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On a semilinear elliptic eigenvalue problem

by MARIO MICHELE COCLITE (Bari)

Abstract. We obtain a description of the spectrum and estimates for generalized
positive solutions of —Au = A\(f(x) + h(u)) in 2, u|gn = 0, where f(x) and h(u) satisfy
minimal regularity assumptions.

Introduction. From various points of view there is still interest in the
eigenvalue problem

(%) —Au=ANf(z)+ h(u)) in 2, ulsgn =0,

where 2 C RY, 2 < N, is bounded. Following the terminology of Kras-
nosel’skil we define the spectrum of (x) to be the set of the values A for
which there exist positive solutions of (x). Various authors have obtained a
description of the spectrum of the more general problem than (x), i.e.

—Au=Af(x,u) in 2, wulsgn =0,

where f(z,u) satisfies some regularity hypotheses and some increasing
and/or convexity conditions with respect to u (see, for example, [7; 11; 13;
14]). When A =1 in (%), the questions of multiplicity of solutions arise. As
is well known this last problem has exhaustive answers if f(z) = 0. When
f(x) # 0 the existence of solutions is in general an open question. Neverthe-
less if h(u) increases more slowly than u?,p < 2* —1 = (n+2)/(n —2), as
u — 0o some multiplicity results have been obtained utilizing recent meth-
ods of the Calculus of Variations (see, for example, [1; 2; 6; 15]). Recently
G. Bonanno and S. A. Marano in [3; 4] have demonstrated, together with
an existence result for (), also an estimate from below of the supremum of
the spectrum of ().

In this paper we obtain, under minimal assumptions on f(x) and h(u),
a description of the spectrum and estimates of the generalized positive solu-
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tions of (*) near 0f2. Some results of the author (see [8; 9; 10]) are applied
together with the method of sub-super solutions.

In the first section the main results are stated. Their proof and certain
auxiliary results are contained in the second section.

1. Results. Let 2 C RY, 2 < N, be a bounded domain with C? bound-
ary. M™P(£2), N <r, 2 < p, denotes the space of all v € L] (£2) such that

loc

x@lﬂ |y(x)|d(z)|Ind(z)]P < oo, d(z):= dist(z,012).

M™P(§2) is not empty and
L®(2)Cc M™P(2) Cc LY(R2), M"™"(Q)¢ LY(2), 1<qg<oo

(see [8, Lemma 1]).
Let | - [, be the norm of LP(£2), 1 < p < o0, and | - | denote the norm
of L>°(£2) and C(£2). As usual we put N\ {0} = N* and given «, 3 € C(£2)

with a < 3, [a, 5] denotes the set of v € C({2) such that o < v < 3. Let
©(z) be a positive eigenfunction of the Dirichlet problem for —A in (2.
The main result of this paper is the following:

THEOREM. Let f € M™P(2), f >0, f # 0, and h € C(Ry), h > 0.
Define A to be the set of A > 0 so that the problem

{ —Au=XNf(z)+h(uw), u>0 in; ulpp =0,

(Bx) we W2 (2) N CL (D),

has at least one solution. There exists \* € |0, 00| such that
10, \*[ € A C]0,\*].
Moreover, for each solution u of (Py) there exists ¢ = ¢(\) > 0 such that

cilcp <u < cp.

Finally,
lim h(u)/u=0= \" = oo;
lim h(u)/u > 0= A" < occ.

u—00

Remark. If fe M"P(2)NC%*(£2), h € CO*(R%)NC(R;) and 0 <
i < 1 then every solution of (Py) is a classical solution, i.e. it belongs to

C2(2) N CY(D).

2. Preparatory results and proof of the Theorem. Let G(x,y)
be the Green function of —A with the Dirichlet condition on 0f2. From
the properties of G(z,y) and ¢(x) it follows that there exists a continuous
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extension of G(z,y)/p(x) to 2 x 2\ {(z,z) | + € RN} (see [8; 12]), which
we denote as N(z,y). Let G and N be the operators

G)(z) = | Gz, y)(y)dy, N()(x)= | Nz, y)v(y)dy.
2 2

From Corollary 12 and Lemma 14 of [8] it follows that
M"™P(§2) C DomG, M"P(§2) C Dom N.
THEOREM 1 ([8, Lemma 13; 9, Theorems 5 and 6]). (1) G(v) and N(v)

belong to C(£2) for all v € M™P(S2).

(2) For every F C M™P(£2) and 5 € M"™P(£2), if |v| < B a.e. in 2 for
all v € F, then G(F) and N(F) are relatively compact in C(£2).

(3) Let v, € M™P(£2), n € N, and f € M"P(§2). If v, — v in measure
and |v,| < B a.e. in 2, then v € M™P(§2) and G(v,) — G(v), N(v,) —
N(v) in C(£2).

THEOREM 2 ([8, Theorem 16; 9, Theorem 8)). For all f € M"™P(S2), the
function uw = G(f) belongs to I/Vlicr(ﬁ) NCY(2) and it is the unique solution
of the problem

(4) —Au=f in 2, ulan =0.

THEOREM 3 ([8, Theorem 9; 10, Lemma 6]). Given f € M™P((2), f >0,
f #0 there exist m = m(f) >0 and M = M(f) > 0 such that the solution
u of (4) satisfies the estimates

mep(z) <u(z) < Mp(x), =€

To prove the Theorem we need some general results on semilinear prob-
lems

(5) —Au=k(z,u) in 2, wulspn =0,

where k(x,u) is a positive Carathéodory function defined in 2 x Ry (k(-,u)
is measurable for every u > 0, and k(z, ) is continuous for a.e. z € £2).

THEOREM 4. Let u,u € C(£2) and € M™P(£2). If
v € [pu, gu] = [k(-,v)| < B a.e. in 2 and N(k(-,v)) € [u, 7],
then there exists a solution u € VVI?)CT N CY(2) N [pu, ¢u] of (5).

Proof. Since k(-,v) € M™P(£2) and v € [pu, pu], by Theorem 2 there
exists a solution U(v) € W2 (2)NC(2) of (5) and U(v) = G(k(-,v)). The
hypothesis implies that U(v) € [¢pu, pu]. By Theorem 1 and the Schauder
Theorem, U has at least one fixed point. From Theorem 2, this fixed point

is a solution of (5). m
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E(x,u) is called sublinear as u — oo if there exists b € M™P(£2) with
0 < b(x) for a.e. x € 2 such that

(6) lim HEY

uniformly with respect to a.e. x € 2. The hypotheses of the preceding
theorem are satisfied if k(z,u) is sublinear as u — co. Therefore we obtain:
THEOREM 5. If k(z,u) is sublinear as u — oo and supg<,<4 k(-,t) €
M™P(82) for all s > 0, then there exist R > 0 and a solution u € Wli: N
Cl(2) N[0, Ry] of (5).
Proof. Since for all v € C’((_Z with 0 < v we have
)

)
< max k(z,u),

k
(@ vle) 0<us|vf o
it follows that k(-,v) € M"™P(£2). Let U(v) = G(k(-,v)), a positive solution
of (5).
Now we observe that
1
(7) lim =N (k(-,v)) =0,

R—0
uniformly with respect to v in [0, Ry] and x € 2. For ¢ > 0, there exists
sp > 0 such that
so < u = k(z,u) <eb(x)u for a.e. x € (2.

Then it follows that
Nk ) @osocre = (] + | )N @ p)k(y, o) dy

v<sp so<v

< IN( sup k()| +eN(bv)(@)|o<v< Ry
0<v<sg

< IN( sup k(- v))|oo + R[N (bp)] o
0<v<sg

From this (7) follows.
Let R > 0 (independent of =) be such that

0<v<Rp=0<N(k(,v)) <R<=0<Gk(-v)) < Re.
By virtue of the previous theorem the assertion follows. m

Proof of Theorem. Firstly we observe that for all v € C(£2) and
A >0,

MJHR) € M), AT+ sup () € M)
0<u<|v] e
Therefore, putting hg := sup{h(s) | 0 < s < |p|s }, from Corollary 12 of [§]
we have |[N(f 4+ hg)|co < 00.



Semilinear elliptic eigenvalue problem 293

Now the proof is divided into five steps.
STEP 1. Since for every v € [0, ¢] we have
0 < NA(S + h(v)l(z) < AN + ho)loe < 1,

from Theorem 4 we conclude that (P)) has at least one solution. Then
10, 1/IN(f + ho)lc] € A.
STEP 2. To prove that A is an interval we show that
AeAN O<u<A=pue A
Let uy be a solution of (P)), and consider the function
k(x,u) = p(f(2) + h(min{u, ux()})).
The following properties are valid:
0 < k(z,u), k(z,u)#0;
0 <k(,u) € M"P(£2);
0 < k(z,u) sublinear as u — 0.
From Theorem 5 we know that there exists u, € Wli: (2)NCL(N) such that
—Auy, = k(z,u,), 0<wu, inf2, wuulon=0.
Now we prove that u, < uy. Otherwise A = {z € 2 | u,(x) > uy(z)} # 0.
Since
r e A= —Au, = p(f(x) + h(min{u,(z), ur(x)}))
< A(f (@) + h(ua(x))) = —Auy,
we obtain
—Auy —uy) <0 in A and  (u, —un)lsa = 0.
By the Maximum Principle (see [5]), u,, < uy in A. But this is not true since

A # 0. Therefore u, < uy.
We conclude that u, is a solution of (Py), and so € A.

STEP 3. The estimate for positive solutions of (Py) follows by Theorem 3.
STEP 4. Let lim,_, h(u)/u = 0; the Carathéodory function
k(x,u) = A(f(z) + h(u))
is positive and sublinear. In fact, the function b(x) := 1+ f(x) belongs to
M™P(£2) and (6) is satisfied. From the previous theorem, (P) has at least
one solution u. Moreover, if u € Wli: (2)NCY(N) is a solution of
—Au= f(z), u>0 in 2, wulgno =0,

(see Theorem 2), from the Maximum Principle we deduce A\u < u. Since by
virtue of Theorem 3, u > 0, we conclude that u > 0.
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STEP 5. Let lim h(u)/u > 0. There exist s > 0 and m > 0 such

= U—00

that h(u) > mu for u > sg. Arguing by contradiction, suppose that \* = oc.
From the Maximum Principle (see [5]) it follows that Au < uy. Let Ao > 0
be such that the open set T'= {z € 2| so < Mu(z)} is not empty. Hence,
putting 2\ = {x € 2| sp < ux(z)}, we obtain
A0§A2>TCQ>\:>0<|T|§|_Q,\|
Then
S0
S uxpdr > A Sggodx > A— S pdz
Ao
2 T T
and (. ¢ dx > 0 (see [8, Theorem 9]) imply

(8) lim S uxp dx = oo.
A—00 o

Therefore since u) is a solution of (P)) it follows that

A1 Suxgodx:)\xfgpdat—l-)\Sh(u)\)godx > )\ngpda:—l—)\m S urp dx.

2 0 19, 0 2
Then
A S uxpdxr + Ay S uAgodxz)\ngodx—l-)\m S uxp dx
25 2\ 2 19, 2\
= (A — Am) S uxp dr + Ao S gpda:ZAngpda:.
QA \Q\\Q)\ 2

This inequality is impossible, because, from (8), the first term goes to —oo
as A — 00. Therefore the original assumption is false. Thus \* < c0. =
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