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Abstract. Let T : H → H be an operator in the complex Hilbert space H. Suppose that T

is square bounded in average in the sense that there exists a constant M(T ) with the property

that, for all natural numbers n and for all x ∈ H, the inequality

1

n+ 1

n
∑

j=0

‖T jx‖2 ≤M(T )2‖x‖2

is satisfied. Also suppose that the adjoint T ∗ of the operator T is square bounded in average with

constant M(T ∗). Then the operator T is power bounded in the sense that sup{‖Tn‖ : n ∈ N} is

finite. In fact the following inequality is valid for all n ∈ N:

‖Tn‖ ≤ eM(T )M(T ∗).

Suppose that T has a bounded everywhere defined inverse S with the property that for λ in the

open unit disc of C the operator (I − λS)−1 exists and that the expression

sup{(1− |λ|)‖(I − λS)−1‖ : |λ| < 1}

is finite. If T is power bounded, then so is S and hence in such a situation the operator T is

similar to a unitary operator. If both the operators T ∗ and S are square bounded in average,

then again the operator T is similar to a unitary operator. Similar results hold for strongly
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continuous semigroups instead of (powers) of a single operator. Some results are also given in

the more general Banach space context.

1. Introduction. In this paper we want to discuss the claims stated in the abstract.

To some extent we continue the discussions of [26, 27, 28], where, among others, results

closely related to the ones in the abstract are proved. To the best knowledge of the author

Propositions 2.1, 2.2, 3.1, and 3.2 are new and consequently the presentation of the proofs

of Theorems 2.3 and 3.3 is new as well. We will need some rather elementary inequalities:

for a proof see e.g. [27, Lemma 1.1].

1.1. Lemma. Let µ be a non-negative Borel measure on the positive half axis. The

following inequalities are valid :

1

e
sup
t>0

µ[0, t]

t+ 1
≤ sup

0<r<1

(1− r)

∞\
0

rs dµ(s) ≤ sup
t>0

µ[0, t)

t
and

1

e
sup
t>0

µ[0, t]

t
≤ sup

ω>0

ω

∞\
0

e−ωs dµ(s) ≤ sup
t>0

µ[0, t)

t
.

1.2. Lemma. Let h be a complex valued harmonic function on the right complex half

plane for which

M0 := sup
{

∞\
−∞

|h(ω, ξ)| dξ : ω > 0
}

is finite. The following assertions hold true:

(a) The function h satisfies the following inequality:

3πω|h(ω, ξ)| ≤ 4M0, ω > 0, ξ ∈ R.

(b) There exists a complex measure µ on R, which is of bounded variation, such that

h(ω, ξ) =
ω

π

∞\
−∞

1

ω2 + (ξ − η)2
dµ(η), ω > 0, ξ ∈ R.

(c) Suppose that h is of the form

h(ω, ξ) = F (ω + iξ) +G(ω − iξ), ω > 0, ξ ∈ R,

where the functions F and G are holomorphic and where

sup{ω|F (ω)| : ω > 0}
is finite. Then

F (λ) =
1

2π

∞\
−∞

dµ(λ)

λ− iη
, ℜλ > 0, and

G(λ) =
1

2π

∞\
−∞

dµ(λ)

λ+ iη
, ℜλ > 0.

P r o o f. (a) The reader is referred to Duren [6, Lemma 1, p. 188].

(b) The reader may consult Stein [21, Theorem 2, Corollary, p. 200].

(c) The reader is referred to [27, Lemma 1.2.].
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2. Power bounded operators and operators similar to unitary ones. In this

section the operators T and S are everywhere defined continuous linear operators in the

Hilbert space H. In (2.1) and (2.3) below we assume that the operator T has its spectrum

in the closed unit circle of C and in (2.2) it is assumed that the spectrum of T is a subset

of the unit circle in C and that ST = TS = I. Moreover 0 < |λ| < 1 in (2.2) and |λ| < 1 in

(2.3). The following equalities do part of the work (the curve γr is the positively oriented

circle of radius r, 0 < r < 1):

(n+ 1)〈T nx, y〉 = 1

2πi

\
γr

〈(I − λT )−2x, y〉 dλ

λn+1
;(2.1)

(I − λS)−1 =
1

λ
{(1− |λ|2)(I − λS)−1 − I}T (I − λT )−1;(2.2)

(I − λT )−1 =
1

2πi

π\
−π

eiϑ(I + eiϑλT )−2ϑ dϑ.(2.3)

The equality in (2.1) is true because (I − λT )−2 =
∑∞

k=1
k(λT )k−1, and the equality in

(2.3) is correct for the same reason together with integration by parts.

Definition. The operator T is said to be square bounded in average with a finite

constant M(T ) if the inequality

n
∑

j=0

‖T jx‖2 ≤M(T )2(n+ 1)‖x‖2

is valid for all n ∈ N and for all x ∈ H.

In the following proposition we will see that an operator T which itself is square

bounded in average and for which T ∗ is square bounded in average as well, is necessarily

power bounded in the sense that sup{T n : n ∈ N} <∞.

2.1. Proposition. Suppose that both T as well as T ∗ are square bounded in average

with constants M(T ) and M(T ∗) respectively. Then T is power bounded and

sup
n∈N

‖T n‖ ≤ eM(T )M(T ∗).

P r o o f. Fix x, y ∈ H, fix 0 < r < 1 and consider (see (2.1))

(n+ 1)rn(1 − r2)〈T nx, y〉 = 1− r2

2π

π\
−π

e−inϑ〈(I − reiϑT )−2x, y〉 dϑ

=
1− r2

2π

π\
−π

e−inϑ〈(I − reiϑT )−1x, (I − re−iϑT ∗)−1y〉 dϑ.

Then

(n+ 1)rn(1− r2)|〈T nx, y〉| ≤ 1− r2

2π

π\
−π

|〈(I − reiϑT )−1x, (I − re−iϑT )−1y〉| dϑ
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≤ 1− r2

2π

π\
−π

‖(I − reiϑT )−1x‖ · ‖(I − re−iϑT ∗)−1y‖ dϑ

≤ (1− r2)

(

1

2π

π\
−π

‖(I − reiϑT )−1x‖2dϑ
)1/2

×
(

1

2π

π\
−π

‖(I − re−iϑT ∗)−1y‖2dϑ
)1/2

= (1− r2)
(

∞
∑

n=0

r2n‖T nx‖2
)1/2( ∞

∑

n=0

r2n‖(T ∗)ny‖2
)1/2

≤
(

sup
n∈N

1

n+ 1

n
∑

j=0

‖T jx‖2
)1/2(

sup
n∈N

1

n+ 1

n
∑

j=0

‖(T ∗)jy‖2
)1/2

.

Choose r2 = n/(n+ 2) and the result in Proposition 2.1 will follow.

R ema r k. If we set r2 = n/(n+1) in the proof of Proposition 2.1 we get the inequality

‖T n‖ ≤
(

n+ 1

n

)n
n+ 1

2n+ 1
M(T )M(T ∗) ≤ e

n+ 1

2n+ 1
M(T )M(T ∗).

In the remainder of this section S and T are supposed to be everywhere defined

operators in a Hilbert space H with the property that ST = TS = I. It is also assumed

that the spectrum of T and hence also that of S is a subset of the unit circle {λ ∈ C :

|λ| = 1}.
2.2. Proposition. Suppose that M1 defined by

(2.4) M1 := sup

{

1

|λ| ‖[(1− |λ|2)(I − λS)−1 − I]T ‖ : 0 < |λ| < 1

}

is finite. Suppose also that ST = TS = I. For 0 ≤ r < 1 and x ∈ H, the following

inequalities are true:
∞
∑

n=0

r2n‖Snx‖2 ≤M2
1

∞
∑

n=0

r2n‖T nx‖2 and

∞
∑

n=0

r2n‖(S∗)nx‖2 ≤M2
1

∞
∑

n=0

r2n‖(T ∗)nx‖2.

P r o o f. For |λ| < 1 and x ∈ H, the following inequality is valid (see (2.2)):

‖(I − λS)−1x‖ ≤M1‖(I − λT )−1x‖.
It follows that

∞
∑

n=0

r2n‖Snx‖2 =
1

2π

π\
−π

‖(I − reiϑS)−1x‖2 dϑ

≤M2
1

1

2π

π\
−π

‖(I − re−iϑT )−1x‖2dϑ =M2
1

∞
∑

n=0

r2n‖T nx‖2.
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By the same token we have
∞
∑

n=0

r2n‖(S∗)nx‖2 ≤M2
1

∞
∑

n=0

r2n‖(T ∗)nx‖2.

The following theorem is taken from [1]. Two operators T1 and T2 are said to be

similar if there exists a bounded linear operator V with a bounded linear inverse, that

is everywhere defined, such that V T1 = T2V .

2.3. Theorem. The following assertions are equivalent :

(i) The operator T is similar to a unitary operator;

(ii) The operators T and S are power bounded ;

(iii) The operator T is power bounded , the inverses (I − λS)−1, |λ| < 1, exist and

(2.5) sup{(1− |λ|)‖(I − λS)−1‖ : |λ| < 1} is finite;

(iv) The operators T and T ∗ are square bounded in average and the expression in (2.5)

is finite;

(v) The operators S and T ∗ are square bounded in average;

(vi) For every x and y ∈ H the expression

sup
0<r<1

(1− r2)

π\
−π

|〈(I − re−iϑT )−1(I − reiϑS)−1x, y〉| dϑ

is finite.

Remark 1. The proof of the equivalence of (ii) and (iii) is contained in [26, Theorem

1]. In [26] more references can be found as well. The present result is closely related

to a problem posed by Sz.-Nagy in [9, p. 585]. Another source of information is Sz.-

Nagy and Foiaş [25, p. 334], where the relation with characteristic operator functions

is explained and where a weaker form of the present theorem is proved in the context

of dilation theory of contraction operators. Another closely related paper is Stampfli

[20]. For a contraction operator the equivalence of (ii) and (iii) is due to Gohberg and

Krein [10], who deduced it from a theorem of Sz.-Nagy and Foiaş [24]. In the latter

paper the authors provide a sufficient condition for an invertible contraction operator

T to be similar to a unitary operator in terms of the characteristic operator function

ΘT (λ) := [−T + λDT∗(I − λT ∗)−1DT ]|DT
of T . This condition requires the existence of

a constant N for which

‖x‖ ≤ N‖ΘT (λ)x‖, |λ| < 1, x ∈ DT .

Here DT =
√
I − T ∗T and DT is the closure of the range of DT .

R ema r k 2. In [32] and [17] Mbekhta and Zemánek are interested in the limit

behavior of the averagesMn(T ) = (n+ 1)
−1 ∑n

k=0
T k. It is not so clear how their results

compare to ours. Zemánek is interested in conditions that force an operator to be the

identity: see [32]. In fact in view of Theorem 1.12(c), p. 523, in Bennett et al . [3] and

Remark 1 below, a direct relation does not seem to exist.

P r o o f o f T h e o r em 2.3. The proof of the equivalence (i) and (ii) appears in

Sz.-Nagy [23]. The implication (ii)⇒(iii) is easy and the implication (iii)⇒(iv) is trivial.
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The implication (iv)⇒(v) is an immediate consequence of Proposition 2.2. A proof of

(v)⇒(vi) may be given along the same lines as that of Proposition 2.1. For the proof the

implication (vi)⇒(ii) we notice for n ∈ Z and for x and y in H the following identity:

r|n|〈T nx, y〉 = 1− r2

2π

π\
−π

einϑ〈(I − re−iϑT )−1(I − reiϑS)−1x, y〉 dϑ.

With r = |n|(|n|+ 1)−1 we infer

|〈T nx, y〉| ≤ e sup
0<r<1

1− r2

2π

π\
−π

|〈(I − re−iϑT )−1(I − reiϑS)−1x, y〉| dϑ.

So sup{| < T nx, y > | : n ∈ Z} is finite for every x and y in H. By a Banach–Steinhaus

argument it then follows that sup{‖T n‖ : n ∈ Z} is finite.

Example. Fix 0 < 2γ < 1 and put αk = (1 + |k|)−γ , k ∈ Z. Define the operator

T : ℓ2(Z) → ℓ2(Z) by Tek = (αk+1/αk)ek+1, k ∈ Z. Then

sup
n∈N

1

2n+ 1

n
∑

j=−n

‖T jx‖2 ≤ ‖x‖2 sup
k∈Z,n∈N

1

(2n+ 1)α2
k

n
∑

j=−n

α2
k+j <∞.

However, since ‖T j‖ = (1 + |j|)γ , the operator T cannot be similar to a unitary one.

3. Bounded semigroups and operators similar to self-adjoint ones. In this

section the symbol A stands for a closed linear operator with domain and range in a

Hilbert space H. The operator iA is said to generate a strongly continuous semigroup

{P (t) : t ≥ 0} if

iA = s- lim
t↓0

P (t)− I

t
.

Occasionally the operator P (t) is written as P (t) = exp(itA). The operator iA is said to

generate a strongly continuous group if

iA = s- lim
t→0

P (t)− I

t
.

Again sometimes we write P (−t) = exp(−itA). For more information on strongly con-

tinuous semigroups see e.g. Yosida [31, Chapter IX]. For the proof of Proposition 3.1 and

Theorem 3.3 below we need Stone’s representation theorem; see Yosida [31, Corollary 2,

p. 253]. Furthermore we shall use Plancherel’s Theorem in L2(R,H): see Edwards and

Gaudry [7, §3.4, p. 53] or Stein [21, Chapter 1, pp. 45–47]. The following identities

are relevant. In (3.1) and in (3.3) it is assumed that the spectrum of the operator iA

is contained in the closed half plane {λ ∈ C : ℜλ ≤ 0} and in (3.2) we assume that the

spectrum is a subset of the purely imaginary axis {λ ∈ C : ℜλ = 0}. We write Γω for the

straight line Γω(ξ) = ω + iξ. Under these conventions we have:

tP (t) =
1

2πi

\
Γω

ezt(zI − iA)−2 dz;(3.1)

(λI − iA)−1 = [2ℜλ(λI − iA)−1 − I](λI + iA)−1;(3.2)

(λI − iA)−1 = i

∞\
0

((λ + iξ)I − iA)−2 dξ.(3.3)
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Definition. The semigroup {P (t) = exp(itA) : t ≥ 0} is said to be average square

bounded or square bounded in average with constant M(iA) if the inequality

(3.4)

t\
0

‖P (s)x‖2 ds ≤ tM(iA)2‖x‖2

is valid for all t > 0 and for all x ∈ H.

The following proposition is the semigroup analogue to Proposition 2.1.

3.1. Proposition. Suppose that the semigroups

{P (t) = exp(itA) : t ≥ 0} and {P (t)∗ = exp(−itA∗) : t ≥ 0}
are square bounded in average with constants M(iA) and M(−iA∗) respectively. Then

the semigroup {P (t) : t ≥ 0} is bounded in the sense that

(3.5) ‖P (t)‖ ≤ e

2
M(iA)M(−iA∗), t > 0.

P r o o f. Fix t and ω > 0 and fix x and y in H. From (3.1) we then infer

t〈P (t)x, y〉 = eωt

2π

∞\
−∞

eiξt〈((ω + iξ)I − iA)−2x, y〉 dξ

=
eωt

2π

∞\
−∞

eiξt〈((ω + iξ)I − iA)−1x, ((ω − iξ)I + iA∗)−1y〉 dξ

and so, using the Cauchy–Schwarz inequality,

t|〈P (t)x, y〉| ≤ eωt

2π

∞\
−∞

|〈((ω + iξ)I − iA)−1x, ((ω − iξ)I + iA∗)−1y〉| dξ

≤ eωt

2π

∞\
−∞

‖((ω + iξ)I − iA)−1x‖‖((ω − iξ)I + iA∗)−1y‖ dξ

≤ eωt

2π

(

∞\
−∞

‖((ω + iξ)− iA)−1x‖2dξ
)1/2(

∞\
−∞

‖((ω − iξ) + iA∗)−1y‖2dξ
)1/2

(Plancherel’s Theorem in Hilbert space)

= eωt
(

∞\
0

e−2ωs‖P (s)x‖2 ds
)1/2(

∞\
0

e−2ωs‖P (s)∗y‖2ds
)1/2

=
eωt

2ω

(

(2ω)2
∞\
0

e−2ωs

s\
0

‖P (σ)x‖2dσ ds
)1/2

×
(

(2ω)2
∞\
0

e−2ωs

s\
0

‖P (σ)∗y‖2 dσ ds
)1/2

≤ eωt

2ω
M(iA)M(−iA∗).

The choice ω = t−1 yields the inequality in (3.5).

In what follows we assume that the spectrum of the operator iA is a subset of the

imaginary axis. As the semigroup analogue to Proposition 2.2 we have the following

result.
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3.2. Proposition. Suppose that the quantity M2 defined by

M2 = sup{‖2ℜλ(λI − iA)−1 − I‖ : ℜλ > 0}
is finite. Then the following inequalities are valid :

∞\
0

e−2ωs‖P (s)x‖2 ds ≤M2
2

∞\
0

e−2ωs‖P (−s)x‖2 and

∞\
0

e−2ωs‖P (s)∗x‖2 ds ≤M2
2

∞\
0

e−2ωs‖P (−s)∗x‖2.

P r o o f. From Plancherel’s theorem in the Hilbert space L2(R,H) we see

∞\
0

e−2ωs‖P (s)x‖2 ds = 1

2π

∞\
−∞

‖((ω + iξ)I − iA)−1x‖2 dξ

≤M2
2

1

2π

∞\
−∞

‖((ω − iξ)I + iA)−1x‖2 dξ

=M2
2

1

2π

∞\
−∞

‖((ω + iξ)I + iA)−1x‖2 dξ

=M2
2

∞\
0

e−2ωs‖P (−s)x‖2 ds.

For the second equality we apply the previous argument to the dual semigroup.

The following theorem is the analogue (for the group {P (t) : t ∈ R}) of Theorem 2.3

where we considered the group {T n : n ∈ Z}.

3.3. Theorem. Let A be a linear operator with domain and range in a Hilbert space

H. The following assertions are equivalent :

(i) The operator A is similar to a self-adjoint operator ;

(ii) The operator iA generates a bounded strongly continuous group;

(iii) The operator −iA generates a bounded strongly continuous semigroup, the inverses

(λI − iA)−1 exist for ℜλ > 0 and

sup{ℜλ‖(λI − iA)−1‖ : ℜλ > 0} <∞;

(iv) The operator −iA generates a strongly continuous semigroup {P (t) : t ≥ 0} with

the property that it itself and also its dual semigroup is square bounded in average, and

moreover the inverses (λI − iA)−1, ℜλ > 0, exist and

sup{ℜλ‖(λI − iA)−1‖ : ℜλ > 0} <∞;

(v) The operator −iA generates a strongly continuous group {P (t) : t ∈ R}, with the

property that the semigroup {P (t)∗ : t ≥ 0} as well as the semigroup {P (−t) : t ≥ 0} is

square bounded in average;

(vi) The operator −iA is closed , (λI − iA)−1 exists for ℜλ 6= 0 and for each x and y
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in H the expression

sup{ω
∞\
−∞

|〈(ω2I + (ξI −A)2)−1x, y〉| dξ : ω > 0}

is finite and limλ→∞ λ〈(λI + iA)−1x, y〉 = 〈x, y〉.
P r o o f. The equivalence of (i) and (ii) follows from Stone’s theorem (see Yosida, l.c.)

together with Sz.-Nagy [23]. The implication (ii) ⇒ (iii) follows from the representation

(λI − iA)−1x =

∞\
0

e−λsP (−s)x ds

where −iA generates the group {P (t) : t ∈ R}. Assertion (iii) easily follows from this rep-

resentation. The implication (iii)⇒(iv) is not difficult either. The implication (iv)⇒(v)

is a consequence of Proposition 3.2. and of Lemma 1.1. The implication (v)⇒(vi) may be

proved in exactly the same way as we proved Proposition 3.1. The implication (vi)⇒(ii)

remains to be shown. Therefore we define the family of operators {P (t) : t ∈ R} via the

equality

(3.6) 〈P (−t)x, y〉 = 1

2π

∞\
−∞

eω|t|+iξt · 2ω〈(ω2I + (ξI −A)2)−1x, y〉 dξ.

The expression in (3.6) does not depend on ω, as long as it is strictly positive. So the

operators P (t), t > 0, are well-defined. From a Banach–Steinhaus argument it follows

that every operator P (t) is bounded. Moreover we have (for t > 0):
∞\
0

e−λt〈P (−t)x, y〉 dt = 〈(λI − iA)−1x, y〉, ℜλ > 0;(3.7)

∞\
0

e−λt〈P (t)x, y〉 dt = 〈(λI + iA)−1x, y〉, ℜλ > 0.(3.8)

Since the families {(λI − iA)−1 : ℜλ > 0} and {(λI + iA)−1 : ℜλ > 0} are resolvent

families it will follow that the family {P (s) : s ∈ R} is a group of operators. Since, finally,

limλ→∞ λ〈(λI + iA)−1x, y〉 = 〈x, y〉 it follows that the operator A is densely defined.

Since the operators P (s), s ∈ R, are bounded, the operator A is closed. Hence it is a

generator indeed. The inequalities in (3.7) and (3.8) can be established with the aid of

Lemma 1.2. Choose the complex measure µx,y on R in such a way that

(3.9)
1

2π
〈((ω + iξ)I − iA)−1x, y〉+ 1

2π
〈((ω − iξ)I + iA)−1x, y〉

=
ω

π
〈(ω2I + (ξI −A)2)−1x, y〉

=
ω

π

∞\
−∞

1

ω2 + (ξ − η)2
dµx,y(η)

=
1

2π

∞\
−∞

1

ω + iξ − iη
dµx,y(η) +

1

2π

∞\
−∞

1

ω − iξ + iη
dµx,y(η).

Such a choice of the measure µx,y is possible by Lemma 1.2(b). By Lemma 2.1(c) we get,
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for ℜλ > 0,

〈(λI − iA)−1x, y〉 =
∞\
−∞

1

λ− iη
dµx,y(η), and(3.10)

〈(λI + iA)−1x, y〉 =
∞\
−∞

1

λ+ iη
dµx,y(η).(3.11)

So from (3.6), (3.9), (3.10) and (3.11) together with Cauchy’s theorem we obtain
∞\
0

e−λt〈P (−t)x, y〉 dt = 1

2πi

\
Γω

1

λ− z
[〈(zI − iA)−1x, y〉+ 〈((2ω − z)I + iA)−1x, y〉] dz

=
1

2πi

\
Γω

1

λ− z

[

∞\
−∞

1

z − iη
dµx,y +

∞\
−∞

1

2ω − z + iη
dµx,y

]

dz

=

∞\
−∞

1

λ− iη
dµx,y = 〈(λI − iA)−1x, y〉.

A similar reasoning will show the equality in (3.8).

R ema r k. It is perhaps useful to observe that in the proof of the implication (vi)⇒(ii)

in Theorem 3.3 the Hilbert spaceH played only a secondary role. The argument can easily

be adapted for a general Banach space instead. In fact the same remark applies to the

corresponding implication in Theorem 2.3.

The following example as well as the one of Section 2 is taken from [27].

Example. As in the example at the end of §2 we fix 0 < 2γ < 1 and we put

ϕ(x) = (1 + |x|)γ , x ∈ R. Define for each s ∈ R the operator P (s) : L2(R) → L2(R) by

P (s)f(x) =
ϕ(x + s)

ϕ(x)
f(x+ s), x ∈ R, f ∈ L2(R).

Then the family {P (s) : s ∈ R} is a strongly continuous group for which ‖P (s)‖ = ϕ(s)

and for which the expression

sup

{

1

2t

t\
−t

‖P (s)f‖2 ds : t > 0

}

is finite. Define the operator A as follows. Its domain D(A) is given by D(A) = {f ∈
L2(R) : f ′ ∈ L2(R)} and Af , f ∈ D(A), is given by

Af(x) = if ′(x) +
iγx

|x|
1

1 + |x|f(x), x ∈ R.

Then −iA generates the group {P (s) : s ∈ R}. Since sup{‖P (s)‖ : s ∈ R} = ∞, the

operator A cannot be similar to a self-adjoint one.

4. Bounded families of operators on a Banach space. In this section we will

especially be interested in boundedness properties of operators T , defined on a Banach

space X , with their spectrum in the closed unit disc and for which there exist a finite

constant M3 with the property that

(4.1) (1− |λ|)‖(I − λT )−1‖ ≤M3, |λ| < 1.
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In addition we will discuss some corresponding boundedness properties for strongly con-

tinuous semigroups. In fact let A be the generator of a strongly continuous semigroup

{P (t) : t ≥ 0} of linear operators on X with the property that

(4.2) ℜλ‖(λI −A)−1‖ ≤M4, ℜλ > 0.

A problem could be to describe the growth of ‖P (t)‖ as t goes to infinity. In case of a

single operator we will show that ‖T n‖ = O(n), n→ ∞, and that this bound is optimal.

All this provided we have a bound like in (4.1). Essentially the same phenomenon occurs

for semigroups. We begin with the discrete case. The result in Proposition 4.1 coincides

with Theorem 6.1 in Strikwerda [22].

4.1. Proposition. Let T be a continuous linear operator in a Banach space that obeys

(4.1). Then the following inequalities are valid :

(1− |λ|)‖(I − λT )−1‖ ≤ 2 sup
n∈N

‖∑n
k=0

(n+ 1− k)(µT )k‖
(n+ 1)(n+ 2)

(4.3)

≤ e sup
λ∈U

(1− |λ|)‖(I − λT )−1‖.

Here µ = λ/|λ| and U is the open unit disc in C. In fact, for functions harmonic

on the unit disc U , a much more general result was obtained by Bennett, Stegenga and

Timoney in [3, Theorem 1.4]. For related results see Anderson, Clunie and Pommerenke

[1] and Anderson and Shields [2].

P r o o f o f P r o p o s i t i o n 4.1. Fix z ∈ U and let µ be a complex number of absolute

value 1. Then the following identity is true:

(4.4) (I − µzT )−1 = (1− z)2
∞
∑

n=0

n
∑

k=0

(n+ 1− k)(µT )kzn.

So with z = |λ| and µ as above we infer the first inequality in (4.1). In order to obtain the

second inequality we use Cauchy’s theorem to get the following identity for r = n/(n+ 1)

and µ ∈ C, |µ| = 1:
n
∑

k=0

(n+ 1− k)(µT )k =
1

2π

π\
−π

1

rneinϑ
(I − µreiϑT )−1 dϑ

(1− reiϑ)2

and so
∥

∥

∥

n
∑

k=0

(n+ 1− k)(µT )k
∥

∥

∥
=M3

1

rn
1

1− r

1

2π

π\
−π

1

1− 2r cosϑ+ r2
dϑ(4.5)

=M3

1

rn
1

1− r

1

1− r2
≤ eM3(n+ 1)(n+ 2),

where M3 = sup{(1− |λ|)‖(I − λT )−1‖ : λ ∈ U}. This shows the inequalities in (4.1).

4.2. Theorem. Let T be a bounded linear operator on a Banach space X. Suppose

that the spectrum of T is contained in the closed unit disc U of C. Put M(r) = sup{(1−
|λ|)‖(I − λT )−1‖ : |λ| ≤ r}. The following assertions hold true:

(i) ‖T n‖ ≤ (n+ 1)(1 + 1/n)nM(n/(n+ 1)), n ∈ N;

(ii) If M(1/2) ≤ 1, then ‖T n‖ ≤ 2
√
πΓ (n+ 1)/Γ (n+ 1/2), n ∈ N;
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(iii) If M(r) ≤ 1, 0 < r < 1, then ‖T n‖ ≤ n!enn−n, n ∈ N;

(iv) If M3 = sup{M(r) : 0 < r < 1} is finite, then ‖T n‖ ≤ eM3(n+ 1), n ∈ N.

Most of the results in Theorem 4.2 are well-known: see e.g. Shields [19] and the

references given there (1). Nevertheless we indicate the main ingredients of a proof.

P r o o f o f T h e o r em 4.2. (i) By Cauchy’s integral formula we have

T n =
1

2πi

\
{|λ|=ρ}

(I − λT )−1λ−n−1dλ, 0 < ρ < 1.

With ρ = n(n+ 1)−1 assertion (i) follows.

(ii) Notice that

(I − λT )−n−1 =

∞
∑

k=0

(

k + n

k

)

λkT k, |λ| < 1.

From Cauchy’s integral formula it follows that
(

2n

n

)

T n =
1

2πi

\
{|λ|=1/2}

(I − λT )−n−1λ−n−1 dλ.

Consequently,

4n
Γ
(

n+ 1

2

)

Γ (n+ 1)

‖T n‖√
π

≤ 4nM(1/2)n+1.

So (ii) follows.

(iii) If M(r) ≤ 1, 0 < r < 1, then ‖(I − λT )−n‖ ≤ (1− |λ|)−n, λ ∈ U, and so
∥

∥

∥

∥

(

I − λ

n
T

)−n∥
∥

∥

∥

≤
(

1− |λ|
n

)−n

, |λ| < n.

Consequently, ‖ exp(λT )‖ ≤ exp(|λ|), λ ∈ C. Applying Cauchy’s formula once more we

get
T n

n!
=

1

2πi

\
{|λ|=n}

exp(λT )

λn+1
dλ.

Hence (iii) follows.

(iv) This assertion follows trivially from (i).

R ema r k 1. In [19] Shields gives an example of an operator T in a Banach space

for ‖T n‖ = n+ 1 and for which (4.1) is satisfied. This kind of operators are in Shields’

terminology Möbius bounded. In fact for the Banach space X we may take X = H∞(U)∩
H1(U) supplied with the norm given by ‖f‖ = ‖f‖∞ + ‖f‖1, f ∈ X . The operator T is

given by [Tf ](z) = zf(z), f ∈ X . Another example of this kind is obtained if for X we

take the space XBloch of derivatives of Bloch functions, i.e. a function f belongs to XBloch

if it is analytic on the open unit disc U and if ‖f‖Bloch = sup{(1−|z|)|f(z)| : z ∈ U} <∞,

f ∈ X . The operator T is now given by [Tf ](z) = (f(z) − f(0))/z, z ∈ U , f ∈ XBloch.

Then it is not so difficult to show that

(1− |λ|)‖(I − λT )−1f‖Bloch ≤ 4‖f‖Bloch, f ∈ XBloch,

(1) Editorial note: See also the paper by O. Nevanlinna in this volume.
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and

(n+ 1)

(

1 +
1

n

)n

≤ ‖T n‖ ≤ 4(n+ 1)

(

1 +
1

n

)n

, n = 1, 2, . . .

Moreover, if f(z) =
∑∞

k=0
akz

k belongs to X , then an = T nf(0). In addition there exists

a constant C such that |∑n
j=0

ajz
j| ≤ C(n+1) log(n+1)‖f‖Bloch for all f ∈ XBloch, for

all n ∈ N, and for all z ∈ U . Moreover this estimate is best possible: see Bennett et al .

[3, Theorem 1.12. p. 523]. For more details on Bloch functions see e.g. Anderson, Clunie

and Pommerenke [1] and Anderson and Shields [2].

R ema r k 2. In [5] Bonsall and Duncan describe an example, due to Crabb, of a

Banach algebra containing an element u for which ‖ exp(λu)‖ ≤ exp(|λ|), λ ∈ C, and for

which ‖un‖ = n!enn−n, n ∈ N. In fact our assumption (4.1) with M3 = 1 is equivalent to

saying that the numerical radius of T is less than or equal to 1; see Bonsall and Duncan

[4, Theorem 10, 11, pp. 54–55].

R ema r k 3. If X is a Hilbert space, if S = T−1 exists and if ‖S‖ ≤ 1, then

sup{‖T n‖ : n ∈ N}
is finite if and only if T is Möbius bounded, i.e. if and only if

sup{(1− |λ|)‖(I − λT )−1‖ : λ ∈ U}
is finite: see Corollary 1.4, p. 335 in Sz.-Nagy and Foiaş [23]. In fact in Theorem 2.3 we

proved a stronger statement.

R ema r k 4. In [12, Theorem 3.3. p. 46] Hayman exhibits a class of holomorphic

functions on the unit disc for which the expression sup{(1 − |z|)|F (z)| : z ∈ U} is finite

if and only if its Taylor coefficients constitute a bounded sequence. In general this is not

true. For example the function z 7→ ∑∞
n=0

2nz2
n

, z ∈ U , belongs to the space XBloch

defined in Remark 1. In fact a function f(z) =
∑∞

k=0
akz

k belongs to XBloch if and only

if the expression

sup

{

1

(n+ 1)(n+ 2)

∣

∣

∣

n
∑

k=0

(n− k)µkak

∣

∣

∣
: |µ| ≤ 1, n ∈ N

}

is finite. A proof can be patterned after the proof of Proposition 4.1. In [3, Theorem 1.4]

this kind of result was generalized to a considerable extent.

Next we consider a strongly continuous semigroup {P (t) : t ≥ 0} with generator A

and resolvent family {R(λ) : ℜλ > 0}. We assume that

R(λ)x =

∞\
0

e−λtP (t)x dt = (λI −A)−1x

exists for each x ∈ X and for every λ ∈ C with ℜλ > 0.

4.3. Theorem. Let {P (t) : t ≥ 0} be a strongly continuous semigroup with generator

A and resolvent {R(λ) : ℜλ > 0}. PutM4 = sup{ℜλ‖R(λ)‖ : ℜλ > 0}. Then the equality

‖P (t)x‖ ≤ 2M4e(1 + t)‖(I −A)2x‖
holds for each t > 0 and for each x ∈ D(A2).
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P r o o f. Let λ ∈ C have a strictly positive real part. From Theorem II.6.1, p. 349 in

Hille and Phillips [13] together with the resolvent identity we infer

P (t)R(λ)2x =
1

2π

∞\
−∞

eωt+iξt

(λ− ω − iξ)2
R(ω + iξ)x dξ, 0 < ω < ℜλ.

Therefore

(ℜλ)2‖P (t)R(λ)2x‖ ≤ 1

2
M4

eωtt2(ℜλ)2
ωt(tℜλ− ωt)

‖x‖

and hence, upon optimizing ω,

(ℜλ)2‖P (t)R(λ)2x‖ ≤M4e
1+s−

√
1+s2(1 +

√

1 + s2)‖x‖,
where 2s = tℜλ. With λ = 1 we get the result in Theorem 4.3.

In the following example we describe, without proof, a continuous analogue of the

space XBloch of Remark 1. For the proofs some standard facts on Laplace transforms of

measures are used: see Widder [29, 30].

Example. Let X be the space of all holomorphic functions f on the open right half

plane for which

‖f‖ := sup{ℜz|f(z)| : ℜz > 0}
is finite. ThenX , equipped with this norm, is a Banach space. OnX we define a resolvent

family {R(λ) : ℜλ > 0} as follows:

R(λ)f(z) =

{

f(z)− f(λ)

λ− z
for z 6= λ,

−f ′(λ) for z = λ.

Each operator R(λ), ℜλ > 0, maps X into itself. On the space R(λ)2X we define the

semigroup {P (t) : t ≥ 0} as follows:

P (t)R(λ)2f(z) =
1

2πi

ω+i∞\
ω−i∞

ewt

(λ− w)2
f(z)− f(w)

w − z
dw

=
1

2πi

ω+i∞\
ω−i∞

ewtR(w)R(λ)2f(z) dw,

for 0 < ω < ℜλ and ℜz > 0. For α > 0 we put

Xα = {f ∈ R(λ)2X : sup
t>0

e−αt‖P (t)f‖ <∞}.

The space Xα will be the completion of Xα with respect to the norm ‖ · ‖α, defined by

‖f‖α = sup
t>0

e−αt‖P (t)f‖, f ∈ Xα.

Since ‖f‖α ≥ ‖f‖, for f ∈ Xα, it follows that Xα is a subspace of X . Then the semigroup

{P (t) : t ≥ 0} defined on Xα can be extended to a strongly continuous semigroup on Xα.

We claim that the latter semigroup, again denoted by {P (t) : t ≥ 0}, has a number of

interesting properties, which may serve as an example or counter-example. Among others

the semigroup {P (t) : t ≥ 0} possesses the following properties:

(1) If f belongs to X , then ℜλ‖R(λ)f‖ ≤ 2‖f‖, ℜλ > 0.

(2) If f belongs to Xα, then ℜλ‖R(λ)f‖α ≤ 2‖f‖α, ℜλ > 0.
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(3) For f ∈ Xα the inequality ‖P (s)f‖α ≤ eαs‖f‖α is valid.

(4) Let f belong to X and put

ϕ(t) =
1

2πi

ω+i∞\
ω−i∞

ezt

z2
f(z) dz, t ≥ 0, ω > 0.

Then

f(z) = z2
∞\
0

e−zsϕ(s) ds, ℜz > 0.

If, in addition, f belongs to Xα, ϕ is differentiable, and ϕ′(0) = 0, then

P (t)f(z) = z2
∞\
0

e−zsQ(t)ϕ(s) ds, ℜz > 0, t ≥ 0.

Here Q(t)ϕ(s) = ϕ(s+ t)− ϕ(t)− sϕ′(t), s, t ≥ 0.

(5) Let f inXα be of the form f(z) =
T∞
0
e−zsϕ(s)ds, where ϕ is a continuous function.

Then

P (t)f(z) =

∞\
0

e−zsf(s+ t) ds, ℜz > 0, t ≥ 0,

and

‖P (t)f‖ ≥ |ϕ(t)|, t ≥ 0.

(6) Let A be the generator of the semigroup {P (t) : t ≥ 0} defined on Xα and

suppose that f belongs to D(A). Then limλ→∞ λG(λ) exists and the function g defined

by g(z) = zf(z)− limλ→∞ λf(λ), ℜz > 0, belongs to Xα. Moreover Af = g.

(7) Let ϕ be a continuous function on [0,∞) for which its Laplace transform f , defined

by f(z) =
T∞
0
e−zsϕ(s) ds, belongs to X . Put ψ(s) =

T∞
0
e−σσf(σ + s) dσ, σ ≥ 0, and

g(z) =
T∞
0
e−zsψ(s)ds, ℜz > 0. Then g belongs to R(λ)2X and in fact g = R(1)2f and

ϕ = ψ − 2ψ′ + ψ′′.

(8) Put u(s) = max(1 − |s|, 0), s ∈ R. Write ϕt(s) = tu(2(s − t − 1/2)), s ≥ 0, and

ψt(s) =
T∞
0
σe−σϕt(σ+s) dσ, s ≥ 0. Suppose that ft and gt denote the Laplace transforms

of ϕt and ψt respectively. Then ft belongs to R(λ)
2X , ℜλ>0, and R(1)2ft=gt. Moreover

the following inequalities hold:

1

4

(

1− 1√
e

)(

8− 11√
e

)

t ≤ ‖P (t)gt‖α ≤ 4e(t+ 1)‖ft‖α ≤ 4(t+ 1)max(α−1, 1).
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