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Abstract. The classical identification of the predual of B(H) (the algebra of all bounded
operators on a Hilbert space H) with the projective operator space tensor product H⊗̂H is
extended to the context of Hilbert modules over commutative von Neumann algebras. Each
bounded module homomorphism b between Hilbert modules over a general C∗-algebra is shown
to be completely bounded with ‖b‖cb = ‖b‖. The so called projective operator tensor product of
two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y
is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X
and Y over C.

0. Introduction. Recently the theory of tensor products of operator spaces has evo-

lved considerably (see e.g. [6], [18]). The present paper is an attempt to put a part of

this theory in a broader context of operator modules in which the role of the compex

field C is played by a von Neumann algebra. It is well known, for example, that B(H)

(the space of all bounded linear operators on a Hilbert space H) is isometric to the

dual of the projective tensor product H
∧
⊗H. (In [15] and [2] a more recent improvement

of this result can be found and in [12] there is even an extension to general von Neu-

mann algebras instead of B(H).) Here we shall present a generalization of this classical

result to Hilbert modules. To achieve this, we have first to extend some parts of the

theory of tensor products of operator spaces to operator modules. We have tried to make

this paper accessible to everyone familiar with basic notions of functional analysis and

operator algebras (and the definition of algebraic tensor product of vector spaces), so

all the necessary background concerning operator spaces, completely bounded mappings

and Hilbert modules will be explained below. (For a more complete treatment, howe-

ver, see [28], [32] and [11] for operator spaces and [23], [27], [30] and [20] for Hilbert

modules.)
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In Section 1 we shall review some basic facts concerning operator spaces, completely

bounded mappings, the Haagerup tensor product and the projective operator tensor

product of operator spaces. In Section 2 we look at the two tensor products in the

context of operator modules over von Neumann algebras. In Section 3 Hilbert modules

are introduced and it is proved in particular that each bounded homomorphism between

two Hilbert modules over a C∗-algebra is automatically completely bounded with the

completely bounded norm equal to the usual norm (Theorem 3.3). In the case of Hilbert

spaces this result was proved earlier by Effros and Ruan [15]. In Section 4 it is explained

how a Hilbert module E over a von Neumann algebra can be represented as a concrete

space of operators between two Hilbert spaces so that its weak operator closure is self

dual. The fact that E can be embedded into a self dual module has been proved previously

by Paschke [27] and Rieffel [30], but here we give a different proof, based on the so called

linking algebra of E, a technique that gives some additional information. Finally, in

Section 5 the above mentioned Hilbert space duality is extended to Hilbert modules. It

is also proved that for an abelian von Neumann algebra C the Haagerup tensor product

X⊗h
CE, whereX is an operator C-module and E is a Hilbert C-module, coincides with the

projective operator tensor product X
∧
⊗CE. In the case C = C this was proved previously

by Effros and Ruan [15].

A few months after the first version of this paper was submitted we received the

information from D. P. Blecher that Theorem 3.3 was proved also by the authors of [3]

and [5] and independently by L. G. Brown (unpublished) at least for the case of operators

that have adjoints. In fact in [3] and [5] the concept of a Hilbert module is generalized to

the context of non-self-adjoint operator algebras and it is shown in particular that a Hil-

bert module over a C∗-algebra is completely determined by its operator space structure.

Related questions are studied also in the recent paper [4].

1. Completely bounded operators and tensor products. An operator space

is a subspace of B(H) (H a Hilbert space). For each operator space X and positive

integer n the space Mn(X) of all n × n matrices with entries in X is a subspace of

Mn(B(H)) = B(Hn) and inherits from B(Hn) a norm. A linear mapping Φ : X → Y

between two operator spaces induces for each n a mapping

Φn : Mn(X)→ Mn(Y ), Φn([xij ])
def
= [Φ(xij)].

Φ is called completely bounded iff

‖Φ‖cb
def
= sup

n
‖Φn‖ <∞

and the quantity ‖Φ‖cb is the completely bounded norm of Φ. If all the maps Φn are

isometries, Φ is called a complete isometry. The space of all completely bounded mappings

from an operator space X to an operator space Y will be denoted by CB(X,Y ) and by

CB(X) if Y = X.

Given an operator space X, the norms on various spaces Mn(X) satisfy the following

two conditions:

(i) ‖αxβ‖ ≤ ‖α‖‖x‖‖β‖ (α, β ∈ Mn(C), x ∈ Mn(X));
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(ii) ‖
[
x 0

0 y

]
‖ = max {‖x‖, ‖y‖} (x ∈ Mm(X), y ∈ Mn(Y ), m, n arbitrary).

Ruan [31] proved that these two conditions characterize operator spaces: if X is a complex

vector space such that each of the spaces Mn(X) is equipped with a norm so that the

conditions (i) and (ii) are satisfied, then X is completely isometric to a linear subspace

of B(H) for some Hilbert space H. (A shorter proof of this is in [17].) We shall use the

name ‘operator space’ also for any abstract space X such that each of the spaces Mn(X)

carries a norm, whereby the conditions (i) and (ii) are satisfied. It follows easily from

Ruan’s theorem that the quotient of an operator space by a closed subspace is again an

operator space (see [31]). Given an operator space X, for every positive integers m, n

the space of rectangular matrices Mm,n(X) is also equipped with a norm obtained by

completing each rectangular matrix to a square matrix by zero entries.

If X and Y are operator spaces, various natural norms can be introduced on the

algebraic tensor product X⊗Y for which X⊗Y becomes an operator space. Here we shall

need only two such norms: the Haagerup and the projective operator space norm (for other

norms see [6]). Given x ∈ Mm,n(X) and y ∈ Mn,l(Y ) the element x� y ∈ Mm,l(X ⊗ Y )

is defined by

x� y = [

n∑
j=1

xij ⊗ yjk].

(This resembles formally the usual matrix multiplication.) For each m the Haagerup norm

on Mm(X ⊗ Y ) is defined by

(1.1) ‖t‖h = inf{‖x‖‖y‖ : t = x� y, x ∈ Mm,n(X), y ∈ Mn,m(Y ), n ∈ N}.

It is not obvious that (1.1) defines a norm on the whole space Mm(X ⊗ Y ). The proof

of the triangle inequality can be found in [13]. To see that ‖t‖h = 0 implies t = 0 for

t ∈ Mm(X ⊗ Y ), we may suppose that X ⊆ B(H) and Y ⊆ B(K) for some Hilbert spaces

H and K, and let t = x � y, where x ∈ Mm,n(X) ⊆ B(Hn,Hm) and y ∈ Mn,m(Y ) ⊆
B(Km,Kn). Denoting by t̃ the map from B(Kn,Hn) to B(Km,Hm) defined by

t̃(a) = xay (a ∈ B(Kn,Hn)),

we easily have that ‖t̃‖cb ≤ ‖x‖‖y‖ for any representation of t in the form t = x � y.

Hence

‖t̃‖cb ≤ ‖t‖h,
which shows that ‖t‖h = 0 implies t=0 (since the map t 7→ t̃ is easily seen to be one to

one). In fact, it follows from [33] that the correspondence t 7→ t̃ defines a complete isome-

try from (X⊗Y, ‖ ‖h) to CB(B(K,H)). The completion X⊗hY of X⊗Y in the Haagerup

norm is called the Haagerup tensor product of X and Y . Identifying Mm(X⊗hY ) with

the completion of Mm(X ⊗ Y ) in the Haagerup norm for each m, X⊗hY is an operator

space.

Given operator spaces X and Y and x ∈ Mm,n(X), y ∈ Mk,l(Y ) (where m,n, k, l are

arbitrary positive integers), it is customary to denote by x ⊗ y the matrix in

Mmk,nl(X ⊗ Y ) with entries

(x⊗ y)i,j = xi1j1 ⊗ yi2j2 ,
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where i = (i1, i2), j = (j1, j2) and the pairs i (and j) are ordered lexicographically. For

each t ∈ Mn(X ⊗ Y ) let

(1.2) ‖t‖∧ = inf{‖α‖‖β‖‖x‖‖y‖ : t = α(x⊗ y)β},

where the infimum is over all x ∈ Mk(X), y ∈ Ml(Y ), α ∈ Mn,kl(C) and β ∈ Mkl,n(C)

(over all k, l). An elementary proof of the fact that (1.2) defines a norm on Mn(X ⊗ Y )

which dominates the Haagerup norm for each n and that in this way X ⊗ Y becomes

an operator space is in [16]. The completion X
∧
⊗Y of X ⊗ Y in the norm ‖ ‖∧ is called

the projective operator tensor product of X and Y . (By [6] the norm ‖ ‖∧ is the largest

among all operator space cross norms.)

2. The two tensor products of operator modules. A subspace X ⊆ B(H) is

a right (respectively, a left) operator module over a C∗-algebra R ⊆ B(H) iff XR ⊆
X (respectively, RX ⊆ X). Operator modules can be characterized in an abstract

(= representation free) way [14].

Given a right R-moduleX and a left R-module Y , the algebraic tensor productX⊗RY

is by definition the quotient of X ⊗ Y by the subspace N spanned by all elements of the

form xr ⊗ y − x ⊗ ry, where x ∈ X, y ∈ Y and r ∈ R. If R ⊆ B(H) is a von Neumann

algebra with commutant R′ and X,Y ⊆ B(H), then N is a closed subspace of X ⊗ Y ,

where X ⊗ Y is equipped with the Haagerup norm. This can be shown by considering

the contraction

µ : X ⊗ Y → CB(R′,B(H)),

defined by

µ(

n∑
j=1

xj ⊗ yj)(r′) =

n∑
j=1

xjr
′yj (r′ ∈ R′).

It is not hard to see that the kernel of µ is precisely the subspace N [24], so N is closed.

Since N is closed, we can equip the quotient space X⊗R Y = (X⊗Y )/N by the quotient

norm. This quotient norm will be called simply the Haagerup norm on X ⊗R Y . The

completion of X ⊗R Y in the Haagerup norm is the Haagerup tensor product of X and Y

over R, denoted by X⊗h
RY . Basic properties of the Haagerup tensor product of modules

are studied recently also in [5].

It was proved in [24] that the above defined map µ induces an isometry from X⊗h
RY

to CB(R′,B(H)), and it is not hard to deduce that this is in fact a complete isometry

(see [25]). Hence we shall from now on regard X⊗h
RY as a subspace of CB(R′,B(H))

whenever convenient. In particular, for each row matrix x ∈ M1,n(X) and each column

matrix y ∈ Mn,1(Y ) we denote the equivalence class of x � y in X⊗h
RY by x �R y and

we regard x�R y as a map in CB(R′,B(H)), given by

(2.1) (x�R y)(r′) = xr′
(n)
y (r′ ∈ R′),

where r′
(n)

is the direct sum of n copies of r′. It will be convenient to use this notation

also for infinite rows and columns. First we choose a sufficiently large cardinal I such that

any family of non-zero operators {ai} in B(H) for which the sum
∑

i a
∗
i ai is in B(H) has

cardinality at most I. (Here the infinite sum means the least upper bound of the net of all
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finite subsums.) For example, I may be the cardinality of an orthonormal basis of H (or

I is the countably infinite cardinal if H is finite dimensional). Then we denote by R(X)

the set of all rows x with the entries xi in X such that the sum
∑

i∈I xix
∗
i converges to a

bounded operator (in the strong operator topology); in particular R(B(H)) = B(HI ,H).

The space of columns, C(X), is defined similarly (thus C(X) ⊆ B(H,HI)). Now for each

x ∈ R(X) and y ∈ C(Y ) we define x�Ry to be the element of CB(R′,B(H)) given by (2.1).

The space of all completely bounded maps of the form x�R y (x ∈ R(X), y ∈ C(Y ))

is called the full Haagerup tensor product of X and Y over R and it is denoted by X⊗h
RY .

It is easy to verify that X⊗h
RY is a linear subspace of CB(R′,B(H)). For example,

the sum of two elements can be expressed as

x�R y + v �R w = [x, v]�R

[
y

w

]
,

where [x, v] can be regarded as an element of R(X) since I is infinite and similarly for

the column (y, w).

As customary in the theory of operator spaces, we shall use the notation (x1, x2, . . .)

for a column vector and [x1, x2, . . .] for a row vector.

If X and Y are weak* closed subspaces of B(H) and R = C, the above defined tensor

product X⊗h
RY coincides with the weak* Haagerup tensor product of Blecher and Smith

[7]. The basic result concerning this product is the following theorem. We denote by

NCB(R′,B(H)) the space of all normal (= weak* continuous) completely bounded linear

maps from R′ to B(H).

Theorem 2.1. If R ⊆ B(H) is a von Neumann algebra and X,Y ⊆ B(H) are

weak* closed subspaces such that XR = X and RY = Y , then X⊗h
RY is a subspace

of NCB(R′,B(H)) containing X⊗h
RY and the norm of each element t ∈ X⊗h

RY can be

expressed as

‖t‖cb = inf{‖x‖‖y‖ : t = x� y, x ∈ R(X), y ∈ C(Y )}.
Moreover, a similar conclusion holds for the norm of elements of Mn(X⊗h

RY ) for each

positive integer n, since Mn(X⊗h
RY ) is naturally completely isometrically isomorphic to

Mn,1(X)⊗h
RM1,n(Y ).

In the special case R = C Theorem 2.1 is proved in [7]. The proof of Theorem 2.1

can be found in [25] (in a more general context of strong operator modules) and it will

be sketched also in the appendix to this paper. It was proved by Halpern in [19] that

for each von Neumann algebra R there exists a faithful representation π such that the

restriction of π to the center C of R is normal and π(R)′ = π(C). If we use this result and

the completely isometric inclusion of B(H)⊗h
RB(H) into NCB(R′,B(H)), it is not hard

to deduce the following theorem (see [24]), which has been proved in a different way by

Chatterjee and Smith [10].

Theorem 2.2 [10]. Let R be a von Neumann algebra and C the center of R. Then the

natural map

ϑ : R⊗h
CR→ CB(R), ϑ(x⊗C y)(r) = xry

is completely isometric.
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In case R is a factor, Theorem 2.2 was proved by Chatterjee and Sinclair in [9]. An

extension of Theorem 2.2 to the setting of C∗-algebras is obtained in [1].

If C ⊆ B(H) is a commutative von Neumann algebra, then C ⊆ C ′, so C ′ is a

C-bimodule. It follows from [24, Theorem 1.2] that each normal completely bounded

C-module homomorphism t from C ′ to B(H) can be represented in the form t = x�C y

for some x ∈ R(C ′) and y ∈ C(C ′). Hence the range of t is contained in C ′ and we deduce

the following.

Proposition 2.3. If C ⊆ B(H) is a commutative von Neumann algebra, then

NCBC(C ′) = C ′⊗h
CC
′, where NCBC(C ′) is the space of all normal completely bounded

C-module homomorphisms on C ′.

If X and Y are operator bimodules over a commutative von Neumann algebra C such

that X and Y commute with C, then the subspace N of X⊗Y generated by all elements

of the form xc ⊗ y − x ⊗ cy (x ∈ X, y ∈ Y , c ∈ C) is obviously a C-subbimodule of

X ⊗ Y , hence the quotient X ⊗C Y = (X ⊗ Y )/N is a C-bimodule. We define for each n

the projective operator norm in Mn(X ⊗C Y ) by

(2.2) ‖t‖∧ = inf{‖a‖‖b‖‖x‖‖y‖ : t = a(x⊗C y)b},
where the infimum is over all x ∈ Ml(X), y ∈ Mk(Y ), a ∈ Mn,kl(C) and b ∈ Mkl,n(C)

(with variable k and l). Here the symbol x⊗C y is, of course, defined by

x⊗C y
def
= [xi1j1 ⊗C yi2j2 ] = x⊗ y + Mkl(N).

The completion of X ⊗C Y in the norm ‖ ‖∧ is called the projective operator tensor

product of X and Y over C and is denoted by X
∧
⊗CY .

Theorem 2.4. If X and Y are operator bimodules over an abelian von Neumann

algebra C such that xc = cx and yc = cy for all c ∈ C, x ∈ X and y ∈ Y , then X
∧
⊗CY

is an operator space and the norm ‖ ‖∧ on Mn(X ⊗C Y ) dominates the Haagerup norm

for each n.

Theorem 2.4 is an extension of Theorem 3.1 from [16], where the special case C = C

is proved; since the proof is the same as in this special case, it will be omitted here.

3. Hilbert modules as operator spaces. A right Hilbert module over a C∗-algebra

A is a right A-module E equipped with a map 〈 , 〉 : E×E → A, called the inner product,

such that for all x, y, z ∈ E and a ∈ A the following familiar conditions are satisfied:

(i) 〈x, ya+ z〉 = 〈x, y〉a+ 〈x, z〉;
(ii) 〈y, x〉 = 〈x, y〉∗;
(iii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 implies that x = 0.

Moreover, the norm is introduced on E by ‖x‖def= ‖〈x, x〉‖1/2 and it is required that E is

complete for this norm.

Left Hilbert modules are defined in a similar way (the inner product is now A-linear

in the first factor). By a Hilbert module we shall always mean a right Hilbert module.

Hilbert modules were introduced by Kaplansky [22] in the case A is commutative and

later they were studied by Paschke [27] and Rieffel [30] for a general A. Today Hilbert
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modules are one of the basic tools in operator K-theory [20]. A basic example of a Hilbert

A-module is E = A with the inner product 〈x, y〉 = x∗y; another example is any closed

right ideal in A with the same A-valued inner product. For a fuller account of the theory

of Hilbert modules see [23].

Not every bounded A-module homomorphism b : E → F , where E and F are Hilbert

modules, has an adjoint b∗ : F → E in the usual sense that 〈x, b∗y〉 = 〈bx, y〉 for all

x ∈ E, y ∈ F (see [27] for a concrete example). The space of all linear maps b : E → F

that have an adjoint is denoted by L(E,F ) (or by L(E), if F = E), while the space of all

bounded A-module homomorphisms from E to F is denoted by BA(E,F ). It is not hard

to see that L(E,F ) ⊆ BA(E,F ) (see [27]). For each x ∈ E and y ∈ F there is a ‘rank

one’ operator [y, x] ∈ L(E,F ) defined by

[y, x]z = y〈x, z〉 (z ∈ E).

L(E) is a C∗-algebra and [·, ·] is an L(E)-valued inner product on E for which E becomes

a left Hilbert module over L(E).

Now we shall show how a Hilbert A-module E can be always embedded into a certain

C∗-algebra Λ(E). Denote by F = E ⊕ A the Hilbert A-module consisting of columns

(x, a) (x ∈ E, a ∈ A) and equipped with the obvious inner product

〈(x1, a1), (x2, a2)〉 = 〈x1, x2〉+ a∗1a2.

Identify each x ∈ X with the operator from A to X defined by a 7→ xa and observe that

the adjoint of this operator is given by x∗(y) = 〈x, y〉 (y ∈ X). Let Λ(E) be the subset

of L(F ) consisting of all operators that can be represented by matrices of the form[
b x

y∗ a

]
(a ∈ A, x, y ∈ E, b ∈ L(E)).

It is easy to verify that Λ(E) is a C∗-subalgebra of L(F ), called the linking algebra of

E. This construction was introduced by Brown, Green and Rieffel in [8] (in a slightly

different way with L(E) replaced by a certain subalgebra K(E); see also [5]). The subset

E∗ = {x∗ : x ∈ E} of Λ(E) is called the conjugate module of E.

Λ(E) will enable us to exploit the representation theory of C∗-algebras in studying

E. We shall identify A, E and L
def
= L(E) with subsets of Λ(E) in the obvious way:

A ∼=
[

0 0

0 A

]
, E ∼=

[
0 E

0 0

]
, L ∼=

[
L 0

0 0

]
.

After this identifications, the A-valued inner product 〈x, y〉 of E becomes simply the

product x∗y in Λ(E) and the module multiplication E × A → E becomes a part of the

internal multiplication of Λ(E).

Suppose now that π : Λ(E)→ B(H) is a representation of Λ(E). (By a representation

of a C∗-algebra we always mean a *-representation.) Then by restriction π defines two

maps ϕ = π|A and Φ = π|E which together constitute a representation of the Hilbert

module E in the following sense.

A representation of a Hilbert A-module E is a pair of maps (Φ, ϕ) such that ϕ : A→
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B(H) is a representation of the C∗-algebra A and Φ : E → B(H) is a linear map satisfying

(3.1) ϕ(〈x, y〉) = Φ(x)∗Φ(y) (x, y ∈ E)

and (consequently)

(3.2) Φ(xa) = Φ(x)ϕ(a) (x ∈ E, a ∈ A).

Note that if ϕ is faithful (hence isometric) the identity (3.1) implies that Φ is isometric.

Since Λ(E) (as any C∗-algebra) can be faithfully represented on a Hilbert space H
(see [21] or [26]), it follows that E can be isometrically embedded into B(H), hence E

can be given the structure of an operator space.

Given a Hilbert A-module E, the direct sum En of n copies of E is of course a Hilbert

A-module for the inner product

〈x, y〉 =

n∑
j=1

〈xj , yj〉 (x, y ∈ En).

Lemma 3.1. For arbitrary Hilbert A-modules E and F the space BA(E,F ) of all

bounded A-module homomorphisms from E to F becomes an (abstract) operator space by

the identification

Mn(BA(E,F )) = BA(En, Fn)

for each positive integer n.

P r o o f. We must show that the Ruan conditions (i) and (ii) stated in Section 1 are

satisfied. Only the second condition, namely that

‖b⊕ c‖ = max{‖b‖, ‖c‖}

for arbitrary b ∈ BA(Em, Fm) and c ∈ BA(En, Fn), is not completely trivial. But, by

a result of Paschke [27] each bounded homomorphism d between arbitrary Hilbert A-

modules E0 and F0 satisfies 〈dz, dz〉 ≤ ‖d‖2〈z, z〉 for each z ∈ E0. Applying this to the

homomorphisms b and c we find that

〈(b⊕ c)(x, y), (b⊕ c)(x, y)〉 ≤ max{‖b‖2, ‖c‖2}‖(x, y)‖2

for all x ∈ Em and y ∈ En. This means that ‖b⊕ c‖ ≤ max{‖b‖, ‖c‖} and the reverse

inequality is obvious.

Lemma 3.2. Given a Hilbert A-module E, the norm of an arbitrary matrix x = [xij ] ∈
Mn(E) satisfies

(3.3) ‖x‖ = sup{‖
∑n

i,j=1 〈yi, xij〉aj‖ : yi ∈ E, aj ∈ A,
n∑

i=1

〈yi, yi〉 ≤ 1,

n∑
j=1

a∗jaj ≤ 1}.

(Here E is an operator space as a subspace of the C∗-algebra Λ(E).)

P r o o f. The elements of the Hilbert A-module E⊕A are columns (x, a) (x ∈ E, a ∈
A), so the elements of the conjugate module (E ⊕ A)∗ are considered as rows [x∗, a∗]

(x∗ ∈ E∗, a ∈ A). We let Λ(E) act on (E ⊕ A)∗ by the matrix multiplication from

the right, which defines a *-antimonomorphism from Λ(E) into L((E ⊕ A)∗), hence an

isometric embedding. Similarly, for each n the C∗-algebra Mn(Λ(E)) acts on (E ⊕ A)∗n

by the matrix multiplication from the right. The lemma follows now by noting that for
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each x ∈ Mn(E) the quantity on the right side of (3.3) is just the norm of the associated

operator on (E ⊕A)∗n.

Let CBA(E,F ) be the operator space of all completely bounded A-module homo-

morphisms from a Hilbert A-module E to a Hilbert A-module F , where for each n the

norm in Mn(CBA(E,F )) is introduced through the identification Mn(CBA(E,F )) =

CBA(E,Mn(F )). The following theorem was proved in the case A = C by Effros and

Ruan [15].

Theorem 3.3. Let E and F be Hilbert modules over a C∗-algebra A. Then for each

positive integer n and each b = [bij ] ∈ Mn(BA(E,F )) = BA(En, Fn) the map

b̃ : E → Mn(F ), b̃(x)
def
= [bij(x)]

is completely bounded with ‖b̃‖cb = ‖b‖. Thus, the operator spaces BA(E,F )

and CBA(E,F ) are the same.

P r o o f. First we shall prove the inequality ‖b̃‖cb ≤ ‖b‖. We may assume that ‖b‖ = 1.

Let x = [xkl] ∈ Mm(E), ‖x‖ ≤ 1 (m arbitrary). We have to show that the norm of the

matrix [bij(xkl)] ∈ Mmn(F ) is at most 1. By Lemma 3.2 this means that we have to prove

the inequality

(3.4) ‖
∑n

i,j=1

∑m
k,l=1 〈yik, bij(xkl)〉ajl‖ ≤ 1

for all y
def
= (yik) ∈ Fmn and a

def
= (ajl) ∈ Amn satisfying

(3.5)

n∑
i=1

m∑
k=1

〈yik, yik〉 ≤ 1 and

n∑
j=1

m∑
l=1

a∗jlajl ≤ 1.

For all k, j put

(3.6) zkj =

m∑
l=1

xklajl

and let

zk = (zk1, . . . , zkn) ∈ En and z = (z1, . . . , zm) ∈ Enm.

Since each bij is a homomorphism of right A-modules, the left side of (3.4) can be written

as ‖〈y, b(m)(z)〉‖, where b(m) is the direct sum of m copies of b. Hence by the Schwarz

inequality for the A-valued inner product (see [23, p. 3] or [27]) the left side of (3.4) is

less than or equal to ‖y‖‖b‖‖z‖, which is at most ‖z‖ (since ‖b‖ = 1 and ‖y‖ ≤ 1 by

(3.5)). So, it suffices now to prove that ‖z‖ ≤ 1.

For each j ∈ {1, . . . , n} put

aj = (aj1, . . . , ajm) ∈ Am and z̃j = (z1j , . . . , zmj) ∈ Em.

Then z̃j = xaj for each j by (3.6), hence z̃ = x(n)a, where z̃ = (z̃1, . . . , z̃n) ∈ Enm and

a = (a1, . . . , an) ∈ Anm. Since z can be obtained from z̃ by rearranging the components,

we have ‖z‖ = ‖z̃‖ and it follows easily (by using Lemma 3.2) that ‖z‖ ≤ ‖x(n)‖‖a‖ ≤ 1

(since ‖x‖ = 1 and ‖a‖ ≤ 1 by the second inequality in (3.5)). This proves (3.4) and

therefore ‖b̃‖cb ≤ ‖b‖.
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To prove the inequality ‖b‖ ≤ ‖b̃‖cb, let 0 < ε < 1 and choose v = (v1, . . . , vn) ∈ En

so that ‖v‖ = 1 and

(3.7) ‖bv‖ ≥ ‖b‖ − ε.

Note that Rn(E)
def
= M1,n(E) is a (right) Hilbert module over Mn(A) with the inner prod-

uct 〈t, w〉 = [〈ti, wj〉]. Let w = [v1, . . . , vn] (= the transpose of v) and put

|w| = 〈w,w〉1/2 ∈ Mn(A) and u = w(|w|+ ε)−1 ∈ Rn(E).

Observe that ‖w‖ ≤ n1/2. (Indeed, identifying w with the matrix in Mn(Λ(E)) which

has only the first row non-zero, we have ‖w‖2 = ‖w∗w‖ = ‖ww∗‖ = ‖
∑n

j=1 vjv
∗
j ‖ ≤∑n

j=1 ‖vj‖
2 ≤ n‖v‖2 = n.) Observe also that ‖u‖ ≤ 1. (Indeed, 〈u, u〉 = (|w| + ε)−1×

×〈w,w〉(|w|+ε)−1 ≤ 1.) Denote now by aij the entries of the matrix |w|+ε and consider

the column

a = (a11, . . . , a1n; . . . ; an1, . . . , ann) ∈ Mn2,1(A).

Since ‖w‖ ≤ n1/2 and

〈a, a〉 =

n∑
i,j=1

a∗ijaij =

n∑
i,j=1

ajiaij =

n∑
j=1

((|w|+ ε)2)jj

= 〈v, v〉+ 2ε

n∑
j=1

|w|jj + nε2 ≤ 1 + 2nε‖w‖+ nε2,

it follows that

(3.8) ‖a‖ ≤ 1 + n2ε.

From w = u(|w| + ε) we have vi =
∑n

j=1 ujaji for each i. Now the product of the

matrices [b̃(u1), . . . , b̃(un)] ∈ Mn,n2(F ) (where b̃ is as in the statement of the theorem)

and a ∈ Mn2,1(A) can be computed as

[b̃(u1), . . . , b̃(un)]a = (
∑n

i,j=1 b1i(uj)aji, . . . ,
∑n

i,j=1 bn,i(uj)aji)

= (
∑n

i=1 b1i(vi), . . . ,
∑n

i=1 bni(vi))

= b(v).

By using (3.8) and the fact ‖u‖ ≤ 1 it follows now that

‖b̃‖cb ≥ (1 + n2ε)−1‖b(v)‖.
By using then (3.7) and letting ε→ 0 it finally follows that ‖b̃‖cb ≥ ‖b‖.

Now we can easily deduce that any two faithful representations induce the same

operator space structure on a Hilbert module. Namely, if (Φ, ϕ) and (Ψ, ψ) are two faithful

representations of a Hilbert A-module E, then we can regard Φ(E) and Ψ(E) as Hilbert

A-modules so that ΨΦ−1 and ΦΨ−1 are isometric isomorphisms between them. Theorem

3.3 implies that these two isomorphisms are completely contractive, hence completely

isometric since they are inverse to each other.

4. An embedding into a self-dual module through a representation of the

linking algebra. A Hilbert module E over a C∗-algebra A is self-dual if every bounded

A-module homomorphism ρ : E → A is of the form ρ(x) = 〈v, x〉 for some v ∈ E. The
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following result, proved by Rieffel [30] (in a slightly different form), describes typical

self-dual modules over von Neumann algebras. To illustrate an application of Theorem

3.3, we shall sketch a simplification of Rieffel’s proof.

Theorem 4.1. Let R ⊆ B(H) be a von Neumann algebra, ϕ : R′ → B(K) a represen-

tation of the commutant R′ of R on a Hilbert space K and let

E = {x ∈ B(H,K) : xr′ = ϕ(r′)x (∀r′ ∈ R′)}.

Then E is a self-dual Hilbert R-module for the inner product 〈x, y〉 = x∗y and the module

operation xr (x ∈ E, r ∈ R) the composition of operators. Moreover, if [EH] = K, then

L(E) can be naturally identified with ϕ(R′)′.

S k e t c h o f t h e p r o o f. Since for every x, y ∈ E the operator x∗y ∈ B(H) com-

mutes with all r′ ∈ R′, the von Neumann bicommutation theorem shows that x∗y ∈ R.

We shall indicate only the proof of the self-duality of E, the fact that E is a Hilbert

module is trivial (the completeness follows also from self-duality). Given a bounded R-

module homomorphism ρ : E → R, we would like to find an operator v ∈ E such that

v∗x = 〈v, x〉 = ρ(x) for all x ∈ E. Thus, the adjoint v∗ : K → H of v must satisfy

(4.1) v∗(

n∑
j=1

xjξj) =

n∑
j=1

ρ(xj)ξj

for arbitrary finite subsets {x1, . . . , xn} ⊆ E and {ξ1, . . . , ξn} ⊆ H. To prove that there

exists a bounded operator v∗ satisfying (4.1), we regard Mn(E) as a (right) Hilbert

module over Mn(R) with the inner product

〈[xij ], [yjk]〉 = [

n∑
j=1

〈xji, yjk〉].

Put

x =


x1 . . . xn
0 . . . 0

. . . . . . . . .

0 . . . . . .

 .
Let ρn : Mn(E)→ Mn(R) be the map obtained by applying ρ to the entries of matrices.

From Theorem 3.3 (with F = R and n = 1) it follows that ‖ρn‖ ≤ ‖ρ‖; since ρn is a

homomorphism of Mn(R)-modules, the easier part of Theorem 2.8 from [27] shows that

〈ρn(x), ρn(x)〉 ≤ ‖ρ‖2〈x, x〉 or

[ρ(xi)
∗ρ(xj)] ≤ ‖ρ‖2[x∗i xj ],

where both sides are elements of Mn(R). This means that

‖
∑n

j=1 ρ(xj)ξj‖
2 ≤ ‖ρ‖2‖

∑n
j=1 xjξj‖

2

for all ξj ∈ H. Thus, there is a unique bounded operator v∗ : [EH]→ H satisfying (4.1).

Extending v∗ by linearity to an operator from K to H such that v∗([EH]⊥) = 0, it is

easy to verify that v ∈ E and ρ(x) = v∗x = 〈v, x〉 for all x ∈ E.

For each b ∈ ϕ(R′)′ define b̃ ∈ L(E) simply by b̃(x) = bx (the composition of op-

erators). It is straightforward to verify that the map b → b̃ is a *-homomorphism from
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ϕ(R′)′ to L(E), which is clearly one to one if [EH] = K. To see that this map is onto,

given b̃ ∈ L(E), define b first on the dense subspace EH of K by

b(

n∑
j=1

xjξj) =

n∑
j=1

b̃(xj)ξj (xj ∈ E, ξj ∈ H).

An argument similar to the one already given in the first part of this proof shows that b

is well defined (with ‖b‖ ≤ ‖b̃‖) and can be therefore extended to an operator b ∈ B(K);

moreover b ∈ ϕ(R′)′ and bx = b̃(x) for all x ∈ E.

We shall now describe a special representation of the linking algebra showing in partic-

ular that a Hilbert module over a von Neumann algebra can be embedded into a self-dual

Hilbert module. This last result was proved in a different way by Paschke [27] and Rieffel

[30].

A Hilbert module E over a von Neumann algebra R is called faithful iff the ideal

〈E,E〉 is dense in R in the weak* topology.

Let E be a faithful Hilbert module over a von Neumann algebra R ⊆ B(H) and put

L = L(E) and Λ = Λ(E). By a well known result (see [26, 5.5.1]) there exists a Hilbert

space L ⊇ H and a representation π : Λ→ B(L) such that π(r) = r for each r ∈ R. Since

the subspace

Kdef
= [π(E)H]

of L is invariant under π(L), we have a subrepresentation

ψ : L→ B(K), ψ(b) = π(b)|K.

Denote by p the identity element of R. Since px = 0 for all x ∈ E (the product is

computed in Λ), we have 〈π(x)ξ, η〉 = 〈π(x)ξ, π(p)η〉 = 〈π(px)ξ, η〉 = 0 for all ξ, η ∈ H,

hence K ⊥ H. Define

Θ : E → B(H,K) by Θ(x) = π(x)|H.

Note that

[π(E)∗K] = [π(E)∗π(E)H] = [π(〈E,E〉)H] = [RH] = H
since E is faithful over R, hence

[π(L)H] = [π(L)π(E)∗K] = [π(LE∗)K] = 0

since LE∗ = 0 (the product and * are computed in Λ). Similarly π(R)K = 0. It is

therefore easy to see that L0
def
=K ⊕H is an invariant subspace for π(Λ), so, replacing L

by L0 and π by π|L0, we may assume that

K ⊕H = L.

Since π is a representation, we have

(4.2) Θ(x)∗Θ(y) = 〈x, y〉, Θ(x)Θ(y)∗ = ψ([x, y]) (x, y ∈ E)

and

(4.3) Θ(bxr) = ψ(b)Θ(x)r (b ∈ L, r ∈ R, x ∈ E).
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We claim that Θ and ψ are one-to-one. In fact, the first equality in (4.2) implies that

Θ is isometric. If b ∈ kerψ, then Θ(bx) = 0 for all x ∈ E by (4.3), hence bE = 0 and

b = 0.

Since R is weak* closed, the weak* closure of π(Λ) in B(L) has the form

π(Λ) =

[
ψ(L) Θ(E)

Θ(E)
∗

R

]
.

We shall show that Θ(E) is a self-dual Hilbert R-module of the form described in Theorem

4.1. To see this, we first compute the commutant of π(Λ) in B(K ⊕ H). Evidently each

element of π(Λ)′ is of the form [
b′ 0

0 r′

]
,

where b′ ∈ ψ(L)′, r′ ∈ R′ and

b′y = yr′, b′
∗
y = yr′

∗
for all y ∈ Θ(E).

Observe now that for each r′ ∈ R′ there is a unique element in B(K), denoted by ϕ(r′),

such that ϕ(r′)y = yr′ for all y ∈ Θ(E). (Indeed, the uniqueness follows from K =

[Θ(E)H]. To prove the existence, we may assume that r′ is unitary, since in general r′

is a linear combination of at most four unitaries, and note that then ‖
∑n

j=1 yjr
′ξj‖

2
=

‖
∑n

j=1 yjξj‖
2

for arbitrary finite sets {y1, . . . , yn} ⊆ Θ(E) and {ξ1, . . . , ξn} ⊆ H since

y∗i yj ∈ R by (4.2).) It is easy to check that ϕ(r′) ∈ ψ(L)′ for all r′ ∈ R′ and that ϕ is a

*-homomorphism from R′ into ψ(L)′. We conclude that

π(Λ)′ = {
[
ϕ(r′) 0

0 r′

]
: r′ ∈ R′}.

Moreover, since [Θ(E)∗K] = H, a similar argument shows that for each b′ ∈ ψ(L)′ there

is a unique σ(b′) ∈ R′ satisfying σ(b′)y∗ = y∗b′ for all y ∈ Θ(E) and it is easy to verify

that σ is inverse to ϕ, hence ϕ is a ∗-isomorphism from R′ to ψ(L)′.

Put now

F = {y ∈ B(H,K) : ϕ(r′)y = yr′ (∀r′ ∈ R′)}.
From the above description of π(Λ)′ we immediately compute that

π(Λ)′′ = {
[
b x

y∗ r

]
: r ∈ R, b ∈ ψ(L)′′, x, y ∈ F}.

From π(Λ)′′ = π(Λ) it then follows that Θ(E) = F . By Theorem 4.1 F is a self-dual

Hilbert R-module and we have L(F ) = ϕ(R′)′ = ψ(L)′′ = ψ(L). Note that each y ∈ F
defines a bounded module homomorphism from Θ(E) to R by x 7→ y∗x, hence F = Θ(E)

if E is self-dual. We summarize all these conclusions in the following theorem.

Theorem 4.2. Let E be a faithful Hilbert module over a von Neumann algebra R ⊆
B(H). Then there exist a Hilbert space K and a faithful representation π : Λ(E)→ B(K⊕
H) such that the restriction of π to R is the identity representation (and π(R)K = 0), the

restriction of π to L
def
= L(E) is a faithful representation ψ of L on K (and π(L)H = 0)

and the restriction of π to E defines an isometry Θ : E → B(H,K) such that [Θ(E)H] =
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K and the relations (4.2) and (4.3) are satisfied. Moreover, there exists a (necessarily

normal) *-isomorphism ϕ : R′ → ψ(R′)′ such that the weak* closure Θ(E) of Θ(E) is the

self-dual Hilbert R-module consisting of all y ∈ B(H,K) satisfying ϕ(r′)y = yr′ for all

r′ ∈ R′, while the weak* closure of ψ(L) coincides with ϕ(R′)′ = L(Θ(E)). Each bounded

module homomorphism from Θ(E) to R can be represented by a unique element of Θ(E).

If E is self-dual, then Θ(E) = Θ(E) and L(E) is a W ∗-algebra.

5. Duality. Now it is possible to extend the familiar duality betweenH
∧
⊗H and B(H),

where H is a Hilbert space, to the context of Hilbert modules. We shall first formulate the

result in terms of the Haagerup tensor product, then we show that this product coincides

with the projective operator tensor product if the second factor is a Hilbert module.

If E is a faithful self-dual Hilbert module over a von Neumann algebra R let E∗⊗̆h
RE

be the space of all completely bounded mappings from L(E) to R of the form

(x∗�̆Ry)(b) =
∑
i∈I
〈xi, byi〉 (b ∈ L(E)),

where I is a sufficiently large cardinal so that Λ(E) can be represented faithfully and

normally on a Hilbert space of dimension I and x, y are from the space C(E) of all

columns of length I that represent bounded operators and have components xi and yi
in E.

Theorem 5.1. Let R be a von Neumann algebra, C the center of R and E a faithful

(right) Hilbert R-module. Then the linear map

µ : E∗⊗h
CE → CB(L(E), R), µ(x∗ ⊗C y)(b) = 〈x, by〉 (x, y ∈ E, b ∈ L(E))

is completely isometric. If R = C (that is, if E is a Hilbert C-module) and E is self-dual,

then

E∗⊗̆h
CE = NCBC(L(E), C),

where NCBC(L(E), C) is the space of all normal completely bounded C-module homo-

morphisms from L(E) to C.

P r o o f. Let H be the Hilbert space on which R acts. By Theorem 4.2 there exist a

Hilbert space K and a faithful normal representation ϕ : R′ → B(K) such that E can

be identified with a subspace of B(H,K) in such a way that its weak* closure E consists

of all x ∈ B(H,K) satisfying xr′ = ϕ(r′)x for all r′ ∈ R′, L(E) = ϕ(R′)′ = L(E) and

K = [EH]. Note that the center C̃ of Λ(E) is

C̃ = {
[
ϕ(c) 0

0 c

]
: c ∈ C},

hence C̃ is isomorphic to C. Put L = L(E) and Λ = Λ(E). From Theorem 2.2 we have a

complete isometry

ϑ : Λ⊗h
C̃

Λ→ CB(Λ), ϑ(x∗ ⊗C̃ y)(a) = x∗ay.

If x, y ∈ E and b ∈ Λ is of the form

(5.1) b =

[
b̂ v

w∗ r

]
(v, w ∈ E, r ∈ R, b̂ ∈ L),
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then µ(x∗ ⊗C y)(b̂) = ϑ(x∗ ⊗C̃ y)(b) by a straightforward computation. By linearity

and continuity we then have µ(t)(b̂) = ϑ(t)(b) for all t ∈ E∗⊗h
CE and b ∈ Λ. Thus

µ(t)n(b̂) = ϑ(t)n(b) for all matrices b = [bij ] ∈ Mn(Λ) (n arbitrary), where b̂ = [b̂ij ] and

b̂ij ∈ L is the entry of bij on the position (1,1). Since ‖b̂‖ ≤ ‖b‖ for each b ∈ Mn(Λ) and

each n, it follows easily that ‖µ(t)‖cb = ‖ϑ(t)|Λ‖cb. By the Kaplansky density theorem

the unit ball of Mn(Λ) is strongly dense in the unit ball of Mn(Λ) for each n; since

the operators ϑ(t)n are strongly continuous, it follows that ‖ϑ(t)‖cb = ‖ϑ(t)|Λ‖cb and

we conclude that ‖µ(t)‖cb = ‖ϑ(t)‖cb = ‖t‖ for each t ∈ E∗⊗h
CE, where ‖t‖ denotes the

Haagerup norm (see Theorem 2.1). This proves that µ is isometric and a similar argument

shows that µ is in fact completely isometric.

Suppose now that R = C and E is self-dual, hence E = E and Λ = Λ. Let t ∈
NCBC(L,R). We have to show that t = x∗�̆Cy for suitable x, y ∈ C(E). Consider the

extension t̃ ∈ NCBC(Λ) of t defined by

t̃(b) = t(b̂),

where b ∈ Λ is represented in the form (5.1). By Proposition 2.3 there exist u, z ∈ C(Λ)

such that t̃ = u∗ �C̃ z. Denote by ui and zi the components of u and z (respectively),

let x∗i ∈ E∗ be the entry of u∗i on the position (2,1), let yi ∈ E be the entry of zi on the

position (1,2) and let x, y ∈ C(E) have components xi and yi. Then an easy computation

shows that t = x∗�̆Cy.

In the case C = C the following theorem was proved by Effros and Ruan in [15].

Theorem 5.2. If C is an abelian von Neumann algebra, X an operator C-bimodule

such that cx = xc for all x ∈ X and c ∈ C, and E is a right Hilbert C-module considered

also as a left C-module by cy = yc (c ∈ C, y ∈ E), then

X
∧
⊗CE = X⊗h

CE.

To prove this theorem, we need an auxiliary result. In a self-dual Hilbert module over

a von Neumann algebra there is an analogue of orthonormal basis in Hilbert spaces (see

[27] and [30]), but here we consider modules that are not necessarily self-dual. We shall

need the following lemma only in the case R is abelian.

Lemma 5.3. Let R be a countably decomposable or abelian von Neumann algebra and

E a Hilbert R-module. Then for arbitrary elements y1, . . . , yn in E there exist orthogonal

elements v1, . . . , vn in E and a unitary matrix [rij ] ∈ Mn(R) such that

yi =

n∑
j=1

vjrji (i = 1, . . . , n).

P r o o f. Let g = [〈yi, yj〉] ∈ Mn(R). There exists a unitary matrix u = [rij ] ∈ Mn(R)

such that the matrix d
def
=ugu∗ is diagonal (if R is commutative this follows from [29], if

R is countably decomposable see [21, 6.9.35]). Put

vi =

n∑
j=1

yjr
∗
ij (i = 1, . . . , n).
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Then
n∑

j=1

vjrji =

n∑
j,k=1

ykr
∗
jkrji =

n∑
k=1

ykδik = yi

and

〈vi, vj〉 =

n∑
k,l=1

rik〈yk, yl〉r∗jl =

n∑
k,l=1

rikgklr
∗
jl = dij

for all i, j = 1, . . . , n. In particular, 〈vi, vj〉 = 0 for i 6= j.

P r o o f o f T h e o r e m 5.2. Since for each positive integer m the operator projective

norm dominates the Haagerup norm on Mm(X ⊗C E) by Theorem 2.4, it suffices to show

that ‖t‖∧ ≤ ‖t‖h for each t ∈ Mm(X ⊗C E). We may assume that ‖t‖h < 1, which means

that t = x�C y for some x ∈ Mm,k(X) and y ∈ Mk,m(E) satisfying ‖x‖ < 1 and ‖y‖ < 1.

Let n = mk. By Lemma 5.3 there exist orthogonal elements v1, . . . , vn in E and elements

clij ∈ C such that

(5.2) yij =

n∑
l=1

vlc
l
ij (for all i = 1, . . . , k; j = 1, . . . ,m).

We may assume that Λ(E) is represented as in Theorem 4.2; in particular we assume

that E ⊆ B(H,K) for some Hilbert spaces H and K. Consider the polar decomposition,

vl = ul|vl|, of vl in the weak* closure of Λ(E). Observe that ul|vl|s ∈ E for each real

s > 0. (Indeed, approximating |v|s by polynomials in non-zero powers of |v| we see that

ul|vl|s ∈ Λ(E). Since the only nonzero entry of ul|vl|s can be on the position (1,2), it

follows that ul|vl|s ∈ E.) For 0 ≤ s ≤ 1 put

ul(s) = ul|vl|s and dlij(s) = |vl|1−sclij .

Then from (5.2) we have

(5.3) yij =

n∑
l=1

ul(s)d
l
ij(s).

Note that ul(0) = ul, observe that the ranges of ul are mutually orthogonal (since the

elements vl are orthogonal in E) and ul is isometric on the range of dlij(0).

C l a i m. The norm of the matrix d = [dlij(0)] ∈ Mkn,m(C) (where (i, l) is the row

index and j the column index) is equal to the norm of y = [yij ] ∈ Mk,m(E).

Indeed, for an arbitrary ξ = (ξ1, . . . , ξm) ∈ Hm we have (by (5.3) with s = 0)

‖yξ‖2 =

k∑
i=1

‖
∑m

j=1 yijξj‖
2

=

k∑
i=1

‖
∑m

j=1

∑n
l=1 uld

l
ij(0)ξj‖

2

=

k∑
i=1

n∑
l=1

‖
∑m

j=1 d
l
ij(0)ξj‖

2
= ‖dξ‖2.

This proves the Claim.

Since dlij(s) converges in norm to dlij(0) = dlij as s → 0 for all i, j, l, it follows by

the above Claim that ‖d(s)‖ < 1 for all sufficiently small s > 0, where d(s) = [dlij(s)] ∈
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Mkn,m(C). Since the ranges of u1(s), . . . , un(s) are mutually orthogonal, the norm of the

matrix u(s)
def
= [u1(s), . . . , un(s)] ∈ M1,n(E) satisfies

‖u(s)‖2 = ‖[u∗i (s)ul(s)]‖ = max
1≤l≤n

‖|vl|2s‖

and it follows that ‖u(s)‖ → 1 as s → 0 (except in the case all vl are 0, but then y = 0

and the proof is trivial).

Finally, observe (using (5.3)) that

t = x�C y = 1m(x⊗C u(s))d(s),

where 1m is the identity matrix in Mm(C), hence ‖t‖∧ ≤ ‖x‖‖u(s)‖‖d(s)‖. It follows that

‖t‖∧ < 1 for all sufficiently small positive s. Thus, ‖t‖h < 1 implies that ‖t‖∧ < 1 for an

arbitrary t, which proves that ‖t‖∧ ≤ ‖t‖h.

6. Appendix. In this appendix we shall sketch the proof of Theorem 2.1 following

[25], where a slightly more general situation is considered. Throughout this section R ⊆
B(H) will be a von Neumann algebra and X,Y ⊆ B(H) two (weak* closed) subspaces

such that XR ⊆ X and RY ⊆ Y . As in Section 2 we denote by I a sufficiently large

cardinal (for example, I = dimH) and by M(R) the set of all I×I matrices with entries in

R that represent bounded operators on HI ; also R(X) and C(Y ) have the same meaning

as in Section 2. Further, we use the notation Rn(X) = M1,n(X) and Cn(Y ) = Mn,1(Y ).

Given two operator matrices x ∈ Mm,n(B(H)) and y ∈ Mn,p(B(H)), x�R y is the matrix

[xi �R yj ] of completely bounded maps from R′ to B(H), where xi is a row of x, yj is

a column of y and xi �R yj is defined by (2.1). (We use this notation also for infinite

matrices.) Note that R(X) and C(Y ) are regarded as subspaces of M(B(H)) = B(HI)

by embedding into the first row and column, respectively. Thus, given x ∈ R(X) and

y ∈ C(Y ) we have by definition (x⊗M(R) y)(r′
(I)

) = xr′
(I)
y for all r′

(I) ∈ R′(I) = M(R)
′
.

In each of the spaces Mn(X⊗h
RY ) (n an integer) we introduce a new norm by

‖ϑ‖ = inf{‖x‖‖y‖ : ϑ = x�Ry, x ∈ Mn,I(X), y ∈ MI,n(Y )}

and we denote the space X⊗h
RY equipped with this new matricial norm structure by

X⊗̃h
RY . (This is only a temporal notation, we shall see that the new norm is the same

as the old one, which is essentially the content of Theorem 2.1.) The norm of an element

ϑ ∈ Mn(X⊗h
RY ) regarded as a completely bounded map will be denoted by ‖ϑ‖cb. It

can be proved (see [25]) that ‖ · ‖ is an everywhere defined norm and that X⊗̃h
RY is an

(abstract) operator space.

The following lemma is motivated by a simple observation in [24, p. 332] and for the

proof see [25, Lemma 3.4].

Lemma 6.1. The map

Φ : X⊗̃h
RY → R(X)⊗̃h

M(R)C(Y ), Φ(x�Ry) = x⊗M(R) y

is a completely isometric isomorphism.

Lemma 6.2. Let n be a positive integer and regard Rn(B(H)) and Cn(B(H)) as sub-

spaces in Mn(B(H)) = B(Hn) by embedding into the first row and column, respectively.
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Then every element ϑ ∈ Mn(X⊗̃h
RY ) can be represented as

ϑ = x�Ry

for suitable x ∈ Mn,I(X) and y ∈ MI,n(Y ). Moreover,

Mn(X⊗̃h
RY ) = Cn(X)⊗̃h

R(n)Rn(Y ) and Mn(X⊗h
RY ) = Cn(X)⊗h

R(n)Rn(Y )

completely isometrically.

P r o o f. We shall prove here only the last identity, the proof of the rest of the lemma

can be found in [25, Lemma 3.1]. We shall define a map

Ω : Mn(X⊗h
RY )→ Cn(X)⊗h

R(n)Rn(Y ).

Given v ∈ Cn(X) we denote by ṽ ∈ Mn(X) the matrix with first column v and the

remaining columns 0. Similarly, for w ∈ Rn(Y ) let w̃ ∈ Mn(Y ) be the matrix with first

row w and the remaining rows 0. Further, given a matrix x ∈ Mn,I(X) with columns

xi ∈ Cn(X), let x̃ ∈ RI(Mn(Y )) have the components x̃i. Similarly, we define ỹ ∈
CI(Mn(Y )) for each y ∈ MI,n(Y ). Finally, to each ϑ ∈ Mn(X⊗h

RY ) we associate an

element ϑ̃ ∈ Cn(X)⊗h
R(n)Rn(Y ) as follows. Choose x ∈ Mn,I(X) = RI(Cn(X)) and

y ∈ MI,n(Y ) = CI(Rn(Y )) such that ϑ = x �R y (for the verification that this can be

done see the proof of Lemma 3.1 in [25]) and put ϑ̃ = x̃�R(n) ỹ.

It is not hard to verify that ϑ̃([r′ij ]) = [ϑij(r
′
11)] for each ϑ = [ϑij ] ∈ Mn(X⊗h

RY ) and

each [r′ij ] ∈ Mn(R′), from which one can deduce in particular that the correspondence

Ω : ϑ 7→ ϑ̃ is a well defined linear bijection from Mn(X⊗h
RY ) to Cn(X)⊗h

R(n)Rn(Y ).

Thus, denoting by ρ : Mn(R′) → R′ the projection onto the (1,1) position and by κ :

R′ → Mn(R′) the embedding into the (1,1) position and regarding ϑ as a completely

bounded map from R′ to Mn(B(H)), we have that ϑ̃ = ϑρ and ϑ = ϑ̃κ. Since ρ and κ are

complete contractions, it follows that ‖ϑ̃‖cb = ‖ϑ‖cb, hence Ω is a complete isometry.

The following lemma is just Lemma 2.1 from [24] (slightly simplified), so we omit the

proof (see also formulas (2.4) and (2.4’) in [24]).

Lemma 6.3. Given x, y, z, w ∈ B(H), the identity

zr′w = xr′y

holds for all r′ ∈ R′ if and only if there exist two commuting projections f, f ′ ∈ R

satisfying zf ′ = z and fw = w, two decreasing sequences of (commuting) projections

ek and e′k in R such that lim ‖xek‖ = 0 and lim ‖e′ky‖ = 0, and two sequences uk and

vk in R such that ukvk = 1 − ek − e′k, ‖xuk‖ ≤ ‖z‖ and ‖vky‖ ≤ ‖w‖ for all k, and

the sequences xukand vky converge to zf and f ′w, respectively, in the strong operator

topology.

P r o o f o f T h e o r e m 2.1. By definition X⊗̃h
RY and X⊗h

RY are the same set. It

suffices to prove that the two norms ‖ ‖ and ‖ ‖cb agree on X⊗h
RY for arbitrary X, Y

and R, for then we shall have for each n by Lemma 6.2

Mn(X⊗̃h
RY ) = Cn(X)⊗̃h

R(n)Rn(Y ) = Cn(X)⊗h
R(n)Rn(Y ) = Mn(X⊗h

RY )

isometrically.
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We have already mentioned that the inequality ‖ϑ‖cb ≤ ‖ϑ‖, (ϑ ∈ X⊗h
RY ) is easy

(as in the classical case). To prove the reverse inequality, suppose that ‖ϑ‖cb < 1; we

shall prove that then ‖ϑ‖ < 1 (this suffices to conclude the proof). Since ϑ ∈ X⊗h
RY ,

ϑ = x�Ry for some x ∈ R(X) and y ∈ C(Y ). On the other hand, by the representation

theorem for normal completely bounded linear mappings [32] there exist z ∈ R(B(H))

and w ∈ C(B(H)) such that ‖z‖, ‖w‖ < 1 and z�Rw = x�Ry. By Lemma 6.3 (applied in

M(B(H)) = B(HI)) there exist four sequences (uk), (vk), (ek) and (e′k) in M(R) such

that ek + e′k + ukvk = 1, ‖xek‖ → 0, ‖e′ky‖ → 0, ‖xuk‖ ≤ ‖z‖ and ‖vky‖ ≤ ‖w‖. Note

that

‖x⊗M(R) y − xuk ⊗M(R) vky‖ = ‖x⊗M(R) (1− ukvk)y‖ = ‖x⊗M(R) (ek + e′k)y‖
= ‖xek ⊗M(R) y + x⊗M(R) e

′
ky‖ ≤ ‖xek‖‖y‖+ ‖x‖‖e′ky‖ −→ 0.

By Lemma 6.1 it follows that limk→∞ ‖x�Ry − xuk�Rvky‖ = 0. Since ‖xuk‖ ≤ ‖z‖ < 1

and ‖vky‖ ≤ ‖w‖ < 1 (and xuk ∈ R(X), vky ∈ C(Y ) since X and Y are weak* closed),

we see that ‖ϑ‖ = ‖x�Ry‖ < 1.
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Added in proof. The author has been recently informed that the fact that bounded module
maps between Hilbert C∗-modules are completely bounded (which follows from Theorem 3.3)
was proved already by G. Wittstock in Extension of completely bounded C∗-module homomor-
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