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Smoothing a polyhedral convex function via cumulant
transformation and homogenization

by ALBERTO SEEGER (Avignon)

Abstract. Given a polyhedral convex function g : R” — R U {+oco}, it is always
possible to construct a family {g¢}+~0 which converges pointwise to g and such that each
gt : R™ — R is convex and infinitely often differentiable. The construction of such a family
{gt }+>0 involves the concept of cumulant transformation and a standard homogenization
procedure.

1. Introduction. A broad class of nonsmooth optimization problems
can be written in the composite form

(P) Minimize {g(M(£)) : £ € =},
where M is a mapping from some normed space = to the Euclidean space R",
and g : R” — R U {+o0} is a polyhedral convex function, i.e.

epig == {(z,a) e R" xR : g(x) < a}

is a polyhedral convex set [11, p. 172]. As a general rule M is a smooth
mapping (say, of class C*, for some k > 1), but the composite function
g o M is nonsmooth. This fact leads us to consider an approximate version

(P); Minimize {g:(M(&)) : £ € 5}
for the original problem (P). A fundamental question which is addressed in
this note is thus:
How to construct a family {g; }¢+~0 of
(1.1) smooth convex functions ¢g; : R™ — R such that
tlingo gt(x) = g(z) for all z € R™ ?

The above mentioned question has an interest which goes far beyond the
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context of the composite optimization problem (P). This note will concen-
trate on this question and will discuss some related issues.

As afirst attempt to answer (1.1), one may consider the classical Moreau—
Yosida approximation technique:

gi(x) = inf {g(;p —w)+ %IIUHQ}.

u€R™

The disadvantage of such an approach is twofold: first of all, the evaluation of
g+(z) is not straightforward since it requires solving a minimization problem.
Secondly, the convex function g, is of class C!, but its degree of smoothness
is not higher than one (unless one imposes additional assumptions on g; cf.
Lemaréchal and Sagastizabal [7]). The same remark applies to the rolling
ball approximation technique [12]:
gie(x) = inf {g(x —u)— [t —[|u|*)"/?}.
flull<t—1

The approach suggested in this note is completely different: it uses ho-
mogenization technique applied to the Laplace transform and to the cumu-
lant transform of some discrete measures associated with the function g.

2. Smoothing a polyhedral supporting function. To start with,
consider the case in which g : R" — RU{+o0} is the supporting function of
a nonempty polyhedral convex set {2 C R", i.e.

(2.1) g(x) =¥H(x) := sup(w,x).
we 2

One may think of g as the recession function ([11, p. 66])
(2. g(x) = [rec f1(z) = lim f(tz)/t

of some convex lower-semicontinuous function f : R" — R U {400} that is
finite at 0 € R™. As observed by Ben-Tal and Teboulle [2], the usefulness of
the approximation scheme (2.2) lies in the fact that frequently f is a smooth
function, in which case the convex function

R™ 3z — gi(x) := f(tz)/t

is also smooth. Ben-Tal and Teboulle [2] provided the examples

(2.3) g(z) = max{x1,...,z,}, f(z)=Ilog [Zn: exj}

Jj=1

and

n

(24) g(x) = Z zil,  fla) =) [14a3]?

J=1 J=1

3
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to justify their observation, but they did not give a method for finding a
smooth function f in other cases. Examples (2.3) and (2.4) were inspired by
particular approximation techniques suggested by Bertsekas [3] and El-Attar
et al. [5], respectively.

The aim of this section is to provide the reader with a simple and elegant
method for constructing a smooth function f in the case in which ¢ is an
arbitrary polyhedral supporting function. Our approximation mechanism
relies on the following basic assumption:

(2.5) 2 C R"™ is a polyhedral convex set which admits at least one extreme
point.

As is well known, such a set {2 can be represented in the form of a Minkowski
sum:

(2.6) (2 = colextr 2] + rec £2.
Here
(2.7) extr 2 = {w!, ... w"}

denotes the set of extreme points of {2, and rec {2 refers to the recession
cone of 2 ([11, p. 61]). Since {2 is a polyhedral convex set, rec {2 can be

represented in terms of a set {a',...,a™} C R™ of generating directions:
m
(2.8) recQ:{Zx\iaZ:/\iZOVizl,...,m}.
i=1
Without loss of generality one may suppose that the set {a!,...,a™} is

minimal in the sense that none of these directions can be expressed as a
nonnegative linear combination of the others. It is not difficult to show that
g = V¢, takes the form
1 k if r € K

9.9 2 — max{(w",x),...,(w" x)} ifx ,

29) 9() { +o0 otherwise,
where

K={veR":(a",v)<0Vi=1,...,m}.

Now we are ready to state:

THEOREM 2.1. Let §2 be as in (2.5) and let g be the supporting function
of £2. Then there exists a convex function f : R" —R of class C*° such that

(2.10) tlim f(tx)/t = g(x)  for all z € R™.
An example of such a function is given by

(2.11) f(z) =log { S (W) du(w)} + S ) dy(w),
R" R"
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where i is any discrete measure concentrated on extr 2, and v is any discrete
measure concentrated on a minimal set of generating directions for rec (2.
If the information (2.7)—(2.8) is available, then one has the more explicit
example

k m
(2.12) f(z) = log [Zew’?@] +3 et
j=1 i=1

Proof. The function f in (2.11) involves the Laplace transform
R" >z L,(z):= S e} dy(w)
Rn
of the measure v, and the cumulant transform
R" 5 2 — K,(x) := log L,(x)

of the measure pu. Since p and v are discrete, both transforms are finite-
valued. By invoking some classical results (cf. [1, Theorem 4.1], [6, Theo-
rem 7.5.1]), one can show that L, and K, are C*° convex functions. It just
remains to prove the convergence property (2.10). That p is concentrated
on extr {2 means simply

pw({w}) >0 iff w € extr 2.
Denote by u; = u({w’}) the mass of the extreme point w’. Then

K,(xz) =log [Zk:uje<wj’r>]
j=1

and
tlim K, (tx)/t = max{(w', z),..., (w" )},

regardless of the values of the y;’s. Similarly, denote by v; = v({a'}) the
mass of the generating direction a*. In this case

m
Lo@) =3 wele
=1

and
e (i _
lim L, (tz)/t = 0 1f<a,:13.>§0Vz—1,...,m,
t—00 400 otherwise,
regardless of the values of the v;’s. This completes the proof of (2.10). Finally,
observe that (2.12) corresponds to the particular case in which the masses

of p and v are uniformly distributed.

Remark 2.1. Instead of (2.10), one can write the equality

f(tz) — f(0)
t

(2.13) lim =g(xz) forall z € R".
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The advantage of the approximation scheme (2.13) over (2.10) is that the
quotient [f(tx) — f(0)]/t converges monotonically upward to g(x) as t goes
to 0o. Of course, one can always normalize f so that f(0)=0. It suffices to
subtract the constant v(R™) 4 log u(R™) from the expression appearing on
the right-hand side of (2.11).

Remark 2.2. The measure p used in (2.11) can be concentrated on a set
which is larger than extr {2, but it cannot assign a positive mass to a point
which is outside the polytope co(extr £2). Similarly, v can be concentrated
on a set which is larger than a minimal set of generating directions for rec §2.
However, v should not assign a positive mass to a direction which is not in
rec {2.

Remark 2.3. The function f given by (2.11) can also be used to ap-
proximate

R" 5z — inf (w,x).

we 2
Indeed,
Jim_f(t)/t = Jim f(~t)/(~1)

= — lim f(t(—x))/t = — sup(w, —x) = inf (w,x).

t—00 wen wen
Of course, for t < 0, the function = +— f(tx)/t is concave.
Theorem 2.1 can be illustrated with an example.
EXAMPLE 2.1. Consider the function ¢ : R® — R given by
g(z) = max{z1,x2, w3} + 24| + |z5] + max{0, z6} + max{|x7|, [zs[}.

The first term corresponds to the supporting function of the set {u €
Ri : up + ug + ug = 1}, whose extreme points are the canonical vectors
(1,0,0),(0,1,0), and (0,0,1). Thus, max{x,xs,x3} can be approximated
with the help of log(e™ + e*2 + ¢”#). The absolute value function | - | cor-
responds to the supporting function of the interval [—1, 1], whose extreme
points are —1 and 1. Thus, |z4] and |z5| can be approximated by using
log(cosh z4) and log(cosh x5), respectively. Similarly, max{0,-} is the sup-
porting function of the interval [0, 1], and therefore it can be approximated
by using log(14-e()). The last term of g corresponds to the supporting func-
tion of a set whose extreme points are (1,0), (—1,0), (0,1), and (0, —1). Thus,
max{|x7|, |xs|} can be approximated with the help of log(cosh x7 + cosh zg).
Summarizing,

f(z) = log(e®™ + e*2 + e*?) + log(cosh z4) + log(cosh x5)
+ log(1 + €”%) 4 log(cosh x7 + cosh zg).
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Of course, g can be regarded as the supporting function of some polytope
in R®. In this case, however, the identification of the extreme points is a
more cumbersome task.

3. Smoothing a polyhedral convex function. The approximation
technique developed in Section 2 can be extended to the case in which
g : R"™ - RU{+o0} is an arbitrary polyhedral convex function. It suffices
to use the representation

(31) g(:E) :Lp:pig*($7_1) = sSup {<w7$> _6}7
(w,B)€epi g*

where g* : R” — RU{+o00} stands for the Legendre—Fenchel conjugate of g.
Since ¢ is a polyhedral convex function, it follows that the epigraph of g* is
a polyhedral convex set ([11, Theorem 19.2]).

THEOREM 3.1. Let g : R™ — RU {+o0} be a polyhedral convex function

such that epig* has at least one extreme point. Then there exists a convex
function F : R™ x R — R which is of class C* and such that

(3.2) tlim F(te,—t)/t =g(x) for all xz € R™.
An example of such a function is
(33) Fla,a)=log| | et du(uw,g)| + | et ay(w, ),
R xR R™ xR
where p is any discrete measure concentrated on extr(epig*), and v is any
discrete measure concentrated on a minimal set of generating directions for
rec(epig*).
Proof. Observe that the function F is given simply by
F(z,a) = K,(z,a) + L,(z,a).
According to Theorem 2.1, F : R" x R — R is a convex function of class
C* such that
tlim F(t(z, o))/t =T, «(z,a).

pig”
This and the representation formula (3.1) yield the convergence result
(3.2). m
It should be clear that, for each ¢ > 0, the function
R" 3z — g(x) = F(tx,—t)/t

is convex and of class C*°. Also, ¢:(z) converges toward g(z) as t goes
to oco. Thus, Theorem 3.1 answers completely the question stated in (1.1).
Of course, if one seeks a more explicit formula for the function F, then
more information is needed regarding the structure of g, namely one needs
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to know the extreme points {(w?, 3'),..., (w", 3%)} of epig* and a mini-
mal set {(al,7!),..., (a™,y™)} of generating directions for rec(epi g*). This
amounts to representing ¢ in the following “canonical” form:

_ S max{{wh, 2) - Y, ... (wF 2) - pF} ifr e K,
g(x) = .
400 otherwise,

with
K={veR": (a",v)<~"Vi=1,...,m}.

If this representation is available, then one can take F simply as
F(x,a) = log [Z e<“ﬂ’x>+5]a} + Z ela@+ta
j=1 i=1

ExAMPLE 3.1. If one wishes to approximate

R? 3z g(z) = {
then it suffices to take

f($7 Oé) = log[e%l —¥z—da + e$1+r2+2a] + e~ T1—3a

max{6x; — zo + 4,21 + 29 — 2} if zq >3,
+o00 otherwise,

4. Application: smoothing a spectrally defined matrix function.
Consider the case of a function @ : S, — RU {400} defined over the space
S, of n x n real symmetric matrices. Such a function @ is said to be spectral
(or spectrally defined) if there is a symmetric function g : R” — RU {+o0}
such that
(4.1) D(A) =g(\(A)) forall AeS,,

where A(A) = (A1(A),..., A\ (A))T is the vector of eigenvalues of A in non-
increasing order. The symmetric function g is necessarily unique. In fact, it
is given by

g(x) = O(diagz) for all x € R",
where diag x stands for the diagonal matrix whose entries on the diagonal

are the components of x. For a detailed account on spectral functions, see,
for instance, [13] (also [8], [9]). Examples of spectral functions include:

D(A) = M1 (A) = largest eigenvalue of A;

P(A) = M (A)+ ...+ X, (A) = sum of the p largest eigenvalues of A;
D(A) = A\ (A) — A\, (A) = width of the spectrum of A;

&(A) = max{\(A), -\, (A)} = spectral radius of A.

In connection with these examples, two comments deserve to be made: first,
none of the above functions is differentiable; and, second, all the above
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functions can be written in the form
P(A) = U5 (AA)),

with 2 C R"™ being a symmetric convex polytope. The symmetry property
means that

w € 2 = [w € 2 for any n X n permutation matrix I1.
These facts lead us to establishing the following approximation result.

THEOREM 4.1. Let 2 C R™ be a symmetric conver polytope. Then ® =
Uho is a convex spectral function. Moreover, there exists a convex spectral
function F : S,, — R of class C* such that

(4.2) P(A) = tlim F(tA)/t  forall A€ S,.
An example of such a function is F' = f o A, where
(4.3) f(@) =1log | | et du(w)

R’VL

is defined in terms of a discrete measure p which distributes uniformly its
total mass among all the extreme points of {2.

Proof. & is a convex spectral function because V¢, is a symmetric
convex function (cf. Davis [4]). Since the convex polytope {2 is symmetric,
so is the set extr {2. From this, and the fact that the discrete measure pu
distributes uniformly its total mass over extr {2, one deduces that the convex
function f is symmetric. Hence, FF = f o A is a convex spectral function.
Since f is of class C*°, so is F' (even if X : S,, — R™ is not differentiable).
Finally, observe that, for all A € S,,, one has

1tlim F(tA)/t = 1tlim (foN(tA)/t = tlim FaA(A))/t =T5H(A(A)).
This proves the convergence property (4.2). m

EXAMPLE 4.1. The largest eigenvalue function S, 3 A — A1(A4) cor-
responds to the composition of R” 5 x — ¢g(z) = max{zy,...,x,} and
A: S, — R"™ Thus

M(A) = tlim F(tA)/t forall A€ S,,
with
F(A) =log [Z e)‘j(A)] = log|trace e].
j=1

Observe that the smallest eigenvalue function is given by

M(A) = lim F(tA)/t.
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ExAMPLE 4.2. Consider the function
Sp 2 A— @(A) = sum of the p largest eigenvalues of A.
In this case @ = g o A\, with
g(z) = sum of the p largest components of x.

According to Overton and Womersley [10], g is the supporting function of

the set
= {u € [0,1]" : Zuj Zp},
j=1

whose extreme points u € {2 are given by

W — { 1 for exactly p of the indices 1,...,n,
‘ 0 otherwise.

If one denotes by w!,...,w* the k = n!/(p!(n — p)!) extreme points of 2,
then one can approximate @(A) with the help of

F(A) = log [Zk: e(wj,A(A)q _

j=1
ExaMPLE 4.3. The spectral radius function
Sp 2 A &(A) = max{A1(A), =\, (A)}

corresponds to the case & = ¥, o A with

Qz{uéR”:i\uﬂSl}.

j=1
The extreme points of {2 are the canonical vectors of R™ and their opposite
vectors. Thus, ¥/ (z) = max{|z1],...,|x,|} can be approximated with the
help of

f(z) =log(coshzy + ...+ coshz,).
This leads to the expression

F(A) =log (Z cosh A; (A)) = log[trace(cosh A)].
j=1
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