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Abstract. In the first part (without proofs) an orthogonality measure with partly discrete
and partly continuous support will be introduced for the five parameter family of multivariable
BC type Askey–Wilson polynomials. In the second part, the limit transitions from BC type
Askey–Wilson polynomials to BC type big and little q-Jacobi polynomials will be described in
detail.

1. Introduction. Recently, part of the Askey–Wilson scheme for one variable basic

hypergeometric orthogonal polynomials has been generalized to a multivariable BC type

Askey–Wilson scheme. The starting point was the introduction of families of orthogonal

polynomials for general root systems by Macdonald in [M]. For BC, this yielded a three

parameter family of orthogonal polynomials, generalizing part of the four parameter

family of one variable Askey–Wilson polynomials. Koornwinder in [K1] extended this

family to a five parameter family of multivariable BC type orthogonal polynomials. Four

parameters a, b, c, d play the same role as in the one variable case, and the fifth parameter

t is an extra deformation parameter. Furthermore, multivariable BC type big and little

q-Jacobi polynomials were introduced in [S], and limit transitions between these three

families have been studied in [SK].

In the one variable case, the limit transition from Askey–Wilson polynomials to big

resp. little q-Jacobi polynomials has a very special feature: the Askey–Wilson polynomials

which are involved in the limit transition are orthogonal with respect to a measure with

support consisting of a continuous and a discrete part. In the limit, the continuous part of

the orthogonality measure shrinks to {0} (with weight tending to zero), while the discrete
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part tends to the infinite set of discrete mass points corresponding to the big resp. little

q-Jacobi polynomials (cf. [K2]).

The orthogonality measure for the multivariable BC type Askey–Wilson polynomials

has been introduced in [K1] for parameters a, b, c, d such that the measure consists only

of a continuous part. Consequently, the limit transition from the multivariable Askey–

Wilson polynomials to the multivariable big resp. little q-Jacobi polynomials which was

proved in [SK], uses a definition of the multivariable Askey–Wilson polynomials for more

general parameter values by rational extension in the parameters, without knowing the

orthogonality measure for the general parameter values. In particular, an interpretation

of the limit transitions in terms of the supports of the orthogonality measures could not

be given in the multivariable case.

In the second section, the orthogonality measure for the multivariable BC type Askey–

Wilson polynomials will be given for more general parameter values. This gives rise to

extra discrete parts in the orthogonality measure. Proofs are omitted at this stage, they

will be given in [S1].

Knowing the orthogonality measure for the larger parameter domain allows us to give

an interpretation of the limit transition from multivariable Askey–Wilson polynomials

to multivariable big resp. little q-Jacobi polynomials in terms of the supports of the

orthogonality measures. This will be discussed in detail in section 3.

We will restrict to the case that the deformation parameter t is qk for k a natural

number.

Notations: N = {1, 2, . . .} will be the natural numbers and N0 the natural numbers

together with 0. Empty sums are equal to 0, empty products are equal to 1.

Acknowledgement : The author thanks Prof. T.H. Koornwinder for useful comments

on an earlier version of the paper.

2. The orthogonality measure for BC type Askey–Wilson polynomials. In

this section we fix q ∈ (0, 1).

We first introduce some notations. The q-shifted factorial is given by

(a; q)i :=

i−1∏
j=0

(
1− qja

)
(i ∈ N0), (a; q)∞ :=

∞∏
j=0

(
1− qja

)
,

and we denote

(a1, . . . , am; q)i :=

m∏
j=0

(aj ; q)i (i ∈ N0), (a1, . . . , am; q)∞ :=

m∏
j=0

(aj ; q)∞ .

We write

r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; q, x

]
:=

∞∑
k=0

(a1, . . . , ar+1; q)k x
k

(q, b1, . . . , br; q)k

for the q-hypergeometric series. Let N ∈ Z. Define for a function f : C → C and

α, β ∈ C the Jackson q-integral of f , truncated at N , by∫ β

α

f(x)dq,Nx :=

∫ β

0

f(x)dq,Nx−
∫ α

0

f(x)dq,Nx,
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∫ β

0

f(x)dq,Nx :=

N∑
k=0

f(βqk)
(
βqk − βqk+1

)
if N ≥ 0,

∫ β

α

f(x)dq,Nx := 0 if N < 0.

The Jackson q-integral for (continuous) functions f is defined by∫ β

α

f(x)dqx := lim
N→∞

∫ β

α

f(x)dq,Nx.

Let Sn be the symmetric group (group of permutations of the set {1, . . . , n}). Let

W be the semidirect product of {±1}n and Sn. Let z1, . . . , zn be independent variables,

then W acts on the algebra A := C[z±11 , . . . , z±1n ] by inversions and permutations of the

variables. Denote AW for the subalgebra of W-invariant functions in A. A basis for AW

is given by the monomials {mλ / λ ∈ P+}, where P+ := {µ ∈ Nn
0 / µ1 ≥ . . . ≥ µn}, and

mλ(z) :=
∑
µ∈Wλ

zµ,

with zµ = zµ1

1 . . . zµnn . The W-orbit of λ ∈ P+ ⊂ Zn is with respect to the natural action

of W on Zn.

In this section, we will define a scalar product on AW depending on parameters

a, b, c, d, t satisfying t = qk, k ∈ N, and (a, b, c, d) ∈ VAW with VAW given by

Definition 2.1 (Parameter domain for the Askey–Wilson polynomials). Let VAW be

the set of parameters (a, b, c, d) which satisfy the following conditions:

(1) a, b, c, d are real, or if complex, then they appear in conjugate pairs.

(2) ab, ac, ad, bc, bd, cd 6∈ R≥1 := {r ∈ R / r ≥ 1}.

Note that if (a, b, c, d) ∈ VAW and e ∈ {a, b, c, d} with |e| ≥ 1, then e ∈ R. Further-

more, at most two of the four parameters a, b, c, d have modulus ≥ 1; If there are two,

then one is ≥ 1, and the other is ≤ −1.

Let (a, b, c, d) ∈ VAW . For e ∈ {a, b, c, d} with |e| > 1, let Ne ∈ Z be the largest

integer such that |eqNe | > 1. Take Ne := −1 for e ∈ {a, b, c, d} with |e| ≤ 1. Let Tk be

the k-torus, given as the k-fold direct product of the unit circle C in Ck:

Tk := {(w1, . . . , wk) ∈ Ck / |wi| = 1 (i = 1, . . . , k)}.

Give Tk the orientation induced from the counterclockwise orientation on each unit circle

{wi / |wi| = 1}. Define for m ∈ {0, . . . , n} a hermitian form 〈., .〉a,b,c,dm,q,t : AW × AW → C

by:

〈p1, p2〉m :=
2m
(
n
m

)
(2πi)

n−m

∑
e1,...,em

∫ e1

z1=0

..

∫ em

zm=0

∫
..

∫
(zm+1,...,zn)∈Tn−m

p1(z)p2(z)∆AW,m(z)
dq,Ne1 z1

(1− q)z1
. . .

dq,Nem zm

(1− q)zm
dzm+1

zm+1
. . .

dzn
zn

(2.1)

for p1, p2 ∈ AW . The sum is taken over ej ∈ {a, b, c, d} for all j = 1, . . . ,m, so a sum

with at least one |ej | ≤ 1 gives zero contribution. For m = 0 we can skip the summation
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sign and integrate over (z1, . . . , zn) ∈ Tn. The weight function ∆AW,m(z; a, b, c, d; q, qk) is

defined by

∆AW,m (z) :=

(
m∏
l=1

wAW,d (zl)

)(
n∏

r=m+1

wAW,c (zr)

)
δk(z), (2.2)

with

δk(z) :=
∏

1≤i<j≤n

(
zizj , ziz

−1
j , z−1i zj , z

−1
i z−1j ; q

)
k
, (2.3)

and wAW,c(x; a, b, c, d; q), resp. wAW,d(x; a, b, c, d; q) given by

wAW,c(x; a, b, c, d; q) :=

(
x2, x−2; q

)
∞

(ax, ax−1, bx, bx−1, cx, cx−1, dx, dx−1; q)∞
(2.4)

and for e ∈ {a, b, c, d} and i ∈ {0, . . . , Ne},

wAW,d(eq
i; e; f, g, h; q) :=

(
e−2; q

)
∞

(q, ef, f/e, eg, g/e, eh, h/e; q)∞
×(

e2, ef, eg, eh; q
)
i

(q, eq/f, eq/g, eq/h; q)i

(
1− e2q2i

)
(1− e2)

(
q

efgh

)i
(2.5)

with f, g, h ∈ C such that e, f, g, h is a permutation of a, b, c, d. Then the hermitian form

〈., .〉a,b,c,dAW,q,t is defined by

〈p1, p2〉AW :=

n∑
m=0

〈p1, p2〉m (p1, p2 ∈ AW ). (2.6)

Note that the measure
dq,Nex
(1−q)x on [0, e] with |e| > 1 is just the counting measure for the

set {e, . . . , eqNe}, i.e. ∫ e

x=0

f(x)
dq,Nex

(1− q)x
=

Ne∑
k=0

f(eqk).

Denote WAW,m(a, b, c, d; q, qk) for the integration domain of 〈., .〉m. So we have WAW,0 =

Tn, and for m > 0 we have

WAW,m =

{
(z1, . . . , zn) ∈ Cn / zi ∈

⋃
e:|e|>1

{e, . . . , eqNe} (i = 1, . . . ,m)

and (zm+1, . . . , zn) ∈ Tn−m
}

(2.7)

if there exists an e ∈ {a, b, c, d} with |e| > 1, and WAW,m = ∅ otherwise.

The hermitian form 〈., .〉AW is positive definite due to following lemma.

Lemma 2.2. Let q ∈ (0, 1), (a, b, c, d) ∈ VAW and t = qk with k ∈ N.

(a) ∆AW,m (z) ≥ 0 for z ∈WAW,m and m ∈ {0, . . . , n}.
(b) Let 0 < m < n. Let zi ∈ ∪e:|e|>1{e, . . . , eqNe} for i = 1 . . . ,m.

Then ∆AW,m(z1, . . . , zm, wm+1, . . . , wn) = 0 for all (wm+1, . . . , wn) ∈ Tn−m if and only

if zi = qlzj for certain l ∈ {0, . . . , k − 1} and certain i, j ∈ {1, . . . ,m}, i 6= j.

(c) Let z ∈WAW,n, then ∆AW,n(z) = 0 if and only if zi = qlzj for certain l ∈ {0, . . . , k−1}
and certain i, j ∈ {1, . . . , n}, i 6= j.
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Define a partial order on P+ by

µ ≤ λ⇔
j∑
l=1

µl ≤
j∑
l=1

λl ∀j = 1, . . . , n (2.8)

for λ, µ ∈ P+.

Definition 2.3. Let (a, b, c, d) ∈ VAW and t = qk, k ∈ N.

The Askey–Wilson polynomials {PAWλ (z; a, b, c, d; q, t) / λ ∈ P+} are defined by the

following two conditions:

(1) PAWλ = mλ +
∑
µ<λ cλ,µmµ for certain cλ,µ ∈ C,

(2) 〈PAWλ ,mµ〉AW = 0 for µ < λ.

Conditions (1) and (2) uniquely determine PAWλ and {PAWλ / λ ∈ P+} is a basis of

AW . Full orthogonality of the Askey–Wilson polynomials with respect to 〈., .〉AW is not

obvious since the order (≤) on P+ is a partial order. It is clear that 〈PAWλ , PAWµ 〉AW = 0

if µ < λ or if µ > λ.

In the one variable case, the Askey–Wilson polynomials defined by definition 2.3 are

independent of t and correspond with the monic one variable Askey–Wilson polynomials

PAWl (x; a, b, c, d; q) :=
(ab, ac, ad; q)l
al (ql−1abcd; q)l

4φ3

[
q−l, ql−1abcd, ax, ax−1

ab, ac, ad
; q, q

]
(l ∈ N0)

(cf. [AW], theorem 2.4. The term (1−aq2k)
(1−a) in [AW] formula (2.10) should be replaced

by (1−a2q2k)
(1−a2) , so the discrete weights wAW,d coincide with the weights given by (2.10) in

[AW]). Note that PAWl (l ∈ N0) is a monic polynomial of degree l in the variable x+x−1.

Usely, the one variable Askey–Wilson polynomials are normalized differently (see [AW]).

Next we introduce a second order q-difference operator for which the Askey–Wilson

polynomials are joint eigenfunctions. The second order q-difference operator Da,b,c,d
AW,q,t is

defined by (cf. [K1]):

DAW :=

n∑
j=1

(
φ+AW,j(z)(Tq,j − Id) + φ−AW,j(z)(Tq−1,j − Id)

)
, (2.9)

with Tq±1,j the q±1-shift in the jth-coordinate:(
Tq±1,jf

)
(z) := f(z1, . . . , zj−1, q

±1zj , zj+1, . . . , zn)

and φ+AW,j(z; a, b, c, d; q, t) and φ−AW,j(z; a, b, c, d; q, t) are given by

φ+AW,j(z) :=
(1− azj)(1− bzj)(1− czj)(1− dzj)

(1− z2j )(1− qz2j )

∏
l 6=j

(1− tzlzj)
(
1− tz−1l zj

)
(1− zlzj)

(
1− z−1l zj

) ,
φ−AW,j(z) :=

(a− zj)(b− zj)(c− zj)(d− zj)
(1− z2j )(q − z2j )

∏
l 6=j

(t− zlzj)
(
t− z−1l zj

)
(1− zlzj)

(
1− z−1l zj

) .
Define for λ ∈ P+,

EAWλ (a, b, c, d; q, t) :=

n∑
j=1

(
q−1abcdt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
. (2.10)
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We have the following theorem.

Theorem 2.4. Let q ∈ (0, 1), (a, b, c, d) ∈ VAW and t = qk, with k ∈ N.

(a) For all λ ∈ P+ we have

DAWP
AW
λ = EAWλ PAWλ . (2.11)

(b) Let λ, µ ∈ P+ with λ 6= µ. We have

〈PAWλ , PAWµ 〉AW = 0. (2.12)

If (a, b, c, d) ∈ VAW with |e| ≤ 1 for all e ∈ {a, b, c, d} then the Askey–Wilson poly-

nomials given by definition 2.3 are exactly the multivariable Askey–Wilson polynomials

with t = qk(k ∈ N0) defined by Koornwinder in [K1], since the orthogonality measure

in this case (scalar product given by integration over the torus Tn with weight function

∆AW,0(z)) coincides with the orthogonality measure defined in [K1]. Koornwinder proved

theorem 2.4 for (a, b, c, d) ∈ VAW with |e| ≤ 1 for all e ∈ {a, b, c, d} with continuous pa-

rameter t ∈ (−1, 1), for suitable scalar product 〈., .〉AW,t (cf. [K1]).

3. Limit transitions to BC type big and little q-Jacobi polynomials. We first

recapitulate the definition of multivariable big and little q-Jacobi polynomials for the

special case that t = qk, k ∈ N (cf. [S]). Let c, d > 0, and

a ∈ (
−c
dq
,

1

q
), b ∈ (

−d
cq
,

1

q
),

or a = cz, b = −dz̄ with z ∈ C \ R. Denote V qB for the set of parameters (a, b, c, d)

which satisfy these conditions. Let AS := C[z1, . . . , zn]Sn be the algebra of symmetric

polynomials, and {m̃λ(z) / λ ∈ P+} the basis of monomials for AS :

m̃λ(z) :=
∑
µ∈Snλ

zµ.

Define for q ∈ (0, 1), (a, b, c, d) ∈ V qB and t = qk with k ∈ N a hermitian form 〈., .〉a,b,c,dB,q,t

on AS by

〈f, g〉B =

∫ c

z1=−d

∫ c

z2=−d
· · ·
∫ c

zn=−d
f(z)g(z)∆B(z)dqz1 . . . dqzn (3.1)

for f, g ∈ AS with weight function ∆B(z; a, b, c, d; q, qk) given by

∆B(z) =

(
n∏
i=1

wB(zi)

)
∆(z)

∏
1≤i<j≤n

z2k−1i

(
q1−k

zj
zi

; q

)
2k−1

,

with ∆(z) :=
∏

1≤i<j≤n(zi−zj) the Vandermonde determinant and wB(x; a, b, c, d; q) the

weight function involved in the orthogonality measure for the one variable big q-Jacobi

polynomials:

wB(x; a, b, c, d; q) :=
(qx/c,−qx/d; q)∞

(qax/c,−qbx/d; q)∞
.

The integration domain WB(a, b, c, d; q, qk) of 〈., .〉B is given by

WB :=

{
z ∈ Rn / zi ∈ {−dqk}k∈N0 ∪ {cql}l∈N0 (i = 1, . . . , n)

}
. (3.2)
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We have

Lemma 3.1. Let q ∈ (0, 1), (a, b, c, d) ∈ V qB and t = qk, k ∈ N.

(a) ∆B(z) ≥ 0 for all z ∈WB.

(b) ∆B(z) = 0 for z ∈ WB if and only if zi = qlzj for certain l ∈ {0, . . . , k − 1} and

certain i, j ∈ {1, . . . , n}, i 6= j.

In particular, 〈., .〉B is positive definite.

Definition 3.2. Let q ∈ (0, 1), (a, b, c, d) ∈ V qB and t = qk with k ∈ N.

The big q-Jacobi polynomials {PBλ ( . ; a, b, c, d; q, t) / λ ∈ P+} are defined by the fol-

lowing two conditions:

(1) PBλ = m̃λ +
∑
µ<λ cλ,µm̃µ for certain cλ,µ ∈ C,

(2) 〈PBλ , m̃µ〉B = 0 for µ < λ.

For the little q-Jacobi polynomials, assume a ∈ (0, 1/q) and b ∈ (−∞, 1/q), and denote

V qL for the set of parameters (a, b) which satisfy these conditions. Define for q ∈ (0, 1),

(a, b) ∈ V qL and t = qk with k ∈ N a hermitian form 〈., .〉a,bL,q,t on AS by

〈f, g〉L =

∫ 1

z1=0

. . .

∫ 1

zn=0

f(z)g(z)∆L(z)dqz1 . . . dqzn, (3.3)

for f, g ∈ AS with weight function ∆L(z; a, b; q, qk):

∆L(z) =

(
n∏
i=1

wL(zi)

)
∆(z)

∏
1≤i<j≤n

z2k−1i

(
q1−k

zj
zi

; q

)
2k−1

,

and wL(x; a, b; q) the weight function involved in the orthogonality measure for the one

variable little q-Jacobi polynomials:

wL(x; a, b; q) :=
(qx; q)∞
(qbx; q)∞

xα (a = qα).

The integration domain WL(a, b; q, qk) of 〈., .〉L is given by

WL :=

{
z ∈ Rn / zi ∈ {qk}k∈N0

(i = 1, . . . , n)

}
. (3.4)

We have

Lemma 3.3. Let q ∈ (0, 1), (a, b) ∈ V qL and t = qk, k ∈ N.

(a) ∆L(z) ≥ 0 for all z ∈WL.

(b) ∆L(z) = 0 for z ∈ WL if and only if zi = qlzj for certain l ∈ {0, . . . , k − 1} and

certain i, j ∈ {1, . . . , n}, i 6= j.

In particular, 〈., .〉L is positive definite.

Definition 3.4. Let q ∈ (0, 1), (a, b) ∈ V qL and t = qk, k ∈ N.

The little q-Jacobi polynomials {PLλ ( . ; a, b; q, t) / λ ∈ P+} are defined by the following

two conditions:

(1) PLλ = m̃λ +
∑
µ<λ cλ,µm̃µ for certain cλ,µ ∈ C,

(2) 〈PLλ , m̃µ〉L = 0 for µ < λ.
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The second order q-diference operator which has the big resp. little q-Jacobi polyno-

mials as mutual eigenfunctions is given by

DB =

n∑
j=1

(
φ+B,j(z)(Tq,j − Id) + φ−B,j(z)(Tq−1,j − Id)

)
,

DL =

n∑
j=1

(
φ+L,j(z)(Tq,j − Id) + φ−L,j(z)(Tq−1,j − Id)

)
,

with φ+B,j(z; a, b, c, d; q, t) given by

φ+B,j(z) := qtn−1
(
a− c

qzj

)(
b+

d

qzj

)∏
l 6=j

zl − tzj
zl − zj

and φ−B,j(z; a, b, c, d; q, t) given by

φ−B,j(z) :=

(
1− c

zj

)(
1 +

d

zj

)∏
l 6=j

zj − tzl
zj − zl

,

respectively

φ+L,j(z; a, b; q, t) := φ+B,j(z; b, a, 1, 0; q, t),

φ−L,j(z; a, b; q, t) := φ−B,j(z; b, a, 1, 0; q, t).

Define for λ ∈ P+, EB,Lλ (a, b; q, t) by

EB,Lλ =

n∑
j=1

(
qabt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
. (3.5)

In [S], the following theorem was proved:

Theorem 3.5. Let q ∈ (0, 1).

(a) Let (a, b, c, d) ∈ V qB and t = qk, k ∈ N. PBλ is an eigenfunction of DB with eigenvalue

EB,Lλ for all λ ∈ P+ and {PBµ / µ ∈ P+} is an orthogonal basis with respect to 〈., .〉B.
(b) Let (a, b) ∈ V qL and t = qk, k ∈ N. PLλ is an eigenfunction of DL with eigenvalue

EB,Lλ for all λ ∈ P+ and {PLµ / µ ∈ P+} is an orthogonal basis with respect to 〈., .〉L.

In fact, this theorem was proved in [S] for arbitrary t ∈ (0, 1), for suitable scalar

products 〈., .〉B,t and 〈., .〉L,t.
Denote |λ| :=

∑n
i=1 λi for λ ∈ P+, and cz := (cz1, . . . , czn) for z = (z1, . . . , zn),

c ∈ C. Let φε, φ be Laurent polynomials in the variables z1, . . . , zn, then we say that

lim
ε→0

φε = φ

if

lim
ε→0

φε(z) = φ(z) ∀z ∈ (C\{0})n .

We have the following limit transitions from Askey–Wilson polynomials to the big resp.

little q-Jacobi polynomials.
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Theorem 3.6. Fix λ ∈ P+.

(a) Let q ∈ (0, 1) and k ∈ N. Suppose that (a, b, c, d) ∈ V qB , then

lim
ε↓0

(
ε(cd)

1
2

q
1
2

)|λ|
PAWλ

(
q

1
2 z

ε(cd)
1
2

; εq
1
2 a(d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q 1

2 (d/c)
1
2 ,

−εq 1
2 b(c/d)

1
2 ; q, qk

)
= PBλ (z; a, b, c, d; q, qk). (3.6)

(b) Fix q ∈ (0, 1) and k ∈ N. Suppose that (a, b) ∈ V qL , then

lim
ε↓0

(
ε

q
1
2

)|λ|
PAWλ

(
q

1
2 z

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, qk

)
= PLλ (z; a, b; q, qk). (3.7)

P r o o f. The essence of the proof can be found in [SK]. The theorem was proved in [SK]

for a dense subset of the parameter domain, making use of a definition of Askey–Wilson

polynomials for general parameter values by rational extension in the parameters. Let us

first give the idea of the proof. It follows from theorem 2.4 that

PAWλ =

∏
µ<λ

DAW − EAWµ
EAWλ − EAWµ

mλ (3.8)

for parameter values such that EAWµ 6= EAWλ for all µ < λ. Furthermore we have

PLλ =

∏
µ<λ

DL − EB,Lµ

EB,Lλ − EB,Lµ

 m̃λ (3.9)

for parameter values such that EB,Lµ 6= EB,Lλ for all µ < λ and similarly for the big

q-Jacobi case. For these parameter values, the limit transition can be proved by taking

limits ofDAW and EAWλ . This gives the result for a dense subset of the parameter domain.

Since we know now the orthogonality measure for the larger parameter domain VAW , we

can prove the limit transitions for all parameter values by a type of continuity argument

(section 6 in [SK]). We have to slightly modify the arguments of (section 6, [SK]) for the

proof of this theorem, because we work with discrete parameter t. We give the proof of

(b), the proof of (a) is similar.

(b) For arbitrary (a, b) ∈ R2, let VL(a, b) be the open subset of (0, 1) defined by

VL(a, b) := {q ∈ (0, 1) / (a, b) ∈ V qL}. Fix (a, b) ∈ R2 with VL(a, b) 6= ∅. Fix k ∈ N.

There exists an εL > 0, independent of q, such that

(aL(ε), bL(ε), cL(ε), dL(ε)) :=
(
εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a
)
∈ VAW (3.10)

for all ε ∈ (0, εL) and all q ∈ VL(a, b). Hence the left hand side of formula (3.7) makes

sense. Denote mν,ε(z) := (ε/q
1
2 )|ν|mν(q

1
2 z/ε), then we have that

PAW,Lλ (z; ε) :=

(
ε

q
1
2

)|λ|
PAWλ

(
q

1
2 z

ε
; aL(ε), bL(ε), cL(ε), dL(ε); q, qk

)
= mλ,ε(z) +

∑
ν<λ

dAW,Lλ,ν

(
a, b; q, qk; ε

)
mν,ε(z) (3.11)
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for certain constants dAW,Lλ,ν if ε ∈ (0, εL) and q ∈ VL(a, b). By definition, there exist

constants dLλ,ν such that

PLλ (z; a, b; q, qk) = m̃λ(z) +
∑
ν<λ

dLλ,ν(a, b; q, qk)m̃ν(z) (3.12)

for q ∈ VL(a, b). It will be sufficient to prove that

lim
ε↓0

dAW,Lλ,ν (a, b; q, qk; ε) = dLλ,ν(a, b; q, qk) (3.13)

for all ν, λ ∈ P+ with ν < λ and for all q ∈ VL(a, b), because

lim
ε→0

mν,ε = m̃ν ∀ν ∈ P+. (3.14)

Fix ν, λ ∈ P+ with ν < λ. The proof of (3.13) consists of five steps:

(i) Define

ṼL,λ(a, b) := {q ∈ VL(a, b) /EB,Lλ (a, b; q, qk) 6= EB,Lµ (a, b; q, qk) ∀µ < λ},

then ṼL,λ(a, b) ⊂ VL(a, b) is dense.

(ii) dAW,Lλ,ν (a, b; q, qk; ε) depends polynomially on ε for q ∈ ṼL,λ(a, b).

(iii) limε↓0 d
AW,L
λ,ν (a, b; q, qk; ε) = dLλ,ν(a, b; q, qk) for all q ∈ ṼL,λ(a, b).

(iv) The map q 7→ dAW,Lλ,ν (a, b; q, qk; ε) : VL(a, b)→ C is continuous for all ε ∈ (0, εL).

(v) The map q 7→ dLλ,ν(a, b; q, qk) : VL(a, b)→ C is continuous.

It follows easily from (i), (ii) and (iv) that the limit limε↓0 d
AW,L
λ,µ (a, b; q, qk; ε) exists for

all q ∈ VL(a, b) and that the limit depends continuously on q ∈ VL(a, b) (cf. [SK], lemma

6.1). (iii) and (v) imply then that the limit will be dLλ,ν(a, b; q, qk) for all q ∈ VL(a, b),

hence (b) of the theorem follows.

We proceed with proving the five steps. Fix ν, λ ∈ P+ with ν < λ.

(i) It is sufficient to prove that for arbitrary a, b ∈ C and arbitrary λ, µ ∈ P+,

EB,Lλ (a, b; q, qk) = EB,Lµ (a, b; q, qk) as Laurent polynomials in q if and only if λ = µ. If

EB,Lλ (a, b; q, qk) = EB,Lµ (a, b; q, qk) as Laurent polynomials in q, then

(ab)

n∑
i=1

(
qλi+k(n−i)+1 − qµi+k(n−i)+1

)
=

n∑
i=1

(
q−µi−k(n−i) − q−λi−k(n−i)

)
as Laurent polynomials in q. This implies that

n∑
i=1

q−µi−k(n−i) =

n∑
i=1

q−λi−k(n−i)

as Laurent polynomials in q. Since µ, λ ∈ P+, we get µi + k(n− i) = λi + k(n− i) for all

i. Hence λ = µ.

(ii) Denote Dε
AW,L for the q-difference operator Dεq

1
2 b,ε−1q

1
2 ,−q

1
2 ,−q

1
2 a

AW,q,qk
. We have

EAWλ (aL(ε), bL(ε), cL(ε), dL(ε); q, qk) = EB,Lλ (a, b; q, qk) (3.15)

independent of ε for all λ ∈ P+, so we can write PAW,Lλ (z; ε) for q ∈ ṼL,λ(a, b) as

PAW,Lλ (. ; ε) =

∏
µ<λ

Dε
AW,L − EB,Lµ

EB,Lλ − EB,Lµ

mλ,ε. (3.16)
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Hence it is sufficient to prove that the coefficients c̃AW,Lλ,ν (ε) (ν ≤ λ) in the expansion

Dε
AW,Lmλ,ε =

∑
ν≤λ

c̃AW,Lλ,ν (ε)mν,ε (3.17)

depend polynomially on ε. The coefficients can be written as

c̃AW,Lλ,ν (ε) =

(
ε

q
1
2

)|λ|−|ν|
cAWλ,ν

(
εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, qk

)
where cAWλ,ν (ν ≤ λ) are the coefficients in the expansion

DAWmλ =
∑
ν≤λ

cAWλ,ν mν .

In [SK], prop. 5.3 (2), it was proven that the coefficients c̃AW,Lλ,ν (ε) (ν ≤ λ) depend

polynomially on ε.

(iii) Follows from (3.16), (3.14) and (3.9), since the constant terms cLλ,ν (ν ≤ λ) of the

polynomials c̃AW,Lλ,ν (ε) (ν ≤ λ) are exactly the expansion coefficients of Da,b
L,q,qk

m̃λ with

respect to the basis {m̃µ / µ ∈ P+}:

Da,b
L,q,qk

m̃λ =
∑
ν≤λ

cLλ,νm̃ν .

(cf. [SK], theorem 5.1(2) and prop. 5.3 (2)).

(iv) The map

q 7→ 〈mρ,mσ〉εq
1
2 b,ε−1q

1
2 ,−q

1
2 ,−q

1
2 a

AW,q,qk
: VL(a, b)→ C

is continuous for all ρ, σ ∈ P+ and all ε ∈ (0, εL). Hence

q 7→ dAW,Lλ,ν (a, b; q, qk; ε) : VL(a, b)→ C

is continuous for all ε ∈ (0, εL) (cf. [SK], prop. 2.3(a)).

(v) The continuity of the map

q 7→ dLλ,ν(a, b; q, qk) : VL(a, b)→ C

follows from the continuity of the maps

q 7→ 〈m̃ρ, m̃σ〉a,bL,q,qk : VL(a, b)→ C (ρ, σ ∈ P+).

This completes the proof of the theorem.

The behaviour of the support of the orthogonality measures under these limit transi-

tions is similar to the behaviour in the one variable case (cf. [K2]). Indeed, for the limit

transition to the big q-Jacobi polynomials, fix q ∈ (0, 1) and (a, b, c, d) ∈ V qB . Fix k ∈ N.

Then there exists an εB > 0 such that

(aB(ε), bB(ε), cB(ε), dB(ε)) :=
(
εq

1
2 a (d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,

−ε−1q 1
2 (d/c)

1
2 ,−εq 1

2 b (c/d)
1
2

)
∈ VAW

for ε ∈ (0, εB). Denote

PAW,Bλ (z; ε) :=

(
ε(cd)

1
2

q
1
2

)|λ|
PAWλ

(
q

1
2 z

ε (cd)
1
2

; aB(ε), bB(ε), cB(ε), dB(ε); q, qk

)
,



426 J. V. STOKMAN

then the support of the orthogonality measure of {PAW,Bλ (z; ε) / λ ∈ P+} for ε ∈ (0, εB)

small enough, is essentially given by (cf. lemma 2.2)
n⋃

m=0

{
z ∈ Cn / zl ∈ {−dqr1}

N1,ε

r1=0 ∪ {cqr2}
N2,ε

r2=0 (l = 1, . . . ,m) such that

zi 6= qrzj for 1 ≤ i 6= j ≤ m and for r = 0, . . . , k − 1,

and |zl| = ε (cd/q)
1
2 (l = m+ 1, . . . , n)

}
with N1,ε, N2,ε ∈ N0 the largest integers such that

|ε−1q 1
2 (d/c)

1
2 qN1,ε | > 1, resp. |ε−1q 1

2 (c/d)
1
2 qN2,ε | > 1.

We will give now a formal calculation in order to see which weights tend (formally) to

non zero weights under the limit transition. We will rescale the weights (rescaling factor

depends on ε) for the Askey–Wilson polynomials involved in the limit in such a way,

that the formal limits ε ↓ 0 of the rescaled weights exist and are not all identically zero.

The formal limit we will use, is the following. Let a1, . . . , ar, b1, . . . , bs ∈ C\{0}, then we

assume that

lim
x→∞

(a1x, . . . , arx; q)∞
(b1x, . . . , bsx; q)∞

= 0 (3.18)

if r < s or if r = s and |a1 . . . ar| < |b1 . . . br|. In order words, writing the quotient of

infinite products in (3.18) as
∞∏
j=0

(1− a1qjx) . . . (1− arqjx)

(1− b1qjx) . . . (1− bsqjx)
,

we assume that we may take the limit termwise within the infinite product. Denote

z(m)(ε) :=
(
z1, . . . , zm, ε (cd/q)

1
2 cm+1, . . . , ε (cd/q)

1
2 cn

)
,

where m ∈ {0, . . . , n}, |cm+1| = . . . = |cn| = 1 and zl ∈ {−dqr, cqs}r,s∈N0
(l = 1, . . . ,m)

such that zi 6= qrzj for 1 ≤ i 6= j ≤ m and for r = 0, . . . , k−1. z(m)(ε) is in the support of

the orthogonality measure for the polynomials {PAW,Bλ (z; ε) / λ ∈ P+} if ε is sufficiently

small. The corresponding (rescaled) weight is given by

∆B
m(z(m)(ε))

:=
(
−ε−2q; q

)n
∞ εkn(n−1)∆AW,m

(
q

1
2 z(m)(ε)

ε(cd)
1
2

; aB(ε), bB(ε), cB(ε), dB(ε); q, qk

)
.

A straightforward calculation, using the formal limit (3.18), gives that

lim
ε↓0

∆B
m(z(m)(ε)) = 0 if 0 ≤ m < n,

lim
ε↓0

∆B
n (z(n)(ε)) = KB∆B(z)

n∏
j=1

|zj |,

with KB a positive constant given by

KB := (q; q)
−2n
∞ (−d/c,−c/d; q)

−n
∞

(
c+ d

cd

)n
qk

2(n2)(cd)−k(
n
2).
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Since N1,ε, N2,ε → ∞ if ε ↓ 0, we see that formally in the limit ε ↓ 0, the part of

the measure with (partially) continuous support disappears while the completely discrete

part of the orthogonality blows up to the set{
z ∈ Rn / zi ∈{−dqr, cqs}r,s∈N0

(i = 1, . . . , n) such that

zi 6= qlzj for 1 ≤ i 6= j ≤ n and for l = 0, . . . , k − 1

}
. (3.19)

We recognize the set (3.19) as the support of the orthogonality measure for the big

q-Jacobi polynomials {PBλ (z; a, b, c, d; q, qk) / λ ∈ P+} (cf. lemma 3.1), and the corre-

sponding formal weights are (up to a positive constant) equal to the weights for the big

q-Jacobi polynomials.

A similar interpretation can be given for the the limit from Askey–Wilson polynomials

to little q-Jacobi polynomials. Fix q ∈ (0, 1), (a, b) ∈ V qL and k ∈ N. The support of the

orthogonality measure for the polynomials {PAW,Lλ (z; a, b; q, qk; ε) / λ ∈ P+} (cf. (3.11))

for ε sufficient small is given by

n⋃
m=0

{
z ∈ Cn / zl ∈ Va(ε) (l = 1, . . . ,m) such that zi 6= qrzj for 1 ≤ i 6= j ≤ m

and for r = 0, . . . , k − 1, and |zl| = ε/q
1
2 (l = m+ 1, . . . , n)

}
where Va(ε) = {qr}Nεr=0 ∪ {−εa} if |aq 1

2 | > 1 resp. Va(ε) = {qr}Nεr=0 if |aq 1
2 | ≤ 1 and with

Nε ∈ N0 largest such that |ε−1q 1
2 qNε | > 1. Denote

z(m)(ε) :=
(
z1, . . . , zm, cm+1ε/q

1
2 , . . . , cnε/q

1
2

)
,

where m ∈ {0, . . . , n}, |cm+1| = . . . = |cn| = 1 and zl ∈ {qr}r∈N0 ∪ {−εa} if |aq 1
2 | > 1

resp. zl ∈ {ql}l∈N0
if |aq 1

2 | ≤ 1 (l = 1, . . . ,m), such that zi 6= qrzj for 1 ≤ i 6= j ≤ m

and for r = 0, . . . , k − 1. z(m)(ε) is in the support of the orthogonality measure for

the polynomials {PAW,Lλ (z; ε) / λ ∈ P+} if ε is sufficiently small. The corresponding

(rescaled) weight is then given by

∆L
m(z(m)(ε)) :=

(
−ε−1q,−ε−1qa; q

)n
∞ εkn(n−1)∆AW,m

(
q

1
2 z(m)(ε)

ε
; aL(ε), bL(ε),

.cL(ε), dL(ε); q, qk
)
,

with (aL(ε), bL(ε), cL(ε), dL(ε)) given by (3.10). A straightforward calculation, using the

formal limit (3.18), gives then that

lim
ε↓0

∆L
m(z(m)(ε)) = 0 if 0 ≤ m < n,

lim
ε↓0

∆L
n(z(n)(ε)) = 0 if zi = −εa for certain i ∈ {1, . . . , n},

lim
ε↓0

∆L
n(z(n)(ε)) = KL∆L(z)

n∏
j=1

zj if zi 6= −εa ∀i ∈ {1, . . . , n}
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with KL a positive constant given by

KL := (q; q)
−2n
∞ qk

2(n2).

Since Nε →∞ if ε ↓ 0, we see that formally in the limit ε ↓ 0 the part of the orthogonality

measure with (partially) continuous support disappears while the completely discrete part

of the orthogonality blows up to the set{
z ∈ Rn / zi ∈ {qs}s∈N0

(i = 1, . . . , n) such that zi 6= qlzj

for 1 ≤ i 6= j ≤ n and for l = 0, . . . , k − 1

}
. (3.20)

The set given by (3.20) is exactly the support of the orthogonality measure for the

little q-Jacobi polynomials {PBλ (z; a, b, c, d; q, qk) / λ ∈ P+} (cf. lemma 3.3), and the

corresponding formal weights are (up to a positive constant) equal to the weights for the

little q-Jacobi polynomials.
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