SYMPLECTIC SINGULARITIES AND GEOMETRY OF GAUGE FIELDS BANACH CENTER PUBLICATIONS, VOLUME 39 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1997

SYMPLECTIC CAPACITIES IN MANIFOLDS

ALFRED F. KÜNZLE

Département de Mathématiques, École Polytechnique Fédérale de Lausanne 1015 Lausanne, Suisse E-mail: kuenzle@masg1.epfl.ch

Abstract. Symplectic capacities coinciding on convex sets in the standard symplectic vector space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings of non-smooth convex sets and a product formula, calculations of some capacities become very simple. Moreover, it is proved that there exist such capacities which are distinct and that there are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.

1. Preliminaries. For an introduction to symplectic capacities, non-smooth Hamiltonian systems and characteristic differential inclusions we refer to a previous talk given at the Banach Center in October 93 [K93].

The aim of this note is to show that some calculations of symplectic capacities can be simplified through embeddings of *non-smooth convex sets*. No approximations by families of Hamiltonian functions are needed. We show that definitions of capacities of convex sets in the symplectic model space (\mathbb{R}^{2n}, ω) suffice to define and to calculate in some cases symplectic capacities for subsets in any symplectic manifolds. Moreover, some applications of the product formula for convex sets derived in [K90] are given.

To define the setting, let us consider the standard symplectic linear space $V := (\mathbb{R}^{2n}, \omega)$. The non-degenerate closed 2-form ω is expressed by the almost complex structure $J_0: T\mathbb{R}^{2n} \to T\mathbb{R}^{2n}$, which is described in standard coordinates by an *n*-fold tensor product of the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cong i$. We write in these coordinates $x.y = \sum_{i=1}^{2n} x_i y_i$ for the scalar product and $\omega(x, y) = J_0 x.y$ for the symplectic form. A differentiable map $\varphi: V \to V$ is called symplectic if $\varphi^* \omega = \omega$, i.e. $d\varphi(x)^T J_0 d\varphi(x) = J_0$. We denote the set of symplectic embeddings of open subsets of \mathbb{R}^{2n} into \mathbb{R}^{2n} by $\mathcal{E}_{\omega}(\mathbb{R}^{2n})$ and the symplectic diffeomorphisms of \mathbb{R}^{2n} by $\mathcal{D}_{\omega}(\mathbb{R}^{2n})$.

Let $B(r) = B^{2n}(r) = \{x \in \mathbb{R}^{2n} \mid |x| < r\}$ be the ball and $Z(r) = B^2(r) \times \mathbb{R}^{2n-2} = \{x \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}$ be a cylinder with a symplectic base disc, where p_1, q_1 are the

¹⁹⁹¹ *Mathematics Subject Classification*: Primary 58F05; Secondary 52A20, 58C27, 58F22. The paper is in final form and no version of it will be published elsewhere.

first two coordinates.

Let \mathcal{K} be the set of possibly unbounded convex sets with perhaps empty interior. Given such a convex set K, let $n_K(x)$ be the section of elements of length 1 in the normal cone (see e.g. [A84]) at a point x. We study the periodic characteristic differential inclusion of a non-smooth convex set K which depends in fact only of the boundary of K:

$$\begin{array}{ccc} (\mathrm{i}) & \dot{\gamma}(t) \in Jn_{K}(\gamma(t)) & \text{a.e.} \\ (\mathrm{ii}) & \gamma(t) \in \partial K & \forall t \in [0, T_{\gamma}] \\ (\mathrm{iii}) & \gamma(t+T_{\gamma}) = \gamma(t) & \forall t \in [0, T_{\gamma}] \\ & \text{and } T_{\gamma} > 0 \text{ is the minimal period of } \gamma \end{array} \right\} (*)$$

whose moduli space of solutions is called $\Gamma(K)$, which is in a well defined way equivalent to the periodic solutions of a non-smooth Hamiltonian system (see [K93]). The set of symplectic actions $A(\gamma) = \frac{1}{2} \int \dot{\gamma} J_0 \gamma \, dt$ of elements of $\Gamma(K)$ is called the action spectrum of K.

DEFINITION 1. Let c be the map

$$c: \mathcal{K} \longrightarrow [0, \infty]$$
$$K \longmapsto c(K) = \inf \{ A(\gamma) \mid \gamma \in \Gamma(K) \}$$

assigning to K the minimal characteristic action of ∂K , using the convention that $\inf = \infty$ if $\Gamma(K)$ is empty.

It has been shown in [K90] that c(K) (for a convex set K with non-empty interior) can be expressed with a simple formula through the minimum of the classical dual Hamiltonian functional introduced by Clarke and Ekeland [CE80] and that it satisfies the axioms of a capacity of convex sets in the standard symplectic vector space. This means that c coincides on *smooth* convex sets with the Ekeland-Hofer [EH89] and the Hofer-Zehnder capacity [HZ90] which are defined with the classical non-definite Hamiltonian functional and approximation by well chosen families of Hamiltonian functions. Moreover, c satisfies a useful formula for symplectic products [K90] which we will use later: $c(K_1 \times K_2) = \min\{c(K_1), c(K_2)\}$.

In this paper, we study the symplectic capacities extending c:

DEFINITION 2. Let \mathcal{M}^{2n} be the family of symplectic manifolds of given dimension 2n and \mathcal{S} a family of symplectic embeddings defined on open domains of such manifolds. Let further \mathcal{F} be an \mathcal{S} -invariant family of subsets of these manifolds containing \mathcal{K} . We denote by (D, ω) the set D with the symplectic form of the ambient manifold restricted to D (which may be degenerate on D). A symplectic capacity for \mathcal{F} and \mathcal{S} extending c is a map C of \mathcal{F} to \mathbb{R}_+ satisfying

- (a) $D, D' \in \mathcal{F}, \ D \subset D' \Longrightarrow C(D) \leq C(D'),$
- (b) $D \in \mathcal{F}, \varphi \in \mathcal{S} \Longrightarrow C(\varphi(D)) = C(D),$
- (c) if $K \in \mathcal{K}$, then C(K) = c(K).

Capacities in V are therefore obtained by taking $\mathcal{M}^{2n} := \{\mathbb{R}^{2n}, \omega\}, \ \mathcal{F} \subset \mathcal{P}(\mathbb{R}^{2n}),$ where $\mathcal{P}(\mathbb{R}^{2n})$ is the set of all subsets of \mathbb{R}^{2n} , and we distinguish two cases: If $\mathcal{S} := \mathcal{D}_{\omega}$ we call C diffeomorphism capacity and if $\mathcal{S} := \mathcal{E}_{\omega}$ we call it embedding capacity.

78

The axioms are designed in the way that the existence of a symplectic capacity for V implies Gromov's squeezing theorem: The existence of a symplectic embedding of the ball of radius r into Z(R) implies that $r \leq R$. However, to give a new proof of this theorem is not the aim of the present article.

2. Extensions in \mathbb{R}^{2n} . In order to control all extensions of c to any subset of \mathbb{R}^{2n} at the same time, the idea is to consider the smallest and biggest functions satisfying monotonicity and \mathcal{D}_{ω} -invariance for $D \in \mathcal{P}(\mathbb{R}^{2n})$:

DEFINITION 3.

 $\ell(D) = \sup\{c(K) \mid K \in \mathcal{K} \text{ such that } \exists \varphi \in \mathcal{D}_{\omega} \text{ with } \varphi(K) \subset D\}$ $u(D) = \inf\{c(K) \mid K \in \mathcal{K} \text{ such that } \exists \varphi \in \mathcal{D}_{\omega} \text{ with } D \subset \varphi(K)\}.$

Let analogously ℓ_e and u_e be defined with symplectic embeddings $\varphi \in \mathcal{E}_{\omega}$ with open domain of definition dom $\varphi \supset \overline{K}$ instead of diffeomorphisms \mathcal{D}_{ω} . As usual, we set 0 the supremum and ∞ the infimum on the empty set.

We call u and ℓ upper and lower symplectic capacity in \mathbb{R}^{2n} respectively because any capacity extending c is estimated above and below by u and ℓ :

THEOREM 1.

(i) All symplectic capacities $C : \mathcal{F} \to [0, \infty]$ coinciding on \mathcal{K} with c are estimated by u and $\ell: \ell(D) \leq C(D) \leq u(D)$ for every $D \in \mathcal{F}$. If C_e is moreover \mathcal{E}_{ω} -invariant (an embedding capacity), it satisfies $\ell \leq \ell_e \leq C_e \leq u_e \leq u$.

(ii) u and ℓ (and also u_e and ℓ_e) are symplectic diffeomorphism capacities for $\mathcal{P}(\mathbb{R}^{2n})$. ℓ_e is moreover an embedding capacity, whereas u_e is not \mathcal{E}_{ω} -invariant.

(iii) They all coincide on \mathcal{K} with c;

- (iv) u and ℓ are distinct,
- (v) and $u(D) = \inf_{\varphi \in \mathcal{D}_{\omega}} c(\operatorname{conv} \varphi(D))$, where $\operatorname{conv} D$ is the closed convex hull of D.

Notation. We denote inward and outward approximation sets by

$$\mathcal{I}(D) = \{ K \in \mathcal{K} \mid \exists \varphi \in \mathcal{D}_{\omega} \quad \text{with } \varphi(K) \subset D \} \\ \mathcal{O}(D) = \{ K \in \mathcal{K} \mid \exists \varphi \in \mathcal{D}_{\omega} \quad \text{with } D \subset \varphi(K) \},$$

then the proofs for u and ℓ can simply be deduced from the properties of these sets.

Proof.

(i) We show only $\ell \leq C$. If $\ell = 0$, there is nothing to prove since any capacity C is non-negative. We may therefore suppose that there is $K \in \mathcal{K}$ and $\varphi \in \mathcal{D}_{\omega}$ with $\varphi(K) \subset D$; then

$$C(D) \stackrel{(a)}{\geq} C(\varphi(K)) \stackrel{(b)}{=} C(K) \stackrel{(c)}{=} c(K),$$

therefore $C(D) \ge \sup c(K) = \ell(D)$. An analogous argument yields $u(D) \ge C(D)$. The other inequalities can be proved in a similar way.

(ii) Monotonicity: $D_1 \subset D_2 \Longrightarrow \mathcal{I}(D_1) \subset \mathcal{I}(D_2), \mathcal{O}(D_1) \supset \mathcal{O}(D_2)$, therefore

$$\ell(D_1) = \sup_{\mathcal{I}(D_1)} c \le \sup_{\mathcal{I}(D_2)} c = \ell(D_2)$$
$$u(D_1) = \inf_{\mathcal{O}(D_1)} c \le \inf_{\mathcal{O}(D_2)} c = u(D_2).$$

Symplectic invariance: Let $\psi \in \mathcal{D}_{\omega}$. For $K \in \mathcal{I}(\psi(D))$, there is $\varphi(K) \subset \psi(D) \Longrightarrow \psi^{-1} \circ \varphi(K) \subset D \Longrightarrow K \in \mathcal{I}(D)$, by the group property of \mathcal{D}_{ω} , thus $\mathcal{I}(\psi(D)) = \mathcal{I}(D)$. Analogously, $\mathcal{O}(\psi(D)) = \mathcal{O}(D)$, from where

$$\ell(\psi(D)) = \ell(D)$$
$$u(\psi(D)) = u(D)$$

The function $u_e(D) := \inf\{c(K) \mid K \in \mathcal{K} \text{ such that } \exists \varphi \in \mathcal{E}_{\omega} \text{ with } D \subset \varphi(K)\}$ satisfies immediately $u_e(D) \leq u(D)$. But u_e is not \mathcal{E}_{ω} -invariant (only \mathcal{D}_{ω} -invariant):

$$\psi(D) \subset \varphi(K) \quad \psi, \varphi \in \mathcal{E}_{\omega} \not\Rightarrow D \subset \psi^{-1} \circ \varphi(K)$$

as ψ^{-1} may not be defined on $\varphi(K)$. But ℓ_e is \mathcal{E}_{ω} -invariant:

$$\varphi(K) \subset \psi(D) \quad \psi, \varphi \in \mathcal{E}_{\omega} \Longrightarrow \psi^{-1}\varphi(K) \subset D$$

since ψ^{-1} is defined on the (smaller) set $\varphi(K)$.

(iii) To show $\ell(K) = c(K) = u(K)$ for all $K \in \mathcal{K}$, first note that

$$\ell(K) \ge c(K) \ge u(K)$$

because we can take $\varphi = id$ in the definition of ℓ and u. For the reverse inequality, we need the monotonicity of a symplectic capacity on smooth convex domains such as c_{EH} : For all $\varphi(K_1) \subset K \subset \psi(K_2)$ one gets $c(K_1) \leq c(K) \leq c(K_2)$ and therefore the claim by taking the infimum respectively the supremum on K_i .

(iv) We prove this by exhibiting an example: Consider the shell $A^{2n} = B(R) \setminus B(r)$, r < R. To calculate $u(A^{2n})$, observe that all images of convex sets by diffeomorphisms containing A^{2n} contain B(R), which is itself convex; therefore $u(A) = c(B(R)) = \pi R^2$. For ℓ , look first at an area-preserving embedding $\varphi_0 \in \mathcal{E}_{\omega}$ in 2 dimensions $\varphi_0 : K := (0, 2\pi) \times (0, \frac{R^2 - r^2}{2}) \longrightarrow A^2$. Its image $\mathring{A}^2 \setminus \{(p, q) \mid p = 0, q > 0\}$ has the same area as K:

$$c(K) = \pi (R^2 - r^2) = \ell_e \big(\varphi_0(K)\big),$$

and fills out $B(R) \setminus B(r)$ with respect to the area measure. Therefore, the lower embedding capacity $\ell_e(A^2) := \sup\{c(K) \mid K \in \mathcal{K} \text{ such that } \exists \varphi \in \mathcal{E}_{\omega} \text{ with } \varphi(K) \subset A^2\}$ equals $\pi(R^2 - r^2)$. But $\ell(A^2)$ is less than $\ell_e(A^2)$ because $\mathcal{D}_{\omega} \subset \mathcal{E}_{\omega}$, from where we get the claim for dimension 2:

$$\ell(A^2) \le \ell_e(A^2) = \pi(R^2 - r^2) < \pi R^2 = u(A^2).$$

The product formula for the symplectic product $P = A^2 \times \cdots \times A^2$ yields finally $\ell(P) < u(P)$ for arbitrary dimensions.

80

Fig. 1. Existence of distinct symplectic capacities.

(v) $\inf_{\varphi \in \mathcal{D}_{\omega}} c(\operatorname{conv} \varphi(D)) = \inf_{\varphi} \inf_{K \in \mathcal{K}} \{c(K) \mid \varphi(D) \subset K\}$ by the definition of the convex hull and monotonicity for convex sets. This is equal to $\inf_{\varphi} \inf_{K} \{c(K) \mid D \subset \varphi^{-1}(K)\} = u(D)$.

Remark. To complete the calculation for the example in (iv), consider an areapreserving diffeomorphism $\psi_{\varepsilon} \in \mathcal{E}_{\omega}$:

$$\psi_{\varepsilon}: \mathring{A}^2 = \mathring{B}(R) \setminus B(r) \longrightarrow \mathring{B}(\sqrt{R^2 - r^2 + \varepsilon^2}) \setminus B(\varepsilon)$$

which yields, together with the above result $\ell_e(A^2) = \pi(R^2 - r^2)$ that all \mathcal{E}_{ω} -invariant capacities of A^2 are $\pi(R^2 - r^2)$.

This example shows that \mathcal{E}_{ω} -invariant capacities C_e do not distinguish between annuli of the same area whereas u does. On the other hand, u does not distinguish between discs and annuli of the same (outer) radius, whereas C_e might.

3. Applications to closed characteristics and action inequalities.

As $C_{HZ}(D) \leq u(D)$ for all D, one can draw a consequence of Theorem 4 in [HZ90]: If u(D) is finite and ∂D admits a foliation $S_{\varepsilon} \in [0, 1]$ by hypersurfaces such that $S_0 = \partial D$, then there exists a periodic solution on S_{ε} for almost every ε in [0, 1]. This contains the almost existence theorem of Hofer and Zehnder in [HZ87] which generalized Viterbo's proof [V87] that every hypersurface of contact type carries at least one periodic orbit.

On the other hand, for a given D, the characterization of c as a minimum of the dual Hamiltonian action functional together with Theorem 1(v) may be useful to show that u(D) is finite.

For convex sets with $B(r) \subset K \subset B(R)$, a theorem by Croke–Weinstein and a theorem by Ekeland (see [E90] for both) state

(a)	$\forall \gamma \in \Gamma(K)$	$A(\gamma) \ge \pi r^2$	(Croke–Weinstein)
(b)	$\exists \gamma \in \Gamma(K)$	$A(\gamma) \leq \pi R^2$	(Ekeland)

These estimates can now be understood naturally in terms of capacities and are readily generalized:

PROPOSITION 1. Consider $K \in \mathcal{K}$. If $D_1 \subset K \subset D_2$ for two sets $D_i \in \mathcal{P}(\mathbb{R}^{2n})$, then for any extensions C_1, C_2 of c one gets

(a) $\forall \gamma \in \Gamma(K) \quad A(\gamma) \ge C_1(D_1),$ (b) $\exists \gamma \in \Gamma(K) \quad A(\gamma) \le C_2(D_2).$

Proof. Monotonicity and $C_1(K) = C_2(K) = c(K)$ imply

$$C_1(D_1) \le c(K) = \min_{\gamma \in \Gamma(K)} A(\gamma) \le C_2(D_2). \blacksquare$$

As concrete example, one can improve the inequalities already by taking for D_1 and D_2 two radially deformed ellipsoids [K90]. They are symplectomorphic to standard ellipsoids and have therefore known capacity.

4. Star-shaped domains need not be symplectomorphic to any convex set. Theorem 1 together with the definition of c by closed characteristics on any set has an immediate

COROLLARY. Consider a subset D_0 of \mathbb{R}^{2n} with non-empty interior. Let $C(D_0)$ be its value for any symplectic capacity extending c. Then all sets $D \supset D_0$ carrying a characteristic loop on their boundary ∂D with action strictly less than $C(D_0)$ cannot be symplectomorphic to a convex set. Consequently there are star-shaped domains which are not symplectomorphic to any convex set.

Proof. Assume $D = \varphi(K)$ for $K \in \mathcal{K}, \varphi \in \mathcal{D}_{\omega}$, and show that this leads to a contradiction. On the one hand

$$C(D_0) \le C(D) = C(\varphi(K)) = c(K) = \inf\{A(\gamma) \mid \gamma \in \Gamma(K)\};\$$

but on the other, φ induces a bijection between characteristic curves leaving the actions invariant, because K and $\varphi(K)$ are simply connected, implying that for all characteristic loops on $\partial \varphi(K)$, $A(\gamma) \ge c(K) = C(D)$, contradiction. For $C(D_0) = \infty$ the theorem means: If ∂D carries a characteristic loop with finite action, then D cannot be symplectically diffeomorphic to a convex set.

As examples, consider $D_0 = B(r)$; then all sets $D \supset B(r)$ with a "neck loop" γ as in the theorem are not symplectomorphic to a convex set. In particular, there are star-shaped domains which are not symplectomorphic to any convex set.

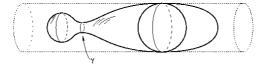


Fig. 2. A star-shaped domain which is not symplectomorphic to any convex set.

5. Further examples.

PROPOSITION 2.

(i) If $D \subset \mathbb{R}^{2n-1} \subset \mathbb{R}^{2n}$ is bounded, then C(D) = 0 for all symplectic capacities C. For example $u(S^{2n-2}) = 0$, whereas $u(S^{2n-1}) = u(B(1)) = \pi$.

- (ii) A Lagrangian plane L satisfies $u(L) = \infty$.
- (iii) Let $\mathring{D}_1 \supset \overline{D}_2$, then $u(D_1 \setminus D_2) = u(D_1)$.

(iv) Let $T^d = \partial B_1 \times \cdots \times \partial B_d$ be a standard isotropic torus, where B_i are simply connected 2-dimensional domains in the standard symplectic 2-space. Put $B_i = 0$, $i = d + 1, \ldots, n$. Then $u(T^d) = \min_{i=1,\ldots,n} \operatorname{Area}(B_i) < \infty$ for all $d \leq n$ which is 0 for all d < n. Moreover, $C_e(\Lambda) = 0$ for all \mathcal{E}_{ω} -invariant capacities C_e and for all Lagrangian tori Λ . (v) Let $\{D_i \mid i \in I\}$ be a collection of open bounded subsets with $\overline{D}_i \cap \overline{D}_j = \emptyset$ for $i \neq j$ and let $D = \bigcup_{i \in I} D_i$. Then $u(D) \ge \sup\{u(D_i)\} \ge \ell(D)$.

(vi) $u(\bar{D}) = u(\check{D})$, but $\ell(\bar{D}) \neq \ell(\check{D})$ in general.

(vii) u is Hausdorff-continuous on bounded domains, but ℓ is not.

This illustrates how much differently from measures capacities behave.

Proof.

(i) Consider a vector $e \in \mathbb{R}^{2n}$ orthogonal to D and e' = Je and the convex rectangle $K_{\varepsilon} := [-R, R]e' \times [-\varepsilon, \varepsilon]e \subset \operatorname{span}\{e', e\} =: E^{\perp}$. D is contained in the symplectic product of convex sets $K_{\varepsilon} \times E$. By the product formula for c, one gets $C(D) \leq c(K_{\varepsilon} \times E) = c(K_{\varepsilon}) = 2R \cdot 2\varepsilon \to 0$ for $\varepsilon \to 0$.

This is true for any capacity, not only for extensions of c, because K_{ε} is areapreserving diffeomorphic to a disc with area $2\varepsilon =: \pi r^2$, i.e. $K_{\varepsilon} \times E \sim B(r) \times \mathbb{R}^{2n-2}$.

In conclusion, all bounded subsets of \mathbb{R}^{2n-1} have vanishing value for any capacity function C.

(ii) As L is an n-dimensional plane in \mathbb{R}^{2n} , its normal cone is an n-dimensional quadrant, whose image by J_0 is a quadrant in L. The differential inclusion (*) has therefore no closed orbit, which means that $c(L) = \infty$.

(iii) $\varphi(K) \supset D_1$ if and only if $\varphi(K) \supset D_1 \setminus D_2$ for $D_1 \supset D_2$, because $\varphi(K)$ is contractible. This implies $\mathcal{O}(D_1 \setminus \overline{D}_2) = \mathcal{O}(D_1)$ and therefore $u(D_1 \setminus D_2) = u(D_1)$. (*Remark*: A special case is the shell $\mathring{B}(R) \setminus B(r)$ we treated earlier.)

(iv) $T^d \subset \partial (\bigotimes_{i=1}^n B_i) =: \partial P$ where P is the symplectic product of B_i whose capacities can be estimated by the product formula for convex sets (with B_i area-preserving diffeomorphic to convex discs):

$$u(P) = \min\{u(B_i)\} = u(B_k),$$

for some k. As $u(B_k)$ is the area of the bounded set B_k , $u(T^d)$ is bounded. If d < n, it is even 0.

Now we can apply Moser's homotopy argument to show that all Lagrangian tori are symplectically equivalent, i.e. for all Lagrangian tori Λ , there is a $\varphi \in \mathcal{E}_{\omega}$ such that $\varphi(\Lambda) = T^n$ is a standard torus. Consequently

$$C_e(\Lambda) = C_e(\varphi(\Lambda)) = C_e(T^n) \le u(B_k).$$

In particular, for all $\varepsilon > 0$, there is a standard torus T^n with $u(T^n) = \varepsilon$, i.e. $C_e(\Lambda) = 0$ for all Λ and C_e .

(v) $\varphi(K) \supset D \Rightarrow \varphi(K) \supset D_i : \mathcal{O}(D) \subset \mathcal{O}(D_i)$, implying $u(D) \ge \sup_{i \in I} \{u(D_i)\}$. If $\varphi(K) \subset D$, then it must be contained in one of the D_i and conversely: $\mathcal{I}(D) = \bigcup_{i \in I} \mathcal{I}(D_i)$, yielding $\ell(\bigcup_{i \in I} D_i) = \sup_{i \in I} \{\ell(D_i)\}$.

(vi) For any symplectic diffeomorphism φ defined on \mathbb{R}^{2n} , one infers

$$\check{D} \subset \varphi(K) \iff \check{D} \subset \varphi(\check{K}) \iff \bar{D} \subset \varphi(\bar{K}),$$

from where $u(\bar{D}) = u(\check{D})$.

(vii) Consider $D_{\varepsilon} = \{x \in \mathbb{R}^{2n} \mid \text{dist}(x, D) \leq \varepsilon\}$. Because D_{ε} is bounded, the norm $\|d\varphi(x)\|$ is uniformly bounded from below and above on $D_{\varepsilon} \setminus D$. Then there exists a constant r such that $u(D_{\varepsilon}) = (1 + r\varepsilon)u(D)$, which proves the Hausdorff-continuity of u.

Both negations for ℓ follow from the following counterexample: Consider a union $D = \bigcup_{i=1,\dots,4} D_i$ of four disjoint, juxtaposed open unit squares D_i such that \overline{D} is a closed square of length 2. Then \overline{D} has capacity $\ell(\overline{D}) = 4$, but $\ell(D) = \ell(D_1) = 1$. Moreover $D_{\varepsilon} \supset \overline{D}$ for all $\varepsilon > 0$.

THEOREM 2. For any capacity C extending c the generalized product formula holds: (a) $\min\{\ell(D_1), \ell(D_2)\} \leq \ell(D_1 \times D_2) \leq C(D_1 \times D_2) \leq u(D_1 \times D_2) \leq \min\{u(D_1), u(D_2)\}.$ (b) If $\ell(D_i) = u(D_i)$ for i = 1, 2, then $C(D_1 \times D_2) = \min\{C(D_1), C(D_2)\}.$

Proof.

(a) Take a minimizing sequence $(K_i^k, \varphi_i^k), k \in \mathbb{N}$ for each *i* and conclude: For *u*, assume $D_i \subset \varphi_i^k(K_i^k)$ and $u(D_i) = \inf_k c(K_i^k)$ for i = 1, 2. Clearly $D_1 \times D_2 \subset \varphi_1^k(K_1^k) \times \varphi_2^k(K_2^k)$ and therefore using the product formula for convex sets $u(D_1 \times D_2) \leq \inf_k c(K_1^k \times K_2^k) = \inf_k \min_k c(K_1^k), c(K_2^k) = \min_k u(D_1), u(D_2)$, and similarly for ℓ .

(b) follows immediately from (a). \blacksquare

R e m a r k. It is easy to see that there are 'many' sets satisfying the hypotheses of (b) which are not symplectomorphic to any convex set: Take for instance examples D similar to the one in the Corollary to Theorem 1 such that moreover $B(r) \subset D \subset Z(r)$, see Figure 2. They all satisfy $\ell(D) = u(D)$ and are not symplectomorphic to any convex set, which shows that Theorem 2 is a true generalization of the product formula for \mathcal{K} .

Theorem 2 applies in particular to c_{EH} (using [Si90]) and c_{HZ} .

6. Extensions to general symplectic manifolds. Now that extensions to \mathbb{R}^{2n} have been studied, it is easy to generalize them analogously to manifolds.

DEFINITION 4. For any subset of a symplectic manifold of given dimension 2n, we define the non-negative numbers

$$\underline{u}(D) = \inf_{\varphi \in \mathcal{E}_{\omega}} c(\operatorname{conv} \varphi(D)),$$

$$e(D) = \sup\{c(K) \mid K \in \mathcal{K} \quad \text{such that } \exists \varphi \in \mathcal{S} \text{ with } \varphi(K) \subset D\},$$

$$k(D) = \sup\{\underline{u}(P) \mid P \subset D \text{ contractible}\}.$$

THEOREM 3.

(i) e, k and \underline{u} satisfy the axioms of Definition 2 for any subsets of all symplectic manifolds and any family of embeddings.

(ii) All symplectic embedding capacities C coinciding on \mathcal{K} with c are estimated by e and $\underline{u}: e \leq C \leq \underline{u}$.

Proof. The proof is analogous to the one for ℓ and u and is therefore skipped. For k, one simply observes that every $\varphi(K)$ is a contractible set, so that $e \leq k \leq \underline{u}$ immediately follows.

7. Surfaces. Given any compact surface S of genus g, consider the canonical system of 2g non-dividing curves $\alpha_i, \beta_i, i = 1, \ldots, g$. Then $S \setminus A$ with $A := \bigcup_{i=1}^g \alpha_i \cup \beta_i$ is

84

conformally equivalent to a 2g-gon, which is itself conformally equivalent to a disk D in \mathbb{C} :

$$f: S \setminus A \to D$$

is a conformal map and is therefore symplectic:

$$\operatorname{Area}(D) = \operatorname{Area}(S \setminus A) = \operatorname{Area}(S).$$

CONSEQUENCES.

(1) $P = S \setminus A$ is contractible. Every other contractible subset of S has area less than Area(S), therefore $k(S) = \underline{u}(P) = \text{Area}(S)$.

(2) f^{-1} is a symplectic diffeomorphism $D \to S \setminus A$ from an open convex set into S, which realizes the maximum for area-preserving embeddings: e(S) = Area(S).

This proves

PROPOSITION 3. For any surface S with or without boundary, all symplectic embedding capacities C extending c are equal to the area of S: e(S) = Area(S) = k(S).

Proposition 3 has first been proved by Siburg [Si93] for embedding capacities (which he called Hofer-Zehnder capacities) by construction of an adapted Hamiltonian function.

This is in contrast to the diffeomorphism capacity u which is different from the area: Recall that the annulus $S = B(R) \setminus \overline{B}(r)$ satisfies $e(S) = \operatorname{Area}(S) = k(S) = \pi(R^2 - r^2)$ but $\underline{u}(S) = u(S) = \pi R^2$, see Figure 1.

8. Symplectic 4-tori and the Herman-Zehnder example. Following [HZ94], we consider $(\mathbb{R}^4, \omega_\alpha)$ with the symplectic structure $\omega_\alpha(x, y) = A_\alpha X \cdot Y$ defined by

$$A_{\alpha} = \begin{pmatrix} 0 & -1 & \alpha_2 & 0\\ 1 & 0 & -\alpha_1 & 0\\ -\alpha_2 & \alpha_1 & 0 & -1\\ 0 & 0 & 1 & 0 \end{pmatrix} = -A_{\alpha}^T$$

(which satisfies det $(A_{\alpha}) = 1$ but not $A_{\alpha}^2 = -I$). This form induces a symplectic structure on the manifold $M = T^3 \times [0, d] = \mathbb{R}^3/\mathbb{Z}^3 \times [0, d]$ denoted again ω_{α} . For $\alpha_1, \alpha_2 = 0$, one gets the standard almost complex structure J_0 . For d < 1, (M, ω_{α}) is embedded in the torus (T^4, ω_{α}) .

Functions H on \mathbb{R}^4 which are 1-periodic in the first three variables pass to the quotient as well as their Hamiltonian vector fields

$$\xi_H := -A_\alpha^{-1} H'(x),$$

where H'(x) is the Euclidean gradient of H. As

$$A_{\alpha}^{-1} = \begin{pmatrix} 0 & -1 & 0 & -\alpha_1 \\ 1 & 0 & 0 & -\alpha_2 \\ 0 & 0 & 0 & -1 \\ \alpha_1 & \alpha_2 & 1 & 0 \end{pmatrix},$$

we get for the Hamiltonian function $H_0(x) = x_4$ a constant vector field

$$\xi_{H_0} = (\alpha_1, \alpha_2, 1, 0) =: (\alpha, 0),$$

which integrates to an affine flow preserving all 3-tori $T^3 \times \{s\}$. If $\alpha = (\alpha_1, \alpha_2, 1)$ is rationally independent, i.e. $\alpha.z \neq 0 \quad \forall z \in \mathbb{Z}^3 \setminus 0$, this flow is dense and has no periodic orbits. Therefore it represents an example of a Hamiltonian flow whose energy levels $T^3 \times \{s\}$ are all regular and compact but none of them carries a periodic orbit.

M. Herman proved in [H91] that H_0 is dynamically stable under perturbations if α is irrational satisfying a diophantine condition: This represents an counter-example against the C^k -closing conjecture for k sufficiently large.

In [HZ94], it has been showed that $c_{HZ}(M, \omega_{\alpha})$ is infinite if α is irrational. Here we estimate $C(M, \omega_{\alpha})$ for any C extending c by exhibiting a convex set contained in M:

$$C(M, \omega_{\alpha}) \begin{cases} = \infty & \text{if } \alpha \text{ irrational} \\ \geq d & \text{if } \alpha \text{ rational} \end{cases}$$

Proof. Consider the linear map $(\mathbb{R}^4, \omega) \to (\mathbb{R}^4, \omega_\alpha)$ given by the matrix

$$N_{\alpha} = \begin{pmatrix} 1 & 0 & \alpha_1 & 0\\ 0 & 1 & \alpha_2 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

which is symplectic: $N_{\alpha}^{t}AN_{\alpha} = J_{0}$. Denote the canonical basis by e_{k} .

(i) If α is irrational, then the Lagrangian plane L spanned by e_1 and e_3 is embedded by N_{α} into $\tilde{M} = \mathbb{R}^3 \times [0, d]$. The quotient of this map onto M winds L in the 3-torus densely around itself. But a Lagrangian plane has infinite capacity, from where the first part of the claim.

If α is rational, then there are relatively prime $n_i \in \mathbb{Z}$, i = 1, 2 such that $\alpha_i = \frac{n_i}{n_3}$. Then:

(ii) N_{α} embeds the standard unit 3-cube into a fundamental domain of the action of \mathbb{Z}^3 on \tilde{M} . Therefore $C(M, \omega_{\alpha}) \geq c([0, 1]^3 \times [0, d], \omega_0) = d$ by the product formula, which proves the second claim.

(iii) But the map N_{α} also sends then the parallelogram P spanned by $e_1, \frac{1}{n_3}e_2, n_3e_3, e_4$ into a fundamental domain of the action of \mathbb{Z}^3 on \tilde{M} . Therefore $C(M, \omega_{\alpha}) \geq c(P, \omega_0)$, which is equal to min $\{\frac{1}{n_3}, d\}$ again by the product formula for c.

This last observation shows the relation to (i), but also prompts a question concerning fundamental domains of in \tilde{M} (which would determine e(M)): What is the biggest capacity a fundamental domain in \tilde{M} can have?

References

- [A84] J. P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson, Paris, 1984.
- [CE80] F. H. Clarke, I. Ekeland, Hamiltonian trajectories with prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103–116.
- [E90] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer, Berlin-Heidelberg, 1990.

- [EH89] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics I, Math. Z. 200 (1989), 355–378. See also C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 37–40.
- [EH90] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics II, Math. Z. 203 (1990), 553-567.
- [G85] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
- [H91] M. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie C[∞] n'a d'orbites périodiques sur un ouvert de surfaces d'énergies, C. R. Acad. Sci. Sér. I Math. 312 (1991), 989–994.
- [HZ87] H. W. Hofer, E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987), 1–9.
- [HZ90] H. W. Hofer, E. Zehnder, A new capacity for symplectic manifolds, in: Analysis et cetera, Academic Press, 1990, 405–429.
- [HZ94] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel-Boston-Berlin, 1994.
- [K90] A. F. Künzle, Une capacité symplectique pour les ensembles convexes et quelques applications, Ph.D. thesis, Université Paris IX Dauphine, June 1990.
- [K91] A. F. Künzle, The least characteristic action as symplectic capacity, preprint, Forschungsinstitut f
 ür Mathematik, ETH Z
 ürich, May 1991.
- [K93] A. F. Künzle, Singular Hamiltonian systems and Symplectic Capacities, in: Singularities and Differential Equations, Banach Center Publ. 33 (1996), 171–187.
- [R70] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton N.J., 1970.
- [Si93] K. F. Siburg, Symplectic capacities in two dimensions, Manuscripta Math. 78 (1993), 149–163.
- [Si90] J. C. Sikorav, Systèmes Hamiltoniens et topologie symplectique, Lecture Notes, Dipartimento di Matematica dell'Università di Pisa, August 1990.
- [V87] C. Viterbo, A proof of the Weinstein conjecture in \mathbb{R}^{2n} , Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337–357.