ON DECOMPOSITION OF POLYHEDRA INTO A CARTESIAN PRODUCT OF 1-DIMENSIONAL AND 2-DIMENSIONAL FACTORS

B3

WITOLD ROSICKI (GDAŃSK)

In 1938 K. Borsuk proved [1] that the decomposition of a polyhedron into a Cartesian product of 1-dimensional factors is topologically unique (up to a permutation of the factors). We prove a little more general

Theorem 1. If a connected polyhedron K (of arbitrary dimension) is homeomorphic to a Cartesian product $A_1 \times \ldots \times A_n$, where A_i 's are prime compacta of dimension at most 1, then there is no other topologically different system of prime compacta Y_1, \ldots, Y_k of dimension at most 2 such that $Y_1 \times \ldots \times Y_k$ is homeomorphic to K.

A space X is said to be prime if it has more than one point and only X and the singleton as Cartesian factors.

In Theorem 1 the dimension of Y_i cannot be greater than 2 (see the examples in [3]–[5]). The 3-dimensional factor of a 6-dimensional torus (in [5]) is not a polyhedron, but the 4-dimensional factors of I^5 (in [3] and [4]) are polyhedra non-homeomorphic to a cube. I do not know if Theorem 1 is true when we assume that the sets Y_i are polyhedra of dimension at most 3.

The decomposition of a polyhedron into a Cartesian product of 1- and 2-dimensional factors is not unique. See the examples in [7].

In [7] we have proved that the decomposition of a compact 3-dimensional polyhedron into a Cartesian product is unique if no factor is an arc. In this paper we present a generalization of that theorem. We prove the following

Theorem 2. If a compact connected polyhedron K has two decompositions into Cartesian products

$$K \underset{\text{top}}{=} X \times A_1 \times \ldots \times A_k \underset{\text{top}}{=} Y \times B_1 \times \ldots \times B_k,$$

where dim A_i = dim B_i = 1 for i = 1, ..., k and dim X = dim Y = 2, and all the factors are prime, then for each i = 1, ..., k there is b(i) = 1, ..., k

¹⁹⁹¹ Mathematics Subject Classification: Primary 57Q05. Supported by Gdańsk University, grant BW-5100-5-0053-5.

104

such that $A_i = B_{b(i)}$, the correspondence $i \to b(i)$ being one-to-one, whereas X = Y if none of A_i 's is an arc.

By Kosiński's theorem [2] each 2-dimensional Cartesian factor of a polyhedron is polyhedron. Let us recall ([5], [6]) the following

DEFINITION. If P is a k-dimensional polyhedron, then we define inductively the sets $n_i P$ for i = 0, 1, ..., k:

- (i) $n_0 P = P$.
- (ii) $n_i P$ is the set of those points of $n_{i-1} P$ which have no neighborhood in $n_{i-1} P$ homeomorphic to \mathbb{R}^{k-i+1} or \mathbb{R}^{k-i+1}_+ .

We denote the set n_1P by nP.

The proofs of Theorems 1 and 2 are based on investigation of the non-Euclidean parts of Cartesian products of compact connected polyhedra. They use methods similar to those used in [5]–[7]. We need two lemmas to prove both the theorems. In Lemma 1, we investigate the structures of the non-Euclidean parts $n_iK = n_i(X_1 \times \ldots \times X_k)$ of products of polyhedra. These polyhedra are unions of some Cartesian products. In Lemma 2, we find that every homeomorphism $F: X_1 \times \ldots \times X_k \to Y_1 \times \ldots \times Y_n$ of products of polyhedra maps components of the decomposition of n_iK appearing in Lemma 1 onto components of the analogous decomposition of n_iL . This result does not give the theorems at once but it is the main tool in the proofs.

LEMMA 1. If $K = X_1 \times ... \times X_k$, where X_i are polyhedra of dimension at most 2 for i = 1, ..., k, then

$$n_i K = \bigcup \{ n_{i_1} X_1 \times \ldots \times n_{i_k} X_k : i_p = 0, 1, 2, i_1 + \ldots + i_k = i \}.$$

Proof. We can assume that the X_i are connected.

Observe that if $x_i \in nX_i$ and $\dim X_i = 2$, then either each neighborhood of x_i in X_i contains a subset homeomorphic to $T \times I$ (where $T = \operatorname{cone}\{1,2,3\}$ and I is an arc) or x_i locally cuts X_i . If $x_i \in n_2X_i$, then either each neighborhood of x_i in nX_i contains a triod (a set homeomorphic to T) or x_i is an isolated local cut point in X_i . If $x_i \in nX_i$ and $\dim X_i = 1$, then each neighborhood of x_i in X_i contains a triod.

We proceed by induction.

1. Let $x \in \bigcup \{n_{i_1}X_1 \times \ldots \times n_{i_k}X_k : i = 0, 1, 2, i_1 + \ldots + i_k = 1\}$, say $x \in nX_1 \times X_2 \times \ldots \times X_k$. Let dim $X_1 = 2$. Then either each neighborhood of x in K contains a set $U = (T \times I) \times I^{\dim K - 2}$, which is not embeddable in $\mathbb{R}^{\dim K}$, or every small neighborhood of x in K is cut by a set of dimension

smaller than dim K-1. If dim $X_1=1$ then each neighborhood of x in K contains a set $U=T\times I^{\dim K-1}$. So $x\in nK$.

The inverse inclusion is obvious.

2. Suppose that our formula is true for $i \leq m$. Let $x \in \bigcup \{n_{i_1}X_1 \times \ldots \times n_{i_k}X_k \colon i_p = 0, 1, 2, \ i_1 + \ldots + i_k = m+1\}$, say $x \in n_2X_1 \times \ldots \times n_2X_p \times nX_{p+1} \times \ldots \times nX_{p+r} \times X_{p+r+1} \times \ldots \times X_k \ (2p+r=m+1)$. Assume $r \neq 0$. Then we have two possibilities. First, there exists l, $1 \leq l \leq r$, such that X_{p+l} has dimension 2 and x_{p+l} locally cuts X_{p+l} . Then every small neighborhood of x in $n_m K$ is cut by a set of dimension smaller than dim K - (m+1). Second, each neighborhood of x in $n_m K$ contains a subset homeomorphic to $\{z_1\} \times \ldots \times \{z_p\} \times T \times I^{\dim K - m - 1}$, which is not embeddable in $\mathbb{R}^{\dim K - m}$.

If r=0 then $x\in n_2X_1\times\ldots\times n_2X_{p-1}\times nX_p\times X_{p+1}\times\ldots\times X_k\subset n_mK$ (because $n_2X_p\subset nX_p$). We again have two possibilities. Either x_p is an isolated local cut point or each neighborhood of x in n_mK contains a subset homeomorphic to $\{z_1\}\times\ldots\times\{z_{p-1}\}\times T\times I^{\dim K-m-1}$, which is not embeddable in $\mathbb{R}^{\dim K-m}$. Hence $x\in n_{m+1}K$.

The inverse inclusion is obvious.

LEMMA 2. Let $K = X_1 \times \ldots \times X_k$ and $L = Y_1 \times \ldots \times Y_n$ where X_i, Y_i are prime polyhedra of dimension at most 2. If $F: K \to L$ is a homeomorphism and $i_p = 0, 1, 2$ for $p = 1, \ldots, k$ then $F(n_{i_1}X_1 \times \ldots \times n_{i_k}X_k) = n_{j_1}Y_1 \times \ldots \times n_{j_n}Y_n$ for a system (j_1, \ldots, j_n) of numbers such that $j_p = 0, 1, 2$ for $p = 1, \ldots, n$ and $i_1 + \ldots + i_k = j_1 + \ldots + j_n$. (In the proofs of Theorems 1 and 2 we need the case $n_2X_i = \emptyset$ for i > 1 only.)

Proof. The proof is similar to the proofs of Lemmas 3.2 of [5] and 2.1 of [6].

Let $i_1 + \ldots + i_k = m$. If $m = m_0$ is a maximal number such that $n_m K \neq \emptyset$, then the lemma holds. By induction, we can assume that the lemma holds for $i_k + \ldots + i_k > m$.

Since F is a homeomorphism, $F(n_mK - n_{m+1}K) = n_mL - n_{m+1}L$. Each component of $n_mK - n_{m+1}K$ is equal to $V_1 \times \ldots \times V_k$, where $V_p \in \pi_0(n_{i_p}X_p - n_{i_p+1}X_p)$. (We denote the set of components of Z by π_0Z .) Then $F(V_1 \times \ldots \times V_k) = V'_1 \times \ldots \times V'_n$, where $V'_p \in \pi_0(n_{j_p}Y_p - n_{j_p+1}Y_p)$. Let $\dim V_1 \times \ldots \times V_k = r$.

First we consider the case when V_1 is a component of X_1-nX_1 and $\dim X_1=2$. Now, let U_1 be also a component of X_1-nX_1 such that $\dim \overline{V_1}\cap \overline{U}_1=1$. Then $F(U_1\times V_2\times \ldots \times V_k)=V_1''\times \ldots \times V_n''$, where $V_p''\in \pi_0(n_{j_p}Y_p-n_{j_{p+1}}Y_p)$ and $\dim F((\overline{V_1}\cap \overline{U}_1)\times \overline{V_2}\times \ldots \times \overline{V_k})=\dim(\overline{V_1'}\cap \overline{V_1''})\times \ldots \times (\overline{V_k'}\cap \overline{V_k''})=r-1$. Only one factor $\overline{V_{i_1}'}\cap \overline{V_{i_1}''}$ has dimension smaller than $\dim V_{i_1}'$ and only one factor $\overline{V_{i_2}'}\cap \overline{V_{i_2}''}$ has dimension smaller than $\dim V_{i_1}''$ and V_{i_1}'' then V_{i_1}'' then V_{i_1}'' then V_{i_1}'' then V_{i_1}'' and only one factor $\overline{V_{i_2}'}\cap \overline{V_{i_2}''}$ has dimension smaller than V_{i_1}'' and V_{i_1}'' then V_{i_1}''' then V_{i_1}''' then V_{i_1}'''' then V_{i_1}'''''

106 W. ROSICKI

 $\dim V_{i_2}' < \dim V_{i_2}''. \text{ Then } V_{i_1}'' \cap \overline{V}_{i_1}' \neq \emptyset \text{ and } V_{i_2}' \cap \overline{V}_{i_2}'' \neq \emptyset. \text{ Let } V_1 \times \ldots \times V_k = \mathbf{V}$ and $U_1 \times V_2 \times \ldots \times V_k = \mathbf{U}$. Choose $\mathbf{x}' \in F(\mathbf{V})$ and $\mathbf{y}' \in F(\mathbf{U})$ such that their coordinates satisfy $y_{i_1}' \in V_{i_1}'' \cap \overline{V}_i'$ and $x_{i_2}' \in V_{i_2}' \cap \overline{V}_{i_2}''$. Then there exists an open arc $(\mathbf{x}'\mathbf{y}') \subset V_1' \times \ldots \times V_{i_1}' \times \ldots \times V_{i_2}' \times \ldots \times V_n' \subset L$ disjoint from $n_{m+1}L$. But if $\mathbf{x} \in \mathbf{V}$ and $\mathbf{y} \in \mathbf{U}$ then each open arc $(\mathbf{x}, \mathbf{y}) \subset K$ has a non-empty intersection with $n_{m+1}K$. So $F^{-1}((\mathbf{x}'\mathbf{y}')) \cap n_{m+1}K \neq \emptyset$, which is impossible. So, $i_1 = i_2$ and $V_p' = V_p''$ for $p \neq i_1$.

If $W_1 \in \pi_0(X_1 - nX_1)$ and also $\dim \overline{V_1} \cap \overline{W_1} = 1$ then $F(W_1 \times V_2 \times \ldots \times V_k) = V_1^* \times \ldots \times V_n^*$, where $V_p^* \in \pi_0(n_{j_p}Y_p - n_{j_{p+1}}Y_p)$, $V_p^* = V_p'$ for $p \neq i_2$ and $\dim \overline{V_{i_2}'} \cap \overline{V_{i_2}^*} = 1$. By induction $F(nX_1 \times n_{i_2}X_2 \times \ldots \times n_{i_k}X_k)$ is a Cartesian product of the sets $n_{s_p}Y_p$, where only one s_p is one greater than j_p . The sets $\overline{V_1} \cap \overline{U_1}$ and $\overline{V_1} \cap \overline{W_1}$ are contained in nX_1 . Therefore, $F(\overline{\mathbf{V}}) \cap F(\overline{\mathbf{U}}) = \overline{V_1'} \times \ldots \times (\overline{V_{i_1}'} \cap \overline{V_{i_1}''}) \times \ldots \times \overline{V_n'} \subset n_{s_1}Y_1 \times \ldots \times n_{s_n}Y_n$. So, $s_{i_1} = j_{i_1} + 1$. Since $\overline{V_1} \cap \overline{W_1} \subset nX_1$, we also have $s_{i_2} = j_{i_2} + 1$. Therefore, $i_1 = i_2$.

If there exists a sequence of $U_i \in \pi_0(X_1 - nX_1)$ for i = 1, ..., q such that $\dim \overline{U}_i \cap \overline{U}_{i+1} = 1$ for i = 1, ..., q - 1 and $U_q = V_1$ then the products $F(V_1 \times ... \times V_k) = V_1' \times ... \times V_n'$ and $F(U_1 \times V_2 \times ... \times V_k) = V_1'' \times ... \times V_n''$ still have only the i_1 -factor different and the remaining ones are the same.

If such a sequence does not exist, the points of $\overline{U}_1 \cap \overline{V}_1$ are isolated local cut points of K_1 .

Let Z be the set of points of $n_m K$ at which $n_m K$ is locally cut by a set of dimension r-2. If Z' is the analogous subset of $n_m L$, then F(Z)=Z'. If $\mathbf{x} \in V_1 \times \ldots \times V_k$ and $\mathbf{y} \in U_1 \times V_2 \times \ldots \times V_k$ then the interior of an arc $\mathbf{x} \mathbf{y} \subset n_m K$ has a non-empty intersection with Z. Similarly, if there exist two indices i and j such that $V'_i \neq V''_i$ and $V'_j \neq V''_j$, then there exists an arc $F(\mathbf{x})F(\mathbf{y})$ in $n_m L$ with interior disjoint from Z'.

So, if D is a component of a subset of the locally 2-dimensional part of X_1 such that $V_1 \subset D$, then $F(D \times V_2 \times \ldots \times V_k) = V'_1 \times \ldots \times D' \times \ldots \times V'_n$, where the i_1 -factor D' is an appropriate subset of Y_{i_1} .

Similarly, we can show that if J is a component of the 1-dimensional part of X_1 such that $\overline{J} \cap \overline{D} \neq \emptyset$, then $F(J \times V_2 \times \ldots \times V_k) = V'_1 \times \ldots \times J' \times \ldots \times V'_n$, where the i_1 -factor J' is an appropriate subset of Y_{i_1} .

The same considerations are true for the homeomorphism $F^{-1}: L \to K$. So, $F(X_1 \times V_2 \times \ldots \times V_k) = V'_1 \times \ldots \times Y_{i_1} \times \ldots \times V'_n$.

If $\dim V_1=1$ then either $\dim X_1=1$ and $F(X_1\times V_2\times \ldots \times V_k)=V_1'\times \ldots \times Y_{i_1}\times \ldots \times V_n'$, or $V_1\subset nX_1$ and $F(nX_1\times V_2\times \ldots \times V_k)=V_1'\times \ldots \times nY_{i_1}\times \ldots \times V_n'$. If $\dim V_1=0$ then for $\dim X_1=2$ we have $V_1\subset n_2X_1$ and $F(n_2X_1\times V_2\times \ldots \times V_k)=V_1'\times \ldots \times n_2Y_{i_1}\times \ldots \times V_n'$, while for $\dim X_1=1$ we have $V_1\subset nX_1$ and then $F(nX_1\times V_2\times \ldots \times V_k)=V_1'\times \ldots \times nY_{i_1}\times \ldots \times V_n'$. The proof uses the same methods as before but is simpler.

Proof of Theorem 1. Let $K = A_1 \times ... \times A_n$ and $L = Y_1 \times ... \times Y_k$. The polyhedra K and L are homeomorphic.

If $nK = \emptyset$ then by Lemma 1, $nA_i = \emptyset$ for all i = 1, ..., n, so A_i are arcs or simple closed curves (say I and S^1). Hence, $\pi_1(K) = \mathbb{Z}^r$, where r is the number of S^1 's in the product. The group $\pi_1(L) \approx \pi_1(K)$ is abelian, as are all $\pi(Y_i)$, because $\pi_1(L) = \bigoplus_{i=1}^k \pi_1(Y_i)$. Two-dimensional factors Y_i are polyhedra by Kosiński's theorem [2] and $nY_i = \emptyset$ by Lemma 1 for all i = 1, ..., k, so they are compact 2-manifolds with boundary. There are only five such manifolds with abelian fundamental groups: $I^2, S^1 \times I, S^1 \times S^1, S^2$ and the projective plane. It is easy to see that S^2 and the projective plane cannot be factors and the remaining manifolds are not prime.

First, we assume that only one factor Y_1 has dimension 2.

Now, we proceed by induction with respect to the number of 1-dimensional factors.

If n=2 the problem is trivial. (If $n \leq 3$, then the problem is easy and it is solved in [7].)

Assume that the problem is solved for $m \leq n$.

If $F: L \to K$ is a homeomorphism, then F(nL) = nK, and if $nY_k \neq \emptyset$, then $F(Y_1 \times \ldots \times Y_{k-1} \times nY_k) = A_1 \times \ldots \times A_{n-1} \times nA_n$ (up to a permutation) by Lemma 2. The sets $Y_1 \times \ldots \times Y_{k-1}$ and $A_1 \times \ldots \times A_{n-1}$ are homeomorphic because nY_k and nA_n are finite. The problem is solved by induction.

If $nY_i = \emptyset$ for all i = 2, ..., k, the problem can be solved by the technique from [5]–[7] and the proof is left to the reader.

Now assume that more than one factor Y_i has dimension 2.

Let $r = \max\{i \in \mathbb{N} : n_i K \neq \emptyset\}$. By Lemma 1 only r factors of the product $A_1 \times \ldots \times A_n$ have nA_i non-empty. Assume $nA_j = \emptyset$ for $j \geq r$. Then $n_r K = nA_1 \times \ldots \times nA_r \times A_{r+1} \times \ldots \times A_n$. Since $n_r K = n_r L$, the set $n_r L$ is homeomorphic to $Z \times A_{r+1} \times \ldots \times A_n$, where Z is finite.

By Lemma 1, $n_rL = n_{i_1}Y_1 \times \ldots \times n_{i_k}Y_k$, where $i_p = 0, 1, 2$. The union from Lemma 1 has only one component in this case because if $n_{i_p+1}Y_p \neq \emptyset$ for one p, then $n_{r+1}L \neq \emptyset$. Each component of n_rK is a Cartesian product of arcs and simple closed curves, so no prime Cartesian factor of a component of n_rL is a 2-manifold with boundary. Hence $nY_i \neq \emptyset$ if dim $Y_i = 2$, for $i = 1, \ldots, m$.

If we assume dim $Y_1 = 2$, then only the first factor of $Y_1 \times n_{i_2} Y_2 \times ... \times n_{i_k} Y_k$ has dimension 2, and this product is homeomorphic to a Cartesian product of 1-dimensional polyhedra, by Lemma 2. So Y_1 is not prime as in the first part of the proof.

The proof of Theorem 1 is complete.

Proof of Theorem 2. Set $K = X \times A_1 \times ... \times A_k$ and $L = Y \times B_1 \times ... \times B_k$.

108 W. ROSICKI

In the first part of the proof we show that A_1, \ldots, A_k are homeomorphic to B_1, \ldots, B_k up to a permutation.

First, we consider the case when one of the nA_i is not empty, say $nA_k \neq \emptyset$. If $F: K \to L$ is a homeomorphism, then F(nK) = nL. By Lemmas 1 and 2, either $F(X \times A_1 \times \ldots \times nA_k) = nY \times B_1 \times \ldots \times B_k$ or $F(X \times A_1 \times \ldots \times nA_k) = Y \times B_1 \times \ldots \times nA_k = Y \times B_1 \times \ldots \times nA_k$. The first possibility does not occur by Theorem 1 because X does not have a decomposition into 1-dimensional factors.

We have proved in [7] that the assertion holds for k = 1. Assume that this part of Theorem 2 is true for k - 1 factors of dimension 1.

Since nA_k and nB_i are finite, $X \times A_1 \times \ldots \times A_{k-1}$ and $Y \times B_1 \times \ldots \times B_{i-1} \times B_{i+1} \times \ldots \times B_k$ are homeomorphic. Therefore, A_1, \ldots, A_{k-1} and $B_1, \ldots, B_{i-1}, B_{i+1}, \ldots, B_k$ are homeomorphic, by induction.

If there exists $j \neq k$ such that $nA_j \neq \emptyset$, we again use induction to show that all the sets A_i and B_i are homeomorphic (up to a permutation).

Assume $nA_1 = \ldots = nA_{k-1} = \emptyset$. Since F(nK) = nL and F(K - nK) = L - nL we conclude that nA_k and nB_i , and $A_k - nA_k$ and $B_i - nB_i$, are homeomorphic. Components of $A_k - nA_k$ are arcs. A point $x \in nA_k$ is an end point of such an arc iff the corresponding point $x' \in nB_i$ is an end point of an arc which is a component of $B_i - nB_i$. So A_k and B_i are also homeomorphic.

If $nA_i = \emptyset$ for all i = 1, ..., k, then each A_i is homeomorphic to an arcs or a circle, and similarly for each B_i . It is easy to show that the numbers of circles are the same in both cases.

In the second part of the proof we prove that if no Cartesian factor of K is an arc, then X and Y are homeomorphic.

Let $A_i \neq [0,1]$ for all $i=1,\ldots,k$ and $A_1=\ldots=A_m=S^1$. Then (up to a permutation of the B_i) the sets $K=X\times S^1\times\ldots\times S^1\times nA_{m+1}\times\ldots\times nA_k$ and $L=Y\times S^1\times\ldots\times S^1\times nB_{m+1}\times\ldots\times nB_k$ are homeomorphic.

The 1-polyhedra A_{m+1}, \ldots, A_k are neither arcs nor simple closed curves so none of nA_{m+1}, \ldots, nA_k is empty.

Let $F: K \to L$ be a homeomorphism. By Lemma 1, $n_{k-m}K$ is the union of $X \times S^1 \times \ldots \times S^1 \times nA_{m+1} \times \ldots \times nA_k$ and the sets $nX \times S^1 \times \ldots \times S^1 \times n_{i_1}A_{m+1} \times \ldots \times n_{i_{k-m}}A_k$, where one of i_1, \ldots, i_{k-m} is 0 and the remaining indices are 1, and the sets $n_2X \times S^1 \times \ldots \times S^1 \times n_{i_1}A_{m+1} \times \ldots \times n_{i_{k-m}}A_k$, where two of i_1, \ldots, i_{k-m} are 0 and the remaining indices are 1. Similarly, $n_{k-m}L$ is the union of $Y \times S^1 \times \ldots \times S^1 \times nB_{m+1} \times \ldots \times nB_k$ and the sets $nY \times S^1 \times \ldots \times S^1 \times n_{i_1}B_{m+1} \times \ldots \times nI_{i_{k-m}}B_k$, where one of i_1, \ldots, i_{k-m} is 0 while the remaining indices are 1, and the sets $n_2Y \times S^1 \times \ldots \times S^1 \times nI_{i_1}B_{m+1} \times \ldots \times nI_{i_{k-m}}B_k$, where two of i_1, \ldots, i_{k-m} are 0 and the remaining indices are 1. We have $F(n_{k-m}K) = n_{k-m}L$. By Lemma 2, $F(X \times S^1 \times \ldots \times S^1 \times nA_{m+1} \times \ldots \times nA_k)$ is one of the above sets whose union is the set $n_{k-m}L$.

Now $F(X \times S^1 \times \ldots \times S^1 \times nA_{m+1} \times \ldots \times nA_k) = Y \times S^1 \times \ldots \times S^1 \times nB_{m+1} \times \ldots \times nB_k$ by Theorem 1, because X and Y are not products of 1-polyhedra.

Since $nA_{m+1} \times ... \times nA_k$ and $nB_{m+1} \times ... \times nB_k$ are finite sets, $X \times S^1 \times ... \times S^1$ and $Y \times S^1 \times ... \times S^1$ are homeomorphic. Similarly to Proposition 4.2 of [5], we conclude that X and Y are homeomorphic.

REFERENCES

- K. Borsuk, Sur la décomposition des polyèdres en produits, Fund. Math. 31 (1938), 137–148.
- A. Kosiński, On 2-dimensional topological divisors of polytopes, Bull. Acad. Polon. Sci. 2 (1957), 325–328.
- [3] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221– 228.
- [4] V. Poenaru, Les décompositions de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960), 113-129.
- [5] W. Rosicki, On a problem of S. Ulam concerning Cartesian squares of 2-dimensional polyhedra, Fund. Math. 127 (1986), 101–125.
- [6] —, On Cartesian powers of 2-polyhedra, Colloq. Math. 59 (1990), 141–149.
- [7] —, On decomposition of 3-polyhedra into a Cartesian product, Fund. Math. 136 (1990), 53–63.

Institute of Mathematics Gdańsk University Wita Stwosza 57 80-952 Gdańsk, Poland

E-mail: wrosicki@ksinet.univ.gda.pl

Received 30 October 1995; revised 26 February 1996 and 19 April 1996