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Smoothing a polyhedral convex function via cumulant

transformation and homogenization

by Alberto Seeger (Avignon)

Abstract. Given a polyhedral convex function g : R
n → R ∪ {+∞}, it is always

possible to construct a family {gt}t>0 which converges pointwise to g and such that each
gt : R

n → R is convex and infinitely often differentiable. The construction of such a family
{gt}t>0 involves the concept of cumulant transformation and a standard homogenization
procedure.

1. Introduction. A broad class of nonsmooth optimization problems
can be written in the composite form

(P ) Minimize {g(M(ξ)) : ξ ∈ Ξ},

where M is a mapping from some normed space Ξ to the Euclidean space R
n,

and g : R
n → R ∪ {+∞} is a polyhedral convex function, i.e.

epi g := {(x, α) ∈ R
n × R : g(x) ≤ α}

is a polyhedral convex set [11, p. 172]. As a general rule M is a smooth
mapping (say, of class Ck, for some k ≥ 1), but the composite function
g ◦ M is nonsmooth. This fact leads us to consider an approximate version

(P )t Minimize {gt(M(ξ)) : ξ ∈ Ξ}

for the original problem (P ). A fundamental question which is addressed in
this note is thus:

(1.1)











How to construct a family {gt}t>0 of

smooth convex functions gt : R
n → R such that

lim
t→∞

gt(x) = g(x) for all x ∈ R
n ?

The above mentioned question has an interest which goes far beyond the
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context of the composite optimization problem (P ). This note will concen-
trate on this question and will discuss some related issues.

As a first attempt to answer (1.1), one may consider the classical Moreau–
Yosida approximation technique:

gt(x) = inf
u∈Rn

{

g(x − u) +
t

2
‖u‖2

}

.

The disadvantage of such an approach is twofold: first of all, the evaluation of
gt(x) is not straightforward since it requires solving a minimization problem.
Secondly, the convex function gt is of class C1, but its degree of smoothness
is not higher than one (unless one imposes additional assumptions on g; cf.
Lemaréchal and Sagastizabal [7]). The same remark applies to the rolling
ball approximation technique [12]:

gt(x) = inf
‖u‖≤t−1

{g(x − u) − [t−2 − ‖u‖2]1/2}.

The approach suggested in this note is completely different: it uses ho-
mogenization technique applied to the Laplace transform and to the cumu-
lant transform of some discrete measures associated with the function g.

2. Smoothing a polyhedral supporting function. To start with,
consider the case in which g : R

n → R∪{+∞} is the supporting function of
a nonempty polyhedral convex set Ω ⊂ R

n, i.e.

(2.1) g(x) = Ψ∗
Ω(x) := sup

w∈Ω
〈w, x〉.

One may think of g as the recession function ([11, p. 66])

(2.2) g(x) = [rec f ](x) := lim
t→∞

f(tx)/t

of some convex lower-semicontinuous function f : R
n → R ∪ {+∞} that is

finite at 0 ∈ R
n. As observed by Ben-Tal and Teboulle [2], the usefulness of

the approximation scheme (2.2) lies in the fact that frequently f is a smooth
function, in which case the convex function

R
n ∋ x 7→ gt(x) := f(tx)/t

is also smooth. Ben-Tal and Teboulle [2] provided the examples

(2.3) g(x) = max{x1, . . . , xn}, f(x) = log
[

n
∑

j=1

exj

]

and

(2.4) g(x) =
n

∑

j=1

|xj |, f(x) =
n

∑

j=1

[1 + x2
j ]

1/2
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to justify their observation, but they did not give a method for finding a
smooth function f in other cases. Examples (2.3) and (2.4) were inspired by
particular approximation techniques suggested by Bertsekas [3] and El-Attar
et al. [5], respectively.

The aim of this section is to provide the reader with a simple and elegant
method for constructing a smooth function f in the case in which g is an
arbitrary polyhedral supporting function. Our approximation mechanism
relies on the following basic assumption:

Ω ⊂ R
n is a polyhedral convex set which admits at least one extreme(2.5)

point.

As is well known, such a set Ω can be represented in the form of a Minkowski
sum:

(2.6) Ω = co[extr Ω] + rec Ω.

Here

(2.7) extr Ω = {w1, . . . , wk}

denotes the set of extreme points of Ω, and rec Ω refers to the recession
cone of Ω ([11, p. 61]). Since Ω is a polyhedral convex set, recΩ can be
represented in terms of a set {a1, . . . , am} ⊂ R

n of generating directions:

(2.8) recΩ =
{

m
∑

i=1

λia
i : λi ≥ 0 ∀i = 1, . . . ,m

}

.

Without loss of generality one may suppose that the set {a1, . . . , am} is
minimal in the sense that none of these directions can be expressed as a
nonnegative linear combination of the others. It is not difficult to show that
g = Ψ∗

Ω takes the form

(2.9) g(x) =

{

max{〈w1, x〉, . . . , 〈wk, x〉} if x ∈ K,
+∞ otherwise,

where

K = {v ∈ R
n : 〈ai, v〉 ≤ 0 ∀i = 1, . . . ,m}.

Now we are ready to state:

Theorem 2.1. Let Ω be as in (2.5) and let g be the supporting function

of Ω. Then there exists a convex function f : R
n→R of class C∞ such that

(2.10) lim
t→∞

f(tx)/t = g(x) for all x ∈ R
n.

An example of such a function is given by

(2.11) f(x) = log
[ \

Rn

e〈w,x〉 dµ(w)
]

+
\

Rn

e〈w,x〉 dν(w),
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where µ is any discrete measure concentrated on extr Ω, and ν is any discrete

measure concentrated on a minimal set of generating directions for recΩ.

If the information (2.7)–(2.8) is available, then one has the more explicit

example

(2.12) f(x) = log
[

k
∑

j=1

e〈w
j ,x〉

]

+
m

∑

i=1

e〈a
i,x〉.

P r o o f. The function f in (2.11) involves the Laplace transform

R
n ∋ x 7→ Lν(x) :=

\
Rn

e〈w,x〉 dν(w)

of the measure ν, and the cumulant transform

R
n ∋ x 7→ Kµ(x) := log Lµ(x)

of the measure µ. Since µ and ν are discrete, both transforms are finite-
valued. By invoking some classical results (cf. [1, Theorem 4.1], [6, Theo-
rem 7.5.1]), one can show that Lν and Kµ are C∞ convex functions. It just
remains to prove the convergence property (2.10). That µ is concentrated
on extr Ω means simply

µ({w}) > 0 iff w ∈ extr Ω.

Denote by µj = µ({wj}) the mass of the extreme point wj . Then

Kµ(x) = log
[

k
∑

j=1

µje
〈wj ,x〉

]

and

lim
t→∞

Kµ(tx)/t = max{〈w1, x〉, . . . , 〈wk, x〉},

regardless of the values of the µj ’s. Similarly, denote by νi = ν({ai}) the
mass of the generating direction ai. In this case

Lν(x) =
m

∑

i=1

νie
〈ai,x〉

and

lim
t→∞

Lν(tx)/t =

{

0 if 〈ai, x〉 ≤ 0 ∀i = 1, . . . ,m,
+∞ otherwise,

regardless of the values of the νi’s. This completes the proof of (2.10). Finally,
observe that (2.12) corresponds to the particular case in which the masses
of µ and ν are uniformly distributed.

R e m a r k 2.1. Instead of (2.10), one can write the equality

(2.13) lim
t→∞

f(tx) − f(0)

t
= g(x) for all x ∈ R

n.
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The advantage of the approximation scheme (2.13) over (2.10) is that the
quotient [f(tx) − f(0)]/t converges monotonically upward to g(x) as t goes
to ∞. Of course, one can always normalize f so that f(0)=0. It suffices to
subtract the constant ν(Rn) + log µ(Rn) from the expression appearing on
the right-hand side of (2.11).

R e m a r k 2.2. The measure µ used in (2.11) can be concentrated on a set
which is larger than extr Ω, but it cannot assign a positive mass to a point
which is outside the polytope co(extr Ω). Similarly, ν can be concentrated
on a set which is larger than a minimal set of generating directions for rec Ω.
However, ν should not assign a positive mass to a direction which is not in
rec Ω.

R e m a r k 2.3. The function f given by (2.11) can also be used to ap-
proximate

R
n ∋ x 7→ inf

w∈Ω
〈w, x〉.

Indeed,

lim
t→−∞

f(tx)/t = lim
t→∞

f(−tx)/(−t)

= − lim
t→∞

f(t(−x))/t = − sup
w∈Ω

〈w,−x〉 = inf
w∈Ω

〈w, x〉.

Of course, for t < 0, the function x 7→ f(tx)/t is concave.

Theorem 2.1 can be illustrated with an example.

Example 2.1. Consider the function g : R
8 → R given by

g(x) = max{x1, x2, x3} + |x4| + |x5| + max{0, x6} + max{|x7|, |x8|}.

The first term corresponds to the supporting function of the set {u ∈
R

3
+ : u1 + u2 + u3 = 1}, whose extreme points are the canonical vectors

(1, 0, 0), (0, 1, 0), and (0, 0, 1). Thus, max{x1, x2, x3} can be approximated
with the help of log(ex1 + ex2 + ex3). The absolute value function | · | cor-
responds to the supporting function of the interval [−1, 1], whose extreme
points are −1 and 1. Thus, |x4| and |x5| can be approximated by using
log(cosh x4) and log(cosh x5), respectively. Similarly, max{0, ·} is the sup-
porting function of the interval [0, 1], and therefore it can be approximated
by using log(1+e(·)). The last term of g corresponds to the supporting func-
tion of a set whose extreme points are (1, 0), (−1, 0), (0, 1), and (0,−1).Thus,
max{|x7|, |x8|} can be approximated with the help of log(cosh x7 +cosh x8).
Summarizing,

f(x) = log(ex1 + ex2 + ex3) + log(cosh x4) + log(cosh x5)

+ log(1 + ex6) + log(cosh x7 + cosh x8).
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Of course, g can be regarded as the supporting function of some polytope
in R

8. In this case, however, the identification of the extreme points is a
more cumbersome task.

3. Smoothing a polyhedral convex function. The approximation
technique developed in Section 2 can be extended to the case in which
g : R

n → R ∪ {+∞} is an arbitrary polyhedral convex function. It suffices
to use the representation

(3.1) g(x) = Ψ∗
epi g∗(x,−1) = sup

(w,β)∈epi g∗

{〈w, x〉 − β},

where g∗ : R
n → R∪{+∞} stands for the Legendre–Fenchel conjugate of g.

Since g is a polyhedral convex function, it follows that the epigraph of g∗ is
a polyhedral convex set ([11, Theorem 19.2]).

Theorem 3.1. Let g : R
n → R ∪ {+∞} be a polyhedral convex function

such that epi g∗ has at least one extreme point. Then there exists a convex

function F : R
n × R → R which is of class C∞ and such that

(3.2) lim
t→∞

F(tx,−t)/t = g(x) for all x ∈ R
n.

An example of such a function is

(3.3) F(x, α) = log
[ \

Rn×R

e〈w,x〉+βα dµ(w, β)
]

+
\

Rn×R

e〈w,x〉+βα dν(w, β),

where µ is any discrete measure concentrated on extr(epi g∗), and ν is any

discrete measure concentrated on a minimal set of generating directions for

rec(epi g∗).

P r o o f. Observe that the function F is given simply by

F(x, α) = Kµ(x, α) + Lν(x, α).

According to Theorem 2.1, F : R
n × R → R is a convex function of class

C∞ such that

lim
t→∞

F(t(x, α))/t = Ψ∗
epi g∗(x, α).

This and the representation formula (3.1) yield the convergence result
(3.2).

It should be clear that, for each t > 0, the function

R
n ∋ x 7→ gt(x) = F(tx,−t)/t

is convex and of class C∞. Also, gt(x) converges toward g(x) as t goes
to ∞. Thus, Theorem 3.1 answers completely the question stated in (1.1).
Of course, if one seeks a more explicit formula for the function F , then
more information is needed regarding the structure of g, namely one needs
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to know the extreme points {(w1, β1), . . . , (wk, βk)} of epi g∗ and a mini-
mal set {(a1, γ1), . . . , (am, γm)} of generating directions for rec(epi g∗). This
amounts to representing g in the following “canonical” form:

g(x) =

{

max{〈w1, x〉 − β1, . . . , 〈wk, x〉 − βk} if x ∈ K,
+∞ otherwise,

with

K = {v ∈ R
n : 〈ai, v〉 ≤ γi ∀i = 1, . . . ,m}.

If this representation is available, then one can take F simply as

F(x, α) = log
[

k
∑

j=1

e〈w
j ,x〉+βjα

]

+
m

∑

i=1

e〈a
i,x〉+γiα.

Example 3.1. If one wishes to approximate

R
2 ∋ x 7→ g(x) =

{

max{6x1 − x2 + 4, x1 + x2 − 2} if x1 ≥ 3,
+∞ otherwise,

then it suffices to take

F(x, α) = log[e6x1−x2−4α + ex1+x2+2α] + e−x1−3α.

4. Application: smoothing a spectrally defined matrix function.

Consider the case of a function Φ : Sn → R ∪ {+∞} defined over the space
Sn of n×n real symmetric matrices. Such a function Φ is said to be spectral

(or spectrally defined) if there is a symmetric function g : R
n → R ∪ {+∞}

such that

(4.1) Φ(A) = g(λ(A)) for all A ∈ Sn,

where λ(A) = (λ1(A), . . . , λn(A))⊤ is the vector of eigenvalues of A in non-
increasing order. The symmetric function g is necessarily unique. In fact, it
is given by

g(x) = Φ(diag x) for all x ∈ R
n,

where diag x stands for the diagonal matrix whose entries on the diagonal
are the components of x. For a detailed account on spectral functions, see,
for instance, [13] (also [8], [9]). Examples of spectral functions include:

Φ(A) = λ1(A) = largest eigenvalue of A;

Φ(A) = λ1(A) + . . . + λp(A) = sum of the p largest eigenvalues of A;

Φ(A) = λ1(A) − λn(A) = width of the spectrum of A;

Φ(A) = max{λ1(A),−λn(A)} = spectral radius of A.

In connection with these examples, two comments deserve to be made: first,
none of the above functions is differentiable; and, second, all the above
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functions can be written in the form

Φ(A) = Ψ∗
Ω(λ(A)),

with Ω ⊂ R
n being a symmetric convex polytope. The symmetry property

means that

w ∈ Ω ⇒ Πw ∈ Ω for any n × n permutation matrix Π.

These facts lead us to establishing the following approximation result.

Theorem 4.1. Let Ω ⊂ R
n be a symmetric convex polytope. Then Φ =

Ψ∗
Ω ◦λ is a convex spectral function. Moreover , there exists a convex spectral

function F : Sn → R of class C∞ such that

(4.2) Φ(A) = lim
t→∞

F (tA)/t for all A ∈ Sn.

An example of such a function is F = f ◦ λ, where

(4.3) f(x) = log
[ \

Rn

e〈w,x〉 dµ(w)
]

is defined in terms of a discrete measure µ which distributes uniformly its

total mass among all the extreme points of Ω.

P r o o f. Φ is a convex spectral function because Ψ∗
Ω is a symmetric

convex function (cf. Davis [4]). Since the convex polytope Ω is symmetric,
so is the set extr Ω. From this, and the fact that the discrete measure µ
distributes uniformly its total mass over extr Ω, one deduces that the convex
function f is symmetric. Hence, F = f ◦ λ is a convex spectral function.
Since f is of class C∞, so is F (even if λ : Sn → R

n is not differentiable).
Finally, observe that, for all A ∈ Sn, one has

lim
t→∞

F (tA)/t = lim
t→∞

(f ◦ λ)(tA)/t = lim
t→∞

f(tλ(A))/t = Ψ∗
Ω(λ(A)).

This proves the convergence property (4.2).

Example 4.1. The largest eigenvalue function Sn ∋ A 7→ λ1(A) cor-
responds to the composition of R

n ∋ x → g(x) = max{x1, . . . , xn} and
λ : Sn → R

n. Thus

λ1(A) = lim
t→∞

F (tA)/t for all A ∈ Sn,

with

F (A) = log
[

n
∑

j=1

eλj(A)
]

= log[trace eA].

Observe that the smallest eigenvalue function is given by

λn(A) = lim
t→−∞

F (tA)/t.
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Example 4.2. Consider the function

Sn ∋ A 7→ Φ(A) = sum of the p largest eigenvalues of A.

In this case Φ = g ◦ λ, with

g(x) = sum of the p largest components of x.

According to Overton and Womersley [10], g is the supporting function of
the set

Ω =
{

u ∈ [0, 1]n :
n

∑

j=1

uj = p
}

,

whose extreme points u ∈ Ω are given by

ui =
{

1 for exactly p of the indices 1, . . . , n,
0 otherwise.

If one denotes by w1, . . . , wk the k = n!/(p!(n − p)!) extreme points of Ω,
then one can approximate Φ(A) with the help of

F (A) = log
[

k
∑

j=1

e〈w
j ,λ(A)〉

]

.

Example 4.3. The spectral radius function

Sn ∋ A 7→ Φ(A) = max{λ1(A),−λn(A)}

corresponds to the case Φ = Ψ∗
Ω ◦ λ with

Ω =
{

u ∈ R
n :

n
∑

j=1

|uj | ≤ 1
}

.

The extreme points of Ω are the canonical vectors of R
n and their opposite

vectors. Thus, Ψ∗
Ω(x) = max{|x1|, . . . , |xn|} can be approximated with the

help of

f(x) = log(cosh x1 + . . . + cosh xn).

This leads to the expression

F (A) = log
(

n
∑

j=1

cosh λj(A)
)

= log[trace(cosh A)].
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