Smoothing a polyhedral convex function via cumulant transformation and homogenization

by Alberto Seeger (Avignon)

Abstract

Given a polyhedral convex function $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$, it is always possible to construct a family $\left\{g_{t}\right\}_{t>0}$ which converges pointwise to g and such that each $g_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and infinitely often differentiable. The construction of such a family $\left\{g_{t}\right\}_{t>0}$ involves the concept of cumulant transformation and a standard homogenization procedure.

1. Introduction. A broad class of nonsmooth optimization problems can be written in the composite form
(P) Minimize $\{g(M(\xi)): \xi \in \Xi\}$,
where M is a mapping from some normed space Ξ to the Euclidean space \mathbb{R}^{n}, and $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a polyhedral convex function, i.e.

$$
\operatorname{epi} g:=\left\{(x, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: g(x) \leq \alpha\right\}
$$

is a polyhedral convex set $[11$, p. 172]. As a general rule M is a smooth mapping (say, of class C^{k}, for some $k \geq 1$), but the composite function $g \circ M$ is nonsmooth. This fact leads us to consider an approximate version

$$
(P)_{t} \quad \text { Minimize }\left\{g_{t}(M(\xi)): \xi \in \Xi\right\}
$$

for the original problem (P). A fundamental question which is addressed in this note is thus:

$$
\left\{\begin{array}{l}
\text { How to construct a family }\left\{g_{t}\right\}_{t>0} \text { of } \tag{1.1}\\
\text { smooth convex functions } g_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { such that } \\
\lim _{t \rightarrow \infty} g_{t}(x)=g(x) \text { for all } x \in \mathbb{R}^{n} ?
\end{array}\right.
$$

The above mentioned question has an interest which goes far beyond the

[^0]context of the composite optimization problem (P). This note will concentrate on this question and will discuss some related issues.

As a first attempt to answer (1.1), one may consider the classical MoreauYosida approximation technique:

$$
g_{t}(x)=\inf _{u \in \mathbb{R}^{n}}\left\{g(x-u)+\frac{t}{2}\|u\|^{2}\right\} .
$$

The disadvantage of such an approach is twofold: first of all, the evaluation of $g_{t}(x)$ is not straightforward since it requires solving a minimization problem. Secondly, the convex function g_{t} is of class C^{1}, but its degree of smoothness is not higher than one (unless one imposes additional assumptions on g; cf. Lemaréchal and Sagastizabal [7]). The same remark applies to the rolling ball approximation technique [12]:

$$
g_{t}(x)=\inf _{\|u\| \leq t^{-1}}\left\{g(x-u)-\left[t^{-2}-\|u\|^{2}\right]^{1 / 2}\right\} .
$$

The approach suggested in this note is completely different: it uses homogenization technique applied to the Laplace transform and to the cumulant transform of some discrete measures associated with the function g.
2. Smoothing a polyhedral supporting function. To start with, consider the case in which $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the supporting function of a nonempty polyhedral convex set $\Omega \subset \mathbb{R}^{n}$, i.e.

$$
\begin{equation*}
g(x)=\Psi_{\Omega}^{*}(x):=\sup _{w \in \Omega}\langle w, x\rangle . \tag{2.1}
\end{equation*}
$$

One may think of g as the recession function ([11, p. 66])

$$
\begin{equation*}
g(x)=[\operatorname{rec} f](x):=\lim _{t \rightarrow \infty} f(t x) / t \tag{2.2}
\end{equation*}
$$

of some convex lower-semicontinuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ that is finite at $0 \in \mathbb{R}^{n}$. As observed by Ben-Tal and Teboulle [2], the usefulness of the approximation scheme (2.2) lies in the fact that frequently f is a smooth function, in which case the convex function

$$
\mathbb{R}^{n} \ni x \mapsto g_{t}(x):=f(t x) / t
$$

is also smooth. Ben-Tal and Teboulle [2] provided the examples

$$
\begin{equation*}
g(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}, \quad f(x)=\log \left[\sum_{j=1}^{n} e^{x_{j}}\right] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=\sum_{j=1}^{n}\left|x_{j}\right|, \quad f(x)=\sum_{j=1}^{n}\left[1+x_{j}^{2}\right]^{1 / 2} \tag{2.4}
\end{equation*}
$$

to justify their observation, but they did not give a method for finding a smooth function f in other cases. Examples (2.3) and (2.4) were inspired by particular approximation techniques suggested by Bertsekas [3] and El-Attar et al. [5], respectively.

The aim of this section is to provide the reader with a simple and elegant method for constructing a smooth function f in the case in which g is an arbitrary polyhedral supporting function. Our approximation mechanism relies on the following basic assumption:
(2.5) $\Omega \subset \mathbb{R}^{n}$ is a polyhedral convex set which admits at least one extreme point.
As is well known, such a set Ω can be represented in the form of a Minkowski sum:

$$
\begin{equation*}
\Omega=\operatorname{co}[\operatorname{extr} \Omega]+\operatorname{rec} \Omega . \tag{2.6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\operatorname{extr} \Omega=\left\{w^{1}, \ldots, w^{k}\right\} \tag{2.7}
\end{equation*}
$$

denotes the set of extreme points of Ω, and rec Ω refers to the recession cone of Ω ([11, p. 61]). Since Ω is a polyhedral convex set, rec Ω can be represented in terms of a set $\left\{a^{1}, \ldots, a^{m}\right\} \subset \mathbb{R}^{n}$ of generating directions:

$$
\begin{equation*}
\operatorname{rec} \Omega=\left\{\sum_{i=1}^{m} \lambda_{i} a^{i}: \lambda_{i} \geq 0 \forall i=1, \ldots, m\right\} . \tag{2.8}
\end{equation*}
$$

Without loss of generality one may suppose that the set $\left\{a^{1}, \ldots, a^{m}\right\}$ is minimal in the sense that none of these directions can be expressed as a nonnegative linear combination of the others. It is not difficult to show that $g=\Psi_{\Omega}^{*}$ takes the form

$$
g(x)= \begin{cases}\max \left\{\left\langle w^{1}, x\right\rangle, \ldots,\left\langle w^{k}, x\right\rangle\right\} & \text { if } x \in K \tag{2.9}\\ +\infty & \text { otherwise }\end{cases}
$$

where

$$
K=\left\{v \in \mathbb{R}^{n}:\left\langle a^{i}, v\right\rangle \leq 0 \forall i=1, \ldots, m\right\} .
$$

Now we are ready to state:
Theorem 2.1. Let Ω be as in (2.5) and let g be the supporting function of Ω. Then there exists a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class C^{∞} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} f(t x) / t=g(x) \quad \text { for all } x \in \mathbb{R}^{n} . \tag{2.10}
\end{equation*}
$$

An example of such a function is given by

$$
\begin{equation*}
f(x)=\log \left[\int_{\mathbb{R}^{n}} e^{\langle w, x\rangle} d \mu(w)\right]+\int_{\mathbb{R}^{n}} e^{\langle w, x\rangle} d \nu(w), \tag{2.11}
\end{equation*}
$$

where μ is any discrete measure concentrated on $\operatorname{extr} \Omega$, and ν is any discrete measure concentrated on a minimal set of generating directions for rec Ω. If the information (2.7)-(2.8) is available, then one has the more explicit example

$$
\begin{equation*}
f(x)=\log \left[\sum_{j=1}^{k} e^{\left\langle w^{j}, x\right\rangle}\right]+\sum_{i=1}^{m} e^{\left\langle a^{i}, x\right\rangle} \tag{2.12}
\end{equation*}
$$

Proof. The function f in (2.11) involves the Laplace transform

$$
\mathbb{R}^{n} \ni x \mapsto L_{\nu}(x):=\int_{\mathbb{R}^{n}} e^{\langle w, x\rangle} d \nu(w)
$$

of the measure ν, and the cumulant transform

$$
\mathbb{R}^{n} \ni x \mapsto K_{\mu}(x):=\log L_{\mu}(x)
$$

of the measure μ. Since μ and ν are discrete, both transforms are finitevalued. By invoking some classical results (cf. [1, Theorem 4.1], [6, Theorem 7.5.1]), one can show that L_{ν} and K_{μ} are C^{∞} convex functions. It just remains to prove the convergence property (2.10). That μ is concentrated on extr Ω means simply

$$
\mu(\{w\})>0 \quad \text { iff } \quad w \in \operatorname{extr} \Omega
$$

Denote by $\mu_{j}=\mu\left(\left\{w^{j}\right\}\right)$ the mass of the extreme point w^{j}. Then

$$
K_{\mu}(x)=\log \left[\sum_{j=1}^{k} \mu_{j} e^{\left\langle w^{j}, x\right\rangle}\right]
$$

and

$$
\lim _{t \rightarrow \infty} K_{\mu}(t x) / t=\max \left\{\left\langle w^{1}, x\right\rangle, \ldots,\left\langle w^{k}, x\right\rangle\right\}
$$

regardless of the values of the μ_{j} 's. Similarly, denote by $\nu_{i}=\nu\left(\left\{a^{i}\right\}\right)$ the mass of the generating direction a^{i}. In this case

$$
L_{\nu}(x)=\sum_{i=1}^{m} \nu_{i} e^{\left\langle a^{i}, x\right\rangle}
$$

and

$$
\lim _{t \rightarrow \infty} L_{\nu}(t x) / t= \begin{cases}0 & \text { if }\left\langle a^{i}, x\right\rangle \leq 0 \forall i=1, \ldots, m \\ +\infty & \text { otherwise }\end{cases}
$$

regardless of the values of the ν_{i} 's. This completes the proof of (2.10). Finally, observe that (2.12) corresponds to the particular case in which the masses of μ and ν are uniformly distributed.

Remark 2.1. Instead of (2.10), one can write the equality

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-f(0)}{t}=g(x) \quad \text { for all } x \in \mathbb{R}^{n} \tag{2.13}
\end{equation*}
$$

The advantage of the approximation scheme (2.13) over (2.10) is that the quotient $[f(t x)-f(0)] / t$ converges monotonically upward to $g(x)$ as t goes to ∞. Of course, one can always normalize f so that $f(0)=0$. It suffices to subtract the constant $\nu\left(\mathbb{R}^{n}\right)+\log \mu\left(\mathbb{R}^{n}\right)$ from the expression appearing on the right-hand side of (2.11).

Remark 2.2. The measure μ used in (2.11) can be concentrated on a set which is larger than extr Ω, but it cannot assign a positive mass to a point which is outside the polytope co(extr $\Omega)$. Similarly, ν can be concentrated on a set which is larger than a minimal set of generating directions for rec Ω. However, ν should not assign a positive mass to a direction which is not in rec Ω.

Remark 2.3. The function f given by (2.11) can also be used to approximate

$$
\mathbb{R}^{n} \ni x \mapsto \inf _{w \in \Omega}\langle w, x\rangle
$$

Indeed,

$$
\begin{aligned}
\lim _{t \rightarrow-\infty} f(t x) / t & =\lim _{t \rightarrow \infty} f(-t x) /(-t) \\
& =-\lim _{t \rightarrow \infty} f(t(-x)) / t=-\sup _{w \in \Omega}\langle w,-x\rangle=\inf _{w \in \Omega}\langle w, x\rangle .
\end{aligned}
$$

Of course, for $t<0$, the function $x \mapsto f(t x) / t$ is concave.
Theorem 2.1 can be illustrated with an example.
Example 2.1. Consider the function $g: \mathbb{R}^{8} \rightarrow \mathbb{R}$ given by

$$
g(x)=\max \left\{x_{1}, x_{2}, x_{3}\right\}+\left|x_{4}\right|+\left|x_{5}\right|+\max \left\{0, x_{6}\right\}+\max \left\{\left|x_{7}\right|,\left|x_{8}\right|\right\} .
$$

The first term corresponds to the supporting function of the set $\{u \in$ $\left.\mathbb{R}_{+}^{3}: u_{1}+u_{2}+u_{3}=1\right\}$, whose extreme points are the canonical vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$. Thus, $\max \left\{x_{1}, x_{2}, x_{3}\right\}$ can be approximated with the help of $\log \left(e^{x_{1}}+e^{x_{2}}+e^{x_{3}}\right)$. The absolute value function $|\cdot|$ corresponds to the supporting function of the interval $[-1,1]$, whose extreme points are -1 and 1. Thus, $\left|x_{4}\right|$ and $\left|x_{5}\right|$ can be approximated by using $\log \left(\cosh x_{4}\right)$ and $\log \left(\cosh x_{5}\right)$, respectively. Similarly, $\max \{0, \cdot\}$ is the supporting function of the interval $[0,1]$, and therefore it can be approximated by using $\log \left(1+e^{(\cdot)}\right)$. The last term of g corresponds to the supporting function of a set whose extreme points are $(1,0),(-1,0),(0,1)$, and $(0,-1)$. Thus, $\max \left\{\left|x_{7}\right|,\left|x_{8}\right|\right\}$ can be approximated with the help of $\log \left(\cosh x_{7}+\cosh x_{8}\right)$. Summarizing,

$$
\begin{aligned}
f(x)= & \log \left(e^{x_{1}}+e^{x_{2}}+e^{x_{3}}\right)+\log \left(\cosh x_{4}\right)+\log \left(\cosh x_{5}\right) \\
& +\log \left(1+e^{x_{6}}\right)+\log \left(\cosh x_{7}+\cosh x_{8}\right) .
\end{aligned}
$$

Of course, g can be regarded as the supporting function of some polytope in \mathbb{R}^{8}. In this case, however, the identification of the extreme points is a more cumbersome task.
3. Smoothing a polyhedral convex function. The approximation technique developed in Section 2 can be extended to the case in which $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is an arbitrary polyhedral convex function. It suffices to use the representation

$$
\begin{equation*}
g(x)=\Psi_{\text {epi } g^{*}}^{*}(x,-1)=\sup _{(w, \beta) \in \text { epi } g^{*}}\{\langle w, x\rangle-\beta\}, \tag{3.1}
\end{equation*}
$$

where $g^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ stands for the Legendre-Fenchel conjugate of g. Since g is a polyhedral convex function, it follows that the epigraph of g^{*} is a polyhedral convex set ([11, Theorem 19.2]).

Theorem 3.1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a polyhedral convex function such that epi g^{*} has at least one extreme point. Then there exists a convex function $\mathcal{F}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ which is of class C^{∞} and such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathcal{F}(t x,-t) / t=g(x) \quad \text { for all } x \in \mathbb{R}^{n} . \tag{3.2}
\end{equation*}
$$

An example of such a function is

$$
\begin{equation*}
\mathcal{F}(x, \alpha)=\log \left[\int_{\mathbb{R}^{n} \times \mathbb{R}} e^{\langle w, x\rangle+\beta \alpha} d \mu(w, \beta)\right]+\int_{\mathbb{R}^{n} \times \mathbb{R}} e^{\langle w, x\rangle+\beta \alpha} d \nu(w, \beta), \tag{3.3}
\end{equation*}
$$

where μ is any discrete measure concentrated on $\operatorname{extr}\left(\mathrm{epi} g^{*}\right)$, and ν is any discrete measure concentrated on a minimal set of generating directions for rec(epi $\left.g^{*}\right)$.

Proof. Observe that the function \mathcal{F} is given simply by

$$
\mathcal{F}(x, \alpha)=K_{\mu}(x, \alpha)+L_{\nu}(x, \alpha) .
$$

According to Theorem 2.1, $\mathcal{F}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ is a convex function of class C^{∞} such that

$$
\lim _{t \rightarrow \infty} \mathcal{F}(t(x, \alpha)) / t=\Psi_{\mathrm{epi}}^{*} g^{*}(x, \alpha) .
$$

This and the representation formula (3.1) yield the convergence result (3.2).

It should be clear that, for each $t>0$, the function

$$
\mathbb{R}^{n} \ni x \mapsto g_{t}(x)=\mathcal{F}(t x,-t) / t
$$

is convex and of class C^{∞}. Also, $g_{t}(x)$ converges toward $g(x)$ as t goes to ∞. Thus, Theorem 3.1 answers completely the question stated in (1.1). Of course, if one seeks a more explicit formula for the function \mathcal{F}, then more information is needed regarding the structure of g, namely one needs
to know the extreme points $\left\{\left(w^{1}, \beta^{1}\right), \ldots,\left(w^{k}, \beta^{k}\right)\right\}$ of epi g^{*} and a minimal set $\left\{\left(a^{1}, \gamma^{1}\right), \ldots,\left(a^{m}, \gamma^{m}\right)\right\}$ of generating directions for rec $\left(\operatorname{epi} g^{*}\right)$. This amounts to representing g in the following "canonical" form:

$$
g(x)= \begin{cases}\max \left\{\left\langle w^{1}, x\right\rangle-\beta^{1}, \ldots,\left\langle w^{k}, x\right\rangle-\beta^{k}\right\} & \text { if } x \in K \\ +\infty & \text { otherwise }\end{cases}
$$

with

$$
K=\left\{v \in \mathbb{R}^{n}:\left\langle a^{i}, v\right\rangle \leq \gamma^{i} \forall i=1, \ldots, m\right\} .
$$

If this representation is available, then one can take \mathcal{F} simply as

$$
\mathcal{F}(x, \alpha)=\log \left[\sum_{j=1}^{k} e^{\left\langle w^{j}, x\right\rangle+\beta^{j} \alpha}\right]+\sum_{i=1}^{m} e^{\left\langle a^{i}, x\right\rangle+\gamma^{i} \alpha} .
$$

Example 3.1. If one wishes to approximate

$$
\mathbb{R}^{2} \ni x \mapsto g(x)= \begin{cases}\max \left\{6 x_{1}-x_{2}+4, x_{1}+x_{2}-2\right\} & \text { if } x_{1} \geq 3 \\ +\infty & \text { otherwise }\end{cases}
$$

then it suffices to take

$$
\mathcal{F}(x, \alpha)=\log \left[e^{6 x_{1}-x_{2}-4 \alpha}+e^{x_{1}+x_{2}+2 \alpha}\right]+e^{-x_{1}-3 \alpha} .
$$

4. Application: smoothing a spectrally defined matrix function.

Consider the case of a function $\Phi: S_{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined over the space S_{n} of $n \times n$ real symmetric matrices. Such a function Φ is said to be spectral (or spectrally defined) if there is a symmetric function $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
\begin{equation*}
\Phi(A)=g(\lambda(A)) \quad \text { for all } A \in S_{n} \tag{4.1}
\end{equation*}
$$

where $\lambda(A)=\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)^{\top}$ is the vector of eigenvalues of A in nonincreasing order. The symmetric function g is necessarily unique. In fact, it is given by

$$
g(x)=\Phi(\operatorname{diag} x) \quad \text { for all } x \in \mathbb{R}^{n},
$$

where $\operatorname{diag} x$ stands for the diagonal matrix whose entries on the diagonal are the components of x. For a detailed account on spectral functions, see, for instance, [13] (also [8], [9]). Examples of spectral functions include:

$$
\begin{aligned}
& \Phi(A)=\lambda_{1}(A)=\text { largest eigenvalue of } A ; \\
& \Phi(A)=\lambda_{1}(A)+\ldots+\lambda_{p}(A)=\text { sum of the } p \text { largest eigenvalues of } A ; \\
& \Phi(A)=\lambda_{1}(A)-\lambda_{n}(A)=\text { width of the spectrum of } A ; \\
& \Phi(A)=\max \left\{\lambda_{1}(A),-\lambda_{n}(A)\right\}=\text { spectral radius of } A .
\end{aligned}
$$

In connection with these examples, two comments deserve to be made: first, none of the above functions is differentiable; and, second, all the above
functions can be written in the form

$$
\Phi(A)=\Psi_{\Omega}^{*}(\lambda(A))
$$

with $\Omega \subset \mathbb{R}^{n}$ being a symmetric convex polytope. The symmetry property means that

$$
w \in \Omega \Rightarrow \Pi w \in \Omega \text { for any } n \times n \text { permutation matrix } \Pi
$$

These facts lead us to establishing the following approximation result.
Theorem 4.1. Let $\Omega \subset \mathbb{R}^{n}$ be a symmetric convex polytope. Then $\Phi=$ $\Psi_{\Omega}^{*} \circ \lambda$ is a convex spectral function. Moreover, there exists a convex spectral function $F: S_{n} \rightarrow \mathbb{R}$ of class C^{∞} such that

$$
\begin{equation*}
\Phi(A)=\lim _{t \rightarrow \infty} F(t A) / t \quad \text { for all } A \in S_{n} \tag{4.2}
\end{equation*}
$$

An example of such a function is $F=f \circ \lambda$, where

$$
\begin{equation*}
f(x)=\log \left[\int_{\mathbb{R}^{n}} e^{\langle w, x\rangle} d \mu(w)\right] \tag{4.3}
\end{equation*}
$$

is defined in terms of a discrete measure μ which distributes uniformly its total mass among all the extreme points of Ω.

Proof. Φ is a convex spectral function because Ψ_{Ω}^{*} is a symmetric convex function (cf. Davis [4]). Since the convex polytope Ω is symmetric, so is the set extr Ω. From this, and the fact that the discrete measure μ distributes uniformly its total mass over extr Ω, one deduces that the convex function f is symmetric. Hence, $F=f \circ \lambda$ is a convex spectral function. Since f is of class C^{∞}, so is F (even if $\lambda: S_{n} \rightarrow \mathbb{R}^{n}$ is not differentiable). Finally, observe that, for all $A \in S_{n}$, one has

$$
\lim _{t \rightarrow \infty} F(t A) / t=\lim _{t \rightarrow \infty}(f \circ \lambda)(t A) / t=\lim _{t \rightarrow \infty} f(t \lambda(A)) / t=\Psi_{\Omega}^{*}(\lambda(A))
$$

This proves the convergence property (4.2).
Example 4.1. The largest eigenvalue function $S_{n} \ni A \mapsto \lambda_{1}(A)$ corresponds to the composition of $\mathbb{R}^{n} \ni x \rightarrow g(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ and $\lambda: S_{n} \rightarrow \mathbb{R}^{n}$. Thus

$$
\lambda_{1}(A)=\lim _{t \rightarrow \infty} F(t A) / t \quad \text { for all } A \in S_{n}
$$

with

$$
F(A)=\log \left[\sum_{j=1}^{n} e^{\lambda_{j}(A)}\right]=\log \left[\operatorname{trace} e^{A}\right]
$$

Observe that the smallest eigenvalue function is given by

$$
\lambda_{n}(A)=\lim _{t \rightarrow-\infty} F(t A) / t
$$

Example 4.2. Consider the function

$$
S_{n} \ni A \mapsto \Phi(A)=\text { sum of the } p \text { largest eigenvalues of } A \text {. }
$$

In this case $\Phi=g \circ \lambda$, with

$$
g(x)=\text { sum of the } p \text { largest components of } x \text {. }
$$

According to Overton and Womersley [10], g is the supporting function of the set

$$
\Omega=\left\{u \in[0,1]^{n}: \sum_{j=1}^{n} u_{j}=p\right\},
$$

whose extreme points $u \in \Omega$ are given by

$$
u_{i}= \begin{cases}1 & \text { for exactly } p \text { of the indices } 1, \ldots, n, \\ 0 & \text { otherwise. }\end{cases}
$$

If one denotes by w^{1}, \ldots, w^{k} the $k=n!/(p!(n-p)!)$ extreme points of Ω, then one can approximate $\Phi(A)$ with the help of

$$
F(A)=\log \left[\sum_{j=1}^{k} e^{\left\langle w^{j}, \lambda(A)\right\rangle}\right]
$$

Example 4.3. The spectral radius function

$$
S_{n} \ni A \mapsto \Phi(A)=\max \left\{\lambda_{1}(A),-\lambda_{n}(A)\right\}
$$

corresponds to the case $\Phi=\Psi_{\Omega}^{*} \circ \lambda$ with

$$
\Omega=\left\{u \in \mathbb{R}^{n}: \sum_{j=1}^{n}\left|u_{j}\right| \leq 1\right\} .
$$

The extreme points of Ω are the canonical vectors of \mathbb{R}^{n} and their opposite vectors. Thus, $\Psi_{\Omega}^{*}(x)=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$ can be approximated with the help of

$$
f(x)=\log \left(\cosh x_{1}+\ldots+\cosh x_{n}\right) .
$$

This leads to the expression

$$
F(A)=\log \left(\sum_{j=1}^{n} \cosh \lambda_{j}(A)\right)=\log [\operatorname{trace}(\cosh A)] .
$$

References

[1] O. Barndorff-Nielsen, Exponential families: exact theory, Various Publ. Ser. 19, Inst. of Math., Univ. of Aarhus, Denmark, 1970.
[2] A. Ben-Tal and M. Teboulle, A smoothing technique for nondifferentiable optimization problems, in: Lecture Notes in Math. 1405, S. Dolecki (ed.), Springer, Berlin, 1989, 1-11.
[3] D. Bertsekas, Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, New York, 1982.
[4] C. Davis, All convex invariant functions of hermitian matrices, Arch. Math. (Basel) 8 (1957), 276-278.
[5] R. A. El-Attar, M. Vidyasagar, and S. R. K. Dutta, An algorithm for ℓ_{1} norm minimization with application to nonlinear ℓ_{1}-approximation, SIAM J. Numer. Anal. 16 (1979), 70-86.
[6] R. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer, Berlin, 1985.
[7] C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM J. Optim. 7 (1997), 367-385.
[8] A. S. Lewis, Convex analysis on the Hermitian matrices, ibid. 6 (1996), 164-177.
[9] J. E. Martinez-Legaz, On convex and quasiconvex spectral functions, in: Proc. 2nd Catalan Days on Appl. Math., M. Sofonea and J. N. Corvellec (eds.), Presses Univ. de Perpignan, Perpignan, 1995, 199-208.
[10] M. L. Overton and R. S. Womersley, Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices, Math. Programming 62 (1993), 321-357.
[11] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1970.
[12] A. Seeger, Smoothing a nondifferentiable convex function: the technique of the rolling ball, Technical Report 165, Dep. of Mathematical Sciences, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia, October 1994.
[13] -, Convex analysis of spectrally defined matrix functions, SIAM J. Optim. 7 (1997), 679-696.

Department of Mathematics
University of Avignon
33, rue Louis Pasteur
84000 Avignon, France
E-mail: alberto.seeger@univ-avignon.fr

Révisé le 17.10.1996

[^0]: 1991 Mathematics Subject Classification: Primary 41A30; Secondary 52B70, 60E10.
 Key words and phrases: polyhedral convex function, smooth approximation, Laplace transformation, cumulant transformation, homogenization, recession function.

