where (x, y), (x, y) ∈ E∗
c , t ∈ [0,min{c(x, y), c(x, y)}] and

(5) ‖g[z, u](t, x, y) − g[z, u](t, x, y)‖

≤ Υ (t, x)
∣∣∣

t\
x

β(τ){(1 + L0)‖z − z‖(τ ;0) + ‖u − u‖(τ ;0)} dτ
∣∣∣,

where (x, y) ∈ E∗
c and t ∈ [0,min{c(x, y), c(x, y)}].

P r o o f. The existence and uniqueness of solutions of (3) follows from
classical theorems since the right hand side of the system is Lipchitzian
with respect to the unknown function and it satisfies the Carathéodory
conditions.

If we transform (3) into an integral equation, then by Assumptions
H[Dqf ] and H[W ] we have



220 T. Cz lapiński

‖g[z, u](t, x, y) − g[z, u](t, x, y)‖

≤ ‖y − y‖ +
∣∣∣

x̄\
x

‖Dqf(P [z, u](τ, x, y))‖ dτ
∣∣∣

+
∣∣∣

t\
x

‖Dqf(P [z, u](τ, x, y)) − Dqf(P [z, u](τ, x, y))‖ dτ
∣∣∣

≤ ‖y − y‖ +
∣∣∣

x̄\
x

‖γ(τ)‖ dτ
∣∣∣ +

∣∣∣
t\
x

β(τ){‖g[z, u](τ, x, y) − g[z, u](τ, x, y)‖

+ |z(τ, g[z, u](τ, x, y)) − z(τ, g[z, u](τ, x, y))|

+ |(Wz)(τ, g[z, u](τ, x, y)) − (Wz)(τ, g[z, u](τ, x, y))|

+ ‖u(τ, g[z, u](τ, x, y)) − u(τ, g[z, u](τ, x, y))‖} dτ
∣∣∣

≤ |y − y| +
∣∣∣

x̄\
x

‖γ(τ)‖ dτ
∣∣∣ +

∣∣∣
t\
x

β(τ)R1‖g[z, u](τ, x, y) − g[z, u](τ, x, y)‖ dτ
∣∣∣

for (x, y), (x, y) ∈ E∗
c and t ∈ [0,min{c(x, y), c(x, y)}], where

(6) P [z, u](t, x, y) = (t, g[z, u](t, x, y), z(t, g[z, u](t, x, y)),

(Wz)(t, g[z, u](t, x, y)), u(t, g[z, u](t, x, y))).

Thus (4) follows from the Gronwall lemma.
Analogously we get by Assumptions H[W ] and H[Dqf ] the estimate

‖g[z, u](t, x, y) − g[z, u](t, x, y)‖

≤
∣∣∣

t\
x

β(τ){‖z − z‖(τ ;0) + L0‖z − z‖(τ ;0) + ‖u − u‖(τ ;0)} dτ
∣∣∣

+
∣∣∣

t\
x

β(τ)R1‖g[z, u](τ, x, y) − g[z, ū](τ, x, y)‖ dτ
∣∣∣

for (x, y) ∈ E∗
c and t ∈ [0,min{c(x, y), c(x, y)}]. Now, again using the Gron-

wall lemma we get (5), which completes the proof of Lemma 2.2.

3. Integral operators and their properties. Now we formulate fur-
ther assumptions on f .

Assumption H[f ]. The function f : E × R
2+n → R of the variables

(x, y, p, w, q) satisfies Assumption H[Dqf ] and

(i) there exists δ ∈ L([0, a], R+) such that |f(x, y, p, w, q)| ≤ δ(x) on
E × R

2+n;
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(ii) the derivatives Dyf = (Dy1
f, . . . ,Dyn

f), Dpf , Dwf exist on E ×
R

2+n and for every (y, p, w, q) ∈ [−b, b] × R
2+n we have Dyf(·, y, p, w, q) ∈

L(I[a, y], Rn), Dpf(·, y, p, w, q) ∈ L(I[a, y], R) and Dwf(·, y, p, w, q) ∈
L(I[a, y], R);

(iii) there is α ∈ L([0, a], R+) such that

‖Dyf(x, y, p, w, q)‖ ≤ α(x), |Dpf(x, y, p, w, q)| ≤ α(x),

|Dwf(x, y, p, w, q)| ≤ α(x),

on E × R
2+n;

(iv) for (x, y), (x, y) ∈ Ea, p, p, w,w ∈ R and q, q ∈ R
n, we have

‖Dyf(x, y, p, w, q) − Dyf(x, y, p, w, q)‖

≤ β(x)[‖y − y‖ + |p − p| + |w − w| + ‖q − q‖],

|Dpf(x, y, p, w, q) − Dpf(x, y, p, w, q)|

≤ β(x)[‖y − y‖ + |p − p| + |w − w| + ‖q − q‖],

|Dwf(x, y, p, w, q) − Dwf(x, y, p, w, q)|

≤ β(x)[‖y − y‖ + |p − p| + |w − w| + ‖q − q‖].

If Assumptions H[φ], H[W ] and H[f ] are satisfied then for given z ∈

C0,1+L
c.φ (Q,µ) and u ∈ C0,L

c (P, ν) we define the operators T [z, u] and Vi[z, u],
i = 1, . . . , n, by

T [z, u](x, y) = φ(0, g[z, u](0, x, y)) +

x\
0

[f(P [z, u](τ, x, y))

−

n∑

j=1

Dqj
f(P [z, u](τ, x, y))uj(τ, g[z, u](τ, x, y))] dτ,

Vi[z, u](x, y) = Dyi
φ(0, g[z, u](0, x, y)) +

x\
0

[Dyi
f(P [z, u](τ, x, y))

+ Dpf(P [z, u](τ, x, y))ui(τ, g[z, u](τ, x, y))

+ Dwf(P [z, u](τ, x, y))Dyi
(Wz)(τ, g[z, u](τ, x, y))] dτ

for (x, y) ∈ E∗
c , and

T [z, u](x, y) = φ(x, y) for (x, y) ∈ E0,

where g[z, u] is a solution of (3) and P [z, u] is given by (6). We will consider
the system of integral-functional equations

(7) z = T [z, u], u = V [z, u],

where V [z, u] = (V1[z, u], . . . , Vn[z, u]).

R e m a r k 3.1. The integral-functional system (7) arises in the following
way. We introduce an additional unknown function u = Dyz in (1). Then
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we consider the linearization of (1) with respect to u, which yields

(8) Dxz(x, y) = f(P ) +

n∑

j=1

Dqj
f(P )(Dyj

z(x, y) − uj(x, y)),

where P =(x, y, z(x, y), (Wz)(x, y), u(x, y)). Differentiating (1) with respect
to yi and substituting u = Dyz we get

(9) Dxui(x, y) = Dyi
f(P ) + Dpf(P )ui(x, y)

+ Dwf(P )Dyi
(Wz)(x, y) +

n∑

j=1

Dqj
f(P )Dyi

uj(x, y), i = 1, . . . , n.

Making use of (3) we have

d

dτ
z(τ, g[z, u](τ, x, y))

= Dxz(τ, g[z, u](τ, x, y)) −
n∑

j=1

Dqj
f(P [z, u](τ, x, y))Dyj

z(τ, g[z, u](τ, x, y)).

Substituting (8) in the above relation, integrating the result with respect
to t on [0, x] and taking into account that z = φ we get the first equation of
(7) on E∗

c . Repeating these considerations for (9) we get the second equation
of (7).

Under Assumptions H[φ], H[W ] and H[f ] we prove that the solution of
(6) exists by the method of successive approximations. We define a sequence
{z(m), u(m)} in the following way.

1. We put

(10) z(0)(x, y) =

{
φ(x, y) on E0,
φ(0, y) on E∗

c ,
u(0)(x, y) = Dyφ(0, y) on E∗

c ;

then z(0) ∈ C0,1+L
c.φ (Q,µ) and u(0) ∈ C0,L

c (P, ν).

2. If z(m) ∈ C0,1+L
c.φ (Q,µ) and u(m) ∈ C0,L

c (P, ν) are already defined then

u(m+1) is a solution of the equation

(11) u = V (m)[z(m), u],

and

(12) z(m+1) = T [z(m), u(m+1)],

where V (m)[z(m), u] = (V
(m)
1 [z(m), u], . . . , V

(m)
n [z(m), u]) is defined by
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(13) V
(m)
i [z(m), u](x, y)

= Dyi
φ(0, g[z(m), u](0, x, y)) +

x\
0

[Dyi
f(P [z(m), u](τ, x, y))

+ Dpf(P [z(m), u](τ, x, y))u
(m)
i (τ, g[z(m), u](τ, x, y))

+ Dwf(P [z(m), u](τ, x, y))Dyi
(Wz(m))(τ, g[z(m) , u](τ, x, y))] dτ

for (x, y) ∈ E∗
c .

R e m a r k 3.2. Since V [z(m), ·] and V (m)[z(m), ·] are not the same op-

erator we explain how system (13) is obtained. If z(m) ∈ C0,1+L
c.φ (Q,µ) and

u(m) ∈ C0,L
c (P, ν) are known functions then replacing z with z(m) in (9) we

get

Dxui(x, y) = Dyi
f(P (m)) + Dpf(P (m))Dyi

z(m)(x, y)

+ Dwf(P (m))Dyi
(Wz(m))(x, y)

+

n∑

j=1

Dqj
f(P (m))Dyi

uj(x, y), i = 1, . . . , n,

where P (m) = (x, y, z(m)(x, y), (Wz(m))(x, y), u(x, y)). If we assume that
Dyz(m) = u(m) (see Theorem 5.1), then by integrating the above system
along the bicharacteristic g[z(m), u](·, x, y) on the interval [0, x] we get (13).

Write

Γ0(x) = Λ1 +

x\
0

α(τ) dτ,

Γ̃0(x) = Λ1Υ (0, x) + P0 +

x\
0

{α(τ)S1 + β(τ)P0R1 + ‖γ(τ)‖2P1}Υ (τ, x) dτ,

Γ1(x) = Λ2Υ (0, x) +

x\
0

{β(τ)R1S1 + α(τ)S2}Υ (τ, x) dτ,

G(x) = Λ2Υ (0, x)β(x) + [β(x)R1S1 + α(x)S2]Υ (0, x)

x\
0

β(τ) dτ + β(x)S1,

where

S1 = 1 + P0 + A1 + B1Q1, S2 = P1 + A2 + B2Q2.

With the above notation we define

µ1(t) = δ(t) + Γ̃0(c)‖γ(t)‖, µ2(t) = ν(t) = Γ1(c)‖γ(t)‖ + S1α(t).

Assumption H[Q,P ]. (i) Qi > Λi for i = 0, 1, 2, and Pi = Qi+1 for
i = 0, 1;
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(ii) the constant c ∈ (0, a] is sufficiently small in order that

Λ0 +

c\
0

[δ(τ) + ‖γ(τ)‖P0] dτ ≤ Q0,

c\
0

G(τ) dτ < 1,

Γ0(c) ≤ Q1 = P0, Γ1(c) ≤ Q2 = P1.

4. Existence of successive approximations. The problem of the
existence of the sequence {z(m), u(m)} is the main difficulty in our method.
We prove that this sequence exists provided c, 0 < c ≤ a, is sufficiently
small.

Theorem 4.1. If Assumptions H[φ], H[W ], H[f ] and H[Q,P ] are sat-

isfied then for any m ∈ N,

(Im) z(m), u(m) are defined on Ec, E∗
c , respectively , and we have z(m) ∈

C0,1+L
c.φ (Q,µ), u(m) ∈ C0,L

c (P, ν);

(IIm) Dyz(m)(x, y) = u(m)(x, y) on E∗
c .

P r o o f. We prove (Im) and (IIm) by induction. It follows from (10) that
(I0) and (II0) are satisfied. Suppose that conditions (Im) and (IIm) hold for
some m ∈ N. We first prove that there exists a solution u(m+1) : E∗

c → R
n

of (11) and that u(m+1) ∈ C0,L
c (P, ν).

We claim that given z(m) ∈ C0,1+L
c.φ (Q,µ) the operator V [z(m), ·] maps

C0,L
c (P, ν) into itself. For simplicity of notation we ignore the dependence

of g and P on z(m) and u. It follows from Assumptions H[W ], H[f ] and (4)
that given u ∈ C0,L

c (P, ν) we have for all (x, y), (x, y) ∈ E∗
c the estimates

|V (m)[z(m), u](x, y)| ≤ Λ1 +

x\
0

α(τ)S1 dτ

and

|V (m)[z(m), u](x, y) − V (m)[z(m), u](x, y)|

≤ Λ2Υ (0, x)
{∣∣∣

x̄\
x

‖γ(τ)‖ dτ
∣∣∣ + ‖y − y‖

}
+

∣∣∣
x̄\
x

α(τ)S1 dτ
∣∣∣

+
{∣∣∣

x̄\
x

‖γ(τ)‖ dτ
∣∣∣ + ‖y − y‖

}
·

x\
0

{β(τ)R1S1 + α(τ)S2}Υ (τ, x) dτ.

Hence by Assumption H[Q,P ] we get

|V (m)[z(m), u](x, y)| ≤ P0,

|V (m)[z(m), u](x, y) − V (m)[z(m), u](x, y)| ≤
{∣∣∣

x̄\
x

ν(τ) dτ
∣∣∣ + P1|y − y|

}
(14)

for (x, y), (x, y) ∈ E∗
c . Thus V (m)[z(m), ·] maps C0,L

c (P, ν) into itself.
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If u, u ∈ C0,L
c (P, ν) then analogously by Assumptions H[f ], H[W ] and

(5), we get

‖V (m)[z(m), u] − V (m)[z(m), u]‖(c;0) ≤

c\
0

G(τ)‖u − u‖(τ ;0) dτ.

Thus Assumption H[Q,P ] yields that V (m)[z(m), ·] is a contraction for the
norm ‖ · ‖(c;0). By the Banach fixed point theorem there exists a unique

solution u ∈ C0,L
c (P, ν) of (11), which is u(m+1).

Our next goal is to prove that z(m+1) given by (12) satisfies (IIm+1). For
x ∈ [0, c] and y, y ∈ Sx, where Sx = [−b + M(x), b − M(x)], put

∆(x, y, y) = z(m+1)(x, y) − z(m+1)(x, y) − u(m+1)(x, y)(y − y).

By the Hadamard mean value theorem we have

∆(x, y, y)

= φ(0, g(0, x, y)) − φ(0, g(0, x, y)) − Dyφ(0, g(0, x, y))(y − y)

+

x\
0

1\
0

Dyf(Q(s, τ))[g(τ, x, y) − g(τ, x, y)] ds dτ

+

x\
0

1\
0

Dpf(Q(s, τ))[z(m)(τ, g(τ, x, y)) − z(m)(τ, g(τ, x, y))] ds dτ

+

x\
0

1\
0

Dwf(Q(s, τ))[(Wz(m))(τ, g(τ, x, y)) − (Wz(m))(τ, g(τ, x, y))] ds dτ

+

x\
0

1\
0

Dqf(Q(s, τ))[u(m+1)(τ, g(τ, x, y)) − u(m+1)(τ, g(τ, x, y))] ds dτ

−

x\
0

{Dqf(P (τ, x, y))u(m+1)(τ, g(τ, x, y))

− Dqf(P (τ, x, y))u(m+1)(τ, g(τ, x, y))} dτ

−

x\
0

{Dyf(P (τ, x, y)) + Dpf(P (τ, x, y))u(m)(τ, g(τ, x, y))

+ Dwf(P (τ, x, y))Dy(Wz(m))(τ, g(τ, x, y))} dτ (y − y),

where Q(s, τ) = sP (τ, x, y) + (1 − s)P (τ, x, y). Define

∆0(x, y, y) = φ(0, g(0, x, y)) − φ(0, g(0, x, y))

− Dyφ(0, g(0, x, y))[g(0, x, y) − g(0, x, y)],
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∆1(x, y, y) =

x\
0

1\
0

[Dyf(Q(s, τ)) − Dyf(P (τ, x, y))]

· [g(τ, x, y) − g(τ, x, y)] ds dτ,

∆2(x, y, y) =

x\
0

1\
0

[Dpf(Q(s, τ)) − Dpf(P (τ, x, y))]

· [z(m)(τ, g(τ, x, y)) − z(m)(τ, g(τ, x, y))] ds dτ,

∆3(x, y, y) =

x\
0

1\
0

[Dwf(Q(s, τ)) − Dwf(P (τ, x, y))]

· [(Wz(m))(τ, g(τ, x, y)) − (Wz(m))(τ, g(τ, x, y))] ds dτ,

∆4(x, y, y) =

x\
0

1\
0

[Dqf(Q(s, τ)) − Dqf(P (τ, x, y))]

· [u(m+1)(τ, g(τ, x, y)) − u(m+1)(τ, g(τ, x, y))] ds dτ,

∆5(x, y, y) =

x\
0

Dpf(P (τ, x, y))[z(m)(τ, g(τ, x, y)) − z(m)(τ, g(τ, x, y))

− u(m)(τ, g(τ, x, y))[g(τ, x, y) − g(τ, x, y)]] dτ,

∆6(x, y, y) =

x\
0

Dwf(P (τ, x, y))[(Wz(m))(τ, g(τ, x, y))

− (Wz(m))(τ, g(τ, x, y))

− Dy(Wz(m))(τ, g(τ, x, y))[g(τ, x, y) − g(τ, x, y)]] dτ,

and

∆̃0(x, y, y) = Dyφ(0, g(0, x, y))[g(0, x, y) − g(0, x, y) − (y − y)],

∆̃1(x, y, y) =

x\
0

Dyf(P (τ, x, y))[g(τ, x, y) − g(τ, x, y) − (y − y)] dτ

+

x\
0

Dpf(P (τ, x, y))u(m)(τ, g(τ, x, y))

· [g(τ, x, y) − g(τ, x, y) − (y − y)] dτ

+

x\
0

Dwf(P (τ, x, y))Dy(Wz(m))(τ, g(τ, x, y))

· [g(τ, x, y) − g(τ, x, y) − (y − y)] dτ,

∆̃2(x, y, y) = −

x\
0

[Dqf(P (τ, x, y)) − Dqf(P (τ, x, y))]u(m+1)(τ, g(τ, x, y)) dτ.
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With the above definitions we have

(15) ∆(x, y, y) =
6∑

i=0

∆i(x, y, y) +
2∑

i=0

∆̃i(x, y, y).

Since g(·, x, y) is a solution of (3) we see that

g(τ, x, y) − g(τ, x, y) − (y − y) =

x\
τ

[Dqf(P (ξ, x, y)) − Dqf(P (ξ, x, y))] dξ.

Substituting the above relation in ∆̃1 and in ∆̃0 with τ = 0, and changing
the order of integrals where necessary, we get

2∑

i=0

∆̃i(x, y, y)

=

x\
0

[Dqf(P (τ, x, y)) − Dqf(P (τ, x, y))]
[
Dyφ(0, g(0, x, y))

+

τ\
0

Dyf(P (ξ, x, y)) dξ +

τ\
0

Dpf(P (ξ, x, y))u(m)(ξ, g(ξ, x, y)) dξ

+

τ\
0

Dwf(P (ξ, x, y))Dy(Wz(m))(ξ, g(ξ, x, y)) dξ

− u(m+1)(τ, g(τ, x, y))
]

dτ

=

x\
0

[Dqf(P (τ, x, y)) − Dqf(P (τ, x, y))]

· [V (m)[z(m), u(m+1)](τ, g(τ, x, y)) − u(m+1)(τ, g(τ, x, y))] dτ = 0,

from which and from (15) we get ∆(x, y, y) =
∑6

i=0 ∆i(x, y, y). In the above
transformations we have used the following group property:

g(ξ, τ, g(τ, x, y)) = g(ξ, x, y) for (x, y) ∈ E∗
c , τ, ξ ∈ [0, c(x, y)].

Assumptions H[f ], H[W ], (4) and the existence of the derivatives Dyφ,
Dyz(m) = u(m) and Dy(Wz(m)) yield that for x ∈ [0, c], i = 0, 5, 6, we have

(16)
1

|y − y|
∆i(x, y, y) → 0 as |y − y| → 0.

From Assumptions H[f ], H[W ] and (4) we get the existence of some con-
stants Ci, i = 1, 2, 3, 4, such that

|∆i(x, y, y)| ≤ Ci|y − y|2, x ∈ [0, c], y, y ∈ Sx, i = 1, 2, 3, 4.
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This means that (16) also holds for i = 1, 2, 3, 4, which completes the proof
of (IIm+1).

Finally, we prove that z(m+1) defined by (12) belongs to the class

C0,1+L

c.φ (Q,µ). Since Dyz(m+1) = u(m+1) it follows from (14) and from As-
sumption H[Q,P ] that

|Dyz(m+1)(x, y)| ≤ Q1,

|Dyz(m+1)(x, y) − Dyz(m+1)(x, y)| ≤
∣∣∣

x̄\
x

µ2(τ) dτ
∣∣∣ + Q2|y − y|

for (x, y), (x, y) ∈ E∗
c . By Assumptions H[f ], H[W ] and H[Q,P ] we easily

get

|z(m+1)(x, y)| ≤ Q0, |z(m+1)(x, y) − z(m+1)(x, y)| ≤
∣∣∣

x̄\
x

µ1(τ) dτ
∣∣∣

for (x, y), (x, y) ∈ E∗
c . This together with the relation z(m+1) = φ on E0

gives z(m+1) ∈ C0,1+L

c.φ (Q,µ), which completes the proof of (Im+1). Thus
Theorem 4.1 follows by induction.

5. The existence theorem. Write

H(t) = (1 + L0)H
∗(t) + H∗(t) exp

{ t\
0

G(ξ) dξ
} t\

0

G∗(ξ) dξ,

where

G∗(t) = max{(1 + L0)G(t), (1 + L1)α(t)},

H∗(t) = Λ1Υ (0, t)β(t) + [β(t)R1P0 + α(t)S1 + ‖γ(t)‖2P1]Υ (0, t)

t\
0

β(ξ) dξ

+ α(t) + β(t)P0 + ‖γ(t)‖.

Theorem 5.1. If Assumptions H[φ], H[f ], H[W ] and H[Q,P ] are satis-

fied then the sequences {z(m)}, {u(m)} are uniformly convergent on Ec, E∗
c ,

respectively.

P r o o f. For any t ∈ [0, c] and m ∈ N we put

Z(m)(t) = sup{|z(m)(x, y) − z(m−1)(x, y)| : (x, y) ∈ Et},

U (m)(t) = sup{|u(m)(x, y) − u(m−1)(x, y)| : (x, y) ∈ E∗
t }.

Using the same technique as in the proof of Theorem 4.1 we get by Assump-



Hyperbolic functional differential equations 229

tions H[f ], H[W ] and (5), for any x ∈ [0, c] and m ∈ N, the estimate

U (m+1)(x) ≤

x\
0

G(τ)U (m+1)(τ) dτ

+

x\
0

[G(τ)(1 + L0)Z
(m)(τ) + α(τ)(1 + L1)U

(m)(τ)] dτ.

Making use of the Gronwall lemma we have

(17) U (m+1)(x) ≤ exp
{ x\

0

G(τ) dτ
} x\

0

G∗(τ)[Z(m)(τ) + U (m)(τ)] dτ.

By Assumptions H[f ], H[W ], (7) and (17) we get the estimate

Z(m+1)(x) ≤

x\
0

H∗(τ)[(1 + L0)Z
(m)(τ) + U (m+1)(τ)] dτ(18)

≤

x\
0

H(τ)[Z(m)(τ) + U (m)(τ)] dτ, x ∈ [0, c].

Thus if we take

Mc = exp
{ c\

0

G(ξ)dξ
} c\

0

G∗(ξ) dξ + H(c),

then using (17), (18) for any x ∈ [0, c] we have

Z(m+1)(x) + U (m+1)(x) ≤ Mc

x\
0

[Z(m)(τ) + U (m)(τ)] dτ.

Now, by induction it is easy to get

Z(m)(x) + U (m)(x) ≤
Mm−1

c xm−1

(m − 1)!
[Z(1)(c) + U (1)(c)], x ∈ [0, c],

and consequently

(19)
m∑

i=k

[Z(i)(c) + U (i)(c)] ≤ [Z(1)(c) + U (1)(c)]
m−1∑

i=k−1

M i
cc

i

i!
.

Since the series
∑∞

i=1 M i
cc

i/i! is convergent it follows from (19) that the
sequences {z(m)} and {u(m)} satisfy the uniform Cauchy condition on Ec,
E∗

c , respectively, which means that they are uniformly convergent. This
completes the proof of Theorem 5.1.

Theorem 5.2. If Assumptions H[φ], H[f ], H[W ] and H[Q,P ] are sat-

isfied then there is a solution of the problem (1), (2).
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P r o o f. It follows from Theorem 5.1 that there exist functions z, u such
that {z(m)}, {u(m)} are uniformly convergent to z, u, respectively. Further-
more, Dyz exists on E∗

c and Dyz = u. We prove that z is a solution of
(1).

From (9) it follows that for any (x, y) ∈ E∗
c , we have

z(x, y) = φ(0, g(0, x, y)) +

x\
0

[
f(P [z,Dyz](τ, x, y))(20)

−

n∑

j=1

Dqj
f(P [z,Dyz](τ, x, y))Dyj

z(τ, x, y)
]
dτ,

where g = g[z,Dyz].

For a fixed x we define the transformation y 7→ g(0, x, y) = ξ. Then by
the group property g(t, x, y) = g(t, 0, ξ) and by (20) we get

z(x, g(x, 0, ξ)) = φ(0, ξ)

+

x\
0

[
f(τ, g(τ, 0, ξ), z(τ, g(τ, 0, ξ)), (Wz)(τ, g(τ, 0, ξ)),Dyz(τ, g(τ, 0, ξ)))

−

n∑

j=1

Dqj
f(τ, g(τ, 0, ξ), z(τ, g(τ, 0, ξ)), (Wz)(τ, g(τ, 0, ξ)),Dyz(τ, g(τ, 0, ξ)))

Dyj
z(τ, g(τ, 0, ξ))

]
dτ.

Differentiating the above relation with respect to x and making use of the
inverse transformation ξ 7→ g(x, 0, ξ) = y, we see that z satisfies (1) for
almost all x with fixed y on E∗

c . Since obviously z satisfies (2), the proof of
Theorem 5.2 is complete.

R e m a r k 5.3. Note that Assumptions H[φ], H[W ] and H[f ] in Theo-
rem 5.2 ensure the local existence of a solution of (1), (2) while Assumption
H[Q,P ] gives only the estimate of the domain on which this solution exists.

R e m a r k 5.4. If in Theorem 5.2 we assume that f and its derivatives
Dyf , Dpf , Dwf , Dqf are continuous then we get a theorem on the existence
of classical solutions of the problem (1), (2), which extends classical results
for differential equations (cf. [23]) to functional differential equations.

R e m a r k 5.5. Theorem 5.2 will still be valid if we consider the following
Cauchy problem for weak coupled functional differential systems:

Dxzi(x, y) = fi(x, y, z(x, y), (Wz)(x, y),Dyzi(x, y)) on E,

zi(x, y) = φi(x, y) on E0, i = 1, . . . ,m,

where f = (f1, . . . , fm) : E×R
2m+n → R

m and φ = (φ1, . . . , φm) : E0 → R
m
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are given functions and W : C(E0 ∪ E, Rm) → C(E, Rm) is a Volterra
operator.

We give two examples of equations that can be derived from (1) by
specializing the operator W .

Example 1. Suppose that α : [0, a] → R and β : E → R
n are given

functions such that (α(t), β(t, s)) ∈ Ex for (t, s) ∈ Ex and x ∈ (0, a]. If for
any z ∈ C0,1+L(E ∪ E0, R) we put

(Wz)(x, y) = z(α(x), β(x, y)), (x, y) ∈ E,

then equation (1) reduces to the equation with deviated argument

Dxz(x, y) = f(x, y, z(x, y), z(α(x), β(x, y)),Dy z(x, y)).

Example 2. For any z ∈ C0,1+L(E ∪ E0, R) we define

(Wz)(x, y) =
\

Ex

z(t, s) dt ds, (x, y) ∈ E.

Now equation (1) becomes the integral differential equation

Dxz(x, y) = f
(
x, y, z(x, y),

\
Ex

z(t, s) dt ds,Dyz(x, y)
)
.
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