
COLLOQU IUM MATHEMAT ICUM
VOL. 72 1997 NO. 1

NON-UNIQUENESS OF TOPOLOGY
FOR ALGEBRAS OF POLYNOMIALS

BY

M. WOJC IECHOWSKI AND W. ŻELAZKO (WARSZAWA)

All algebras in this paper are either real or complex. A topological (resp.
semitopological) algebra is a (Hausdorff) topological vector space (t.v.s.)
provided with an associative bilinear multiplication that is jointly (resp.
separately) continuous. It is called locally convex if the underlying t.v.s.
has this property. It was shown in [2] that if an algebra A is not at most
countably generated (in the algebraic sense—we shall keep this terminol-
ogy throughout this paper), then for each fixed p satisfying 0 < p ≤ 1, the
topology τpmax, i.e. the maximal p-convex topology given by means of all
p-homogeneous seminorms, makes A a complete (in the sense of topological
vector spaces) semitopological algebra, and for different p the topologies are
different. It was also shown there that if A is at most countably gener-
ated, then all these topologies coincide with τLC

max (= τ1
max), the maximal

locally convex topology, so that in this case the problem of uniqueness of
a complete topology making A a semitopological algebra remained open.
In particular, the question was posed whether for the algebra P (t) of poly-
nomials in one variable, τLC

max is the unique topology making it a complete
semitopological algebra (in fact, as shown in [5], this topology makes P (t)
and every at most countably generated algebra a topological algebra). This
question was answered in the negative in [6] by constructing on P (t) (and
also on algebras of polynomials and on free algebras in an arbitrary number
of variables) a complete locally convex topology which makes it a semitopo-
logical algebra and is different from τLC

max (the latter makes every algebra a
complete semitopological algebra). However, this topology does not make
P (t) a topological algebra.

In this paper we construct on P (t) a continuum of different complete lo-
cally convex topologies making it a topological algebra. Thus we have non-
uniqueness of a complete locally convex topology for P (t). We extend these
topologies to algebras of polynomials and free algebras in arbitrarily many
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variables and show that the non-uniqueness phenomenon holds there too.
In particular, we obtain complete locally convex topologies for polynomial
and free algebras in uncountably many variables, which is also a new result.
Using our constructions we show that for every infinite set Ω the algebra
C00(Ω) of all finitely supported functions on Ω has a continuum of differ-
ent topologies making it a complete locally multiplicatively convex algebra.
Answering a question posed in [7], we show that each infinite-dimensional
algebra has at least two different locally convex topologies making it a semi-
topological algebra. We cannot, however, show that there are two such
complete topologies, so at the end of the paper we pose this and some other
open questions.

Let c ≥ 1 and denote by Q(c) the set of all increasing sequences q =
(qi)∞i=1 of natural numbers satisfying

(1) qn+1/qn > 2n
c

for sufficiently large n, say n ≥ n(q). Clearly Q(c′) ⊂ Q(c) for c′ ≥ c. For q
in Q(c) we write q̃ for the sequence (max{1, qi − 1})∞i=1. For such q and for
large n we have qn+1 − 1 > 2n

c

qn − 1 = 2n
c

(qn − 1) + 2n
c − 1 > 2n

c

(qn − 1)
and so q̃ is also in Q(c). We can take for n(q̃) the number max{n(q)− 1, 1}.

Put I0 = {1} and In = {2n−1 + 1, . . . , 2n} for n ≥ 1; this gives a
partition of the natural numbers onto disjoint segments. For q in Q(c),
denote by Rq(c) the family of all sequences r = (ri)∞i=0 satisfying ri ≥ 1,
r0 = 1, and ri = 1 except when i ∈ Iqm for some natural m ≥ n(q) or
1 ≤ i ≤ 2qn(q)−1—in this case ri can be arbitrarily large. Put

R(c) =
⋃

q∈Q(c)

Rq(c).

Clearly R(c′) ⊂ R(c) for c′ > c ≥ 1. Our construction is based upon the
following lemma.

Lemma. For every r in R(c), there are r′, r̃ ∈ R(c) such that

(2) ri+j ≤ r′ir
′
j + r̃ir̃j

for all i, j ≥ 0.

P r o o f. Put n0 = max{n(q), n(q̃) + 1}. We define r′i so that r′0 = 1 and

(3) rd ≤ r′d−ir
′
i

for 0 ≤ i ≤ d and all d satisfying 0 ≤ d ≤ 2qn0−1; this can be done by
Lemma 3 of [4]. Without loss of generality we can assume r′i ≥ 1 for i ≤ d.
Define now r′d = 1 for d ≥ 2qn0−1 + 1 and d 6∈ Iqm for all m. Otherwise,
d ∈ Iqm

for some m ≥ n0 and in this case we put

r′d = max{ri : i ∈ Iqm
}.
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Define now r̃ in Rq̃(c) setting r̃d = 1 for all d satisfying either d ≤ 2qn0−2

or d 6∈ Iq̃m for all m ≥ n0 − 1. Otherwise d ∈ Iq̃m for some m ≥ n0 − 1 and
then we put

r̃d = max{ri : i ∈ Iq̃m
} = max{ri : i ∈ Iqm−1},

since clearly q̃m = qm − 1 for m ≥ n0.
Suppose now that d ≥ 2qn0−1 + 1. If d 6∈ Iqm for all m, we have rd = 1

and relation (2) is satisfied for any choice of r′ and r̃ in R. If d ∈ Iqm for
some m ≥ n0, the relation (3) is satisfied if either i or j = d − i is in Iqm

,
which implies (2) in this case. If neither i nor d− i is in Iqm , then at least
one of them must be in Iqm−1 = Iq̃m . In this case we have rd ≤ r̃d−ir̃i,
which means that (2) also holds in this case. The conclusion follows.

For x in P (t), x =
∑
i ai(x)t

i, c ≥ 1, and r in R(c) we put

(4) |x|r =
∑
i

|ai(x)|ri,

which is clearly a norm on P (t). Denote by τc the locally convex topology
given by all norms of the form (4). Clearly the topology τc is stronger than
τc′ for c′ > c ≥ 1 and the linear functionals x 7→ ai(x) are continuous in all
these topologies.

Proposition 1. For each c ≥ 1, Ac = (P (t), τc) is a complete locally
convex topological algebra. Moreover , τc 6= τc′ for c 6= c′ and consequently
the algebra P (t) has a continuum of different locally convex complete topolo-
gies making it a topological algebra.

P r o o f. First we show that the multiplication in Ac is jointly continuous.
Let x, y ∈ P (t) and r ∈ R(c). The formula (2) implies

|xy|r =
∑
i

∣∣∣∣ ∑
j

ai−j(x)aj(y)
∣∣∣∣ri ≤ ∑

i,j

|ai−j(x)| · |aj(y)|(r′i−jr′j + r̃i−j r̃j)

=
∑
i,j

|ai−j(x)|r′i−j |aj(y)|r′j +
∑
i,j

|ai−j(x)|r̃i−j |aj(y)|r̃j

= |x|r′ |y|r′ + |x|r̃|y|r̃,
so that the multiplication in Ac is jointly continuous.

We now show that Ac is complete. Let (xα)α∈a be a Cauchy net in
Ac. The continuity of the functionals x 7→ ai(x) implies that the limits
ai = limα ai(xα) exist and are finite for all i.

First we show that only finitely many numbers ai can be different from
zero. If not, there is an increasing sequence (ik) of natural numbers such
that aik 6= 0 for all k. For each k there is an mk such that ik ∈ Imk

. Take
a subsequence qn = mkn so that q = (qi) satisfies (1) and thus it is in
Q(c). Since ikn ∈ Iqn , we can define a sequence r in Rq(c) setting ri = 1
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if i 6= ikn for all n and rikn
= max{2n/aikn

, 1}. Since | · |r is a continuous
norm in Ac, the limit M = limα |xα|r exists and is finite. For each n we
have |aikn

(xα)| > aikn
/2 for sufficienly large α, say α � α(n). Thus for

α � α(n) we have

|xα|r ≥ |aikn
(xα)|rikn

≥
|aikn

|
2

· 2n
|aikn

|
= n,

so that M ≥ n for all n. This is a nonsense proving that only finitely many
numbers ai can be different from 0.

We now put y =
∑
i ait

i and zα = xα − y. Thus (zα) is a Cauchy net in
Ac and limα ai(zα) = 0 for all i. The completeness of A will be proved if we
show that limα zα = 0 in A, because then limα xα = y. If not, there is an r0
in R(c) such that limα |zα|r0 = M0 > 0. Define the support of a polynomial
x setting supp(x) = {i : ai(x) 6= 0} so that supp(0) = ∅. Observe that if x
and y in Ac have disjoint supports, then for each r in R(c),

(5) |x+ y|r = |x|r + |y|r.
Choose α0 in a so that for α � α0 we have

(6) |zα − zα0 |r0 < M0/2.

Define a projection P setting

Px =
∑

i∈supp(zα0 )

ai(x)ti,

which is a continuous linear operator on Ac. Denoting by I the identity
operator on Ac, we have the following relations true for all x in Ac:

(7) supp(Px) ⊂ supp(zα0) and supp(Px) ∩ supp((I − P )x) = ∅.
Thus by (5) we have

|zα − zα0 |r0 = |Pzα − zα0 + (I − P )zα|r0 = |Pzα − zα0 |r0 + |(I − P )zα|r0 ,
and so by (6) we obtain

(8) |(I − P )zα|r0 < M0/2 for α � α0.

Since limα ai(zα) = 0 for all i and supp(zα0) is finite, we have limα P (zα)
= 0. Thus by (5), (7) and (8) we obtain

M0 = lim
α
|zα|r0 = lim

α
|Pzα + (I − P )zα|r0

= lim
α
|Pzα|r0 + lim

α
|(I − P )zα|r0 = M0/2,

a contradiction proving the completeness of Ac.
It remains to be shown that the topologies τc, c ≥ 1, are all different.

To this end it is sufficient to show that for given c′ > c ≥ 1 there is a
τc-continuous norm | · |0 on P (t) which is discontinuous in the topology τc′ .
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Put q1 = 1 and qn+1 = [2n
c

qn + 1], where [λ] is the greatest integer less
than or equal to λ. Clearly q = (qi) is in Q(c) and for all natural n we have

(9) qn+1 ≤ 2n
c

qn + 1 < 2n
c+1qn < 2(n+1)c

qn.

This implies

(10) qn+k < 2k(n+k)c

qn

for all natural n and k. In fact, for k = 1 the formulas (9) and (10) coincide.
Assuming (10) for k = m, we obtain, by (9) and (10),

qn+m+1 < 2(n+m+1)c

qn+m < 2(n+m+1)c+m(n+m)c

qn < 2(m+1)(n+m+1)c

qn,

and so (10) follows by induction.
Define r(0) = (ri) setting ri = m if i ∈ Iqm for some m and ri = 1

otherwise. We have r(0) ∈ Rq(c) and put |x|0 = |x|r(0) for x in P (t). It is a
continuous norm in the topology τc. We now show that | · |0 is discontinuous
in the topology τc′ . If not, there are a finite number of sequences r(1), . . . , r(s)

in R(c′) with r(i) ∈ Rq(i)(c′) and q(i) = (q(i)j )∞j=0 ∈ Q(c′), and a positive
constant C such that

(11) |x|0 ≤ Cmax{|x|r(1) , . . . , |x|r(s)}
for all x in A. Since c′ > c ≥ 1, we have

(12) nc
′
> s(n+ s)c

for sufficiently large n. Suppose that n satisfies (12) and also, in addition,
n > C, and consider the segment (l, l+1, . . . , 2n

c′

l) with l = qn. By (1) this
segment contains at most s numbers of the form q

(i)
j , 1 ≤ i ≤ s, j = 1, 2, . . .

On the other hand, by (10) and (12) we obtain

qn+i ≤ 2i(n+i)c

qn ≤ 2s(n+s)c

qn < 2n
c′

qn = 2n
c′

l for 0 ≤ i ≤ s.

Thus the considered segment contains all s+ 1 numbers qn, qn+1, . . . , qn+s,
so that at least one of them, say qn′ , is different from q

(i)
j for all i and j.

This implies that for k ∈ Iqn′ we have |tk|0 = n′ ≥ n > C, contrary to (11),
since for all i with 1 ≤ i ≤ s we have |tk|r(i) = 1. This contradiction proves
τc 6= τc′ . The conclusion follows.

The above proof is given in full detail. For the following Propositions 2
and 3, though formally more complicated, we omit some elements of the
proofs since they are performed according to the same pattern as the proof
of Proposition 1.

First, we consider the case of polynomials in arbitrarily many variables.
Denote by I a non-void index set of an arbitrary cardinality and let t =
(tα)α∈I be a family of (commuting) variables. Denote by Φ the family of all
finitely supported functions φ on I with non-negative integral values. The
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support of such a function will be denoted by Supp(φ) (to distinguish it
from the support of a polynomial introduced in the proof of the previous
proposition). For two such functions φ and ψ write φ ≤ ψ for the pointwise
inequality; in this case the function ψ − φ is also in Φ. Put W = NI, the
set of all functions on I with natural values, whose elements will be called
weights. For a weight w ∈ W write Sw(φ) =

∑
α∈I φ(α)w(α); for each φ in

Φ this is a non-negative integer, and clearly φ ≤ ψ implies Sw(φ) ≤ Sw(ψ)
for each w in W. For every φ ∈ Φ put tφ =

∏
α t

φ(α)
α , where we put 1 for t0α,

so that the product is, in fact, well defined and finite. With this notation
we can write an arbitrary polynomial in P (t) in the form

x(t) =
∑
φ

aφ(x)tφ,

where only finitely many scalar coefficients aφ(x), φ ∈ Φ, are different from
zero. The product of two polynomials x and y is given by the formula

xy =
∑
ψ

( ∑
φ≤ψ

aψ−φ(x)aφ(y)
)
tψ.

Fix a c ≥ 1. For r ∈ R(c) and w ∈ W write

|x|r,w =
∑
φ

|aφ(x)|rSw(φ).

The topology given on P (t) by all these norms will also be denoted by τc.
Similarly to Proposition 1 we now prove

Proposition 2. For every set t of variables the algebra P (t) of all
polynomials in these variables has a continuum of different complete locally
convex topologies making it a topological algebra.

P r o o f. Let r, r′ and r̃ be elements in R(c) satisfying the lemma and let
w ∈ W. As in the proof of Proposition 1, we obtain

|xy|r,w ≤ |x|r′,w|y|r′,w + |x|r̃,w|y|r̃,w,

so that the multiplication in Ac, i.e. in P (t) equipped with the topology τc,
is jointly continuous.

We now prove that Ac is complete. Suppose that (xµ) is a Cauchy
net in Ac. As in Proposition 1, we show that only finitely many numbers
aφ = limµ aφ(xµ) can be different from zero. If not, there is a sequence
(φi) ⊂ Φ with ai = aφi 6= 0. Consider now two cases: either the set⋃
i Supp(φi) is finite or not. In the first case the sequence (φi) is unbounded

and taking w = w0, the weight identically equal to 1, we have

(13) lim
i
Sw(φi) = ∞.
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In the second case, passing to a subsequence if necessary, we can assume
that for each natural i there is αi ∈ I such that

(14) αi ∈ Supp(φi) \
⋃
j<i

Supp(φj)

and define a weight w inductively: having already the values w(α) for α ∈⋃
j<i Supp(φj) we put w(β) = 1 if β is in the set (14) and β 6= αi and

take w(αi) so large that Sw(φi) > i. Finally, we put w(α) = 1 for all
α 6∈

⋃
i Supp(φi). With this choice of w the formula (13) holds true also

in this case. We now proceed as in the proof of Proposition 1 to obtain
a contradiction proving that only finitely many numbers aφ are different
from zero. The proof of completeness of Ac is now performed exactly as in
Proposition 1 (the formula (5) obviously holds true if we replace | · |r by
| · |r,w).

We shall be done if we prove that all topologies τc are different. To
this end it is sufficient to show that the present topology τc equals on each
algebra P (tα), α ∈ I, the topology τ ′c, the latter being the topology τc
in the sense of Proposition 1. Since every norm | · |r giving on P (tα) the
topology τ ′c is a restriction of the norm | · |r,w0 to this subalgebra, and so it is
continuous in the topology τc, we only have to show that every norm | · |r,w,
r ∈ R(c), w ∈ W, restricted to P (tα) is continuous in the topology τ ′c.

So fix r ∈ R(c), w ∈ W and α ∈ I. Put m = w(α). For any x ∈ P (tα)
with x =

∑
i ait

i
α, we have |x|r,w =

∑
i |ai|rmi. If m = 1 this is already a

τ ′c-continuous norm. So consider only the case m > 1 and define a natural
s so that 2s−1 < m ≤ 2s. If mi ∈ Ip, so that 2p−1 < mi ≤ 2p, then
2p−s−1 < i < 2p−s+1. It follows that either i ∈ Ip−s+1 or i ∈ Ip−s. We
have r ∈ Rq(c) for some q in Q(c). Iterating l times the process q 7→ q̃ and
denoting the result by q̃(l), observe that for large i (say i > i0) we can have
rmi > 1 only if mi ∈ Iqk

for some k, or, equivalently, if either i ∈ I
q̃
(s−1)
k

or
i ∈ I

q̃
(s)
k

. Thus setting %i = rmi for i ≤ i0 or for i > i0 and i ∈ Iq̃s
k

for some k,
and %i = 1 otherwise, and setting %′i = rmi for i ∈ I

q̃
(s−1)
k

for some k, i > i0,
and %′i = 1 otherwise, we see that |x|r,w ≤ |x|% + |x|%′ for all x in P (tα).
Since the norms | · |% and | · |%′ are τ ′c-continuous, both topologies τ ′c and
τc coincide on P (tα) (this justifies our previous notation). The conclusion
follows.

Consider now the case of a free algebra (algebra of polynomials in non-
commuting variables). Let t = {tα}α∈I be an arbitrary family of non-
commuting variables and denote the corresponding free algebra by F (t).
Put I(∞) =

⋃∞
n=0 In, where I0 = {0} and 0 is not an element in I. We put

ti = tα1 . . . tαk
for i = (α1, . . . , αk) in I, and t0 = e, the unit element of

F (t). With this notation every element of F (t) can be written in the form
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x =
∑

i∈I(∞)

ai(x)ti,

where only finitely many scalar coefficients ai(x) are different from zero.
Writing ij = (α1, . . . , αk, β1, . . . , βn) if i = (α1, . . . , αk) and j = (β1, . . . , βn),
and i0 = 0i = i for i, j ∈ I∞, we define the multiplication in F (t) by the
formula

xy =
∑

k∈I(∞)

( ∑
ij=k

ai(x)aj(y)
)
tk.

We define the topology τc on F (t) by means of all norms of the form

|x|r,w =
∑
i

|ai(x)|r|i|w

for r ∈ R(c) and w ∈ W, where |i|w =
∑
i w(αi) or 0 according as i equals

(α1, . . . , αk) or 0.
Exactly in the same way as Proposition 2 we obtain

Proposition 3. Let F (t) be a free algebra in arbitrarily many variables.
Then there is a continuum of different complete locally convex topologies
making it a topological algebra.

A locally convex algebra A is said to be locally multiplicatively-convex
(briefly m-convex) if its topology can be given by means of a family of sub-
multiplicative seminorms, i.e. seminorms satisfying |xy| ≤ |x| · |y| for all
x, y ∈ A (see [3]). Clearly any m-convex algebra is topological. A commuta-
tive algebra is said to be semisimple if the intersection of all of its maximal
regular ideals is the zero ideal. In [1] Carpenter has shown that a semisimple
complex algebra A has at most one topology making it a completely metriz-
able m-convex algebra. In contrast, we now show that for some semisimple
algebra there may exist a continuum of different topologies making it a
complete m-convex algebra, of course in a non-metrizable way. Let Ω be an
infinite set. Denote by C00(Ω) the algebra of all (real of complex) finitely
supported functions on Ω. It is clearly a semisimple algebra, since the set
Mω of all elements of C00(Ω) vanishing at a single point ω ∈ Ω is a maximal
ideal in this algebra, and the intersection of all these ideals is the zero ideal.
Using the construction of Propositions 1 and 2 we obtain the following

Proposition 4. Let Ω be an infinite set. Then the algebra C00(Ω) has
at least a continuum of different topologies making it a complete m-convex
algebra.

P r o o f. We use the notation of Proposition 2. For every infinite set
I the set Φ has the same cardinality as I, so that any infinite set Ω can
be identified with some set of the form Φ. The elements of P (t) can be
treated as finitely supported functions φ 7→ aφ = a(ω) for φ = ω ∈ Φ = Ω.
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Thus C00(Ω) has a continuum of different topologies τc, c ≥ 1, making it a
complete locally convex t.v.s.

We show that each of these topologies makes C00(Ω), provided with
pointwise algebra operations, an m-convex algebra. To this end put |a|∞ =
max{|a(ω)| : ω ∈ Ω}. This is clearly a τc-continuous norm for every c ≥ 1
since |a|∞ ≤ |a|r,w for all r ∈ R(c), c ≥ 1, and w ∈ W. Using the last
relation we obtain for all a, b ∈ C00(Ω), r ∈ R(c) and w ∈ W,

|ab|r,w =
∑
ω∈Ω

|a(ω)b(ω)|rSw(ω) ≤ |a|∞
∑
ω

|b(ω)|rSw(ω)

= |a|∞|b|r,w ≤ |a|r,w|b|r,w,
and so each topology τc makes C00(Ω) a complete m-convex algebra. The
conclusion follows.

R e m a r k. The fact that non-metrizable semisimple algebras can have
different m-convex topologies is already known. In [3] there is given a non-
metrizable complete m-convex topology on the algebra C[0, 1].

We now pass to semitopological algebras. Our next observation solves a
problem posed in [7].

Proposition 5. Every infinite-dimensional algebra A has at least two
different locally convex topologies making it a semitopological algebra.

P r o o f. For one topology we can take the topology τLC
max and for the

second the maximal weak topology τw
max given by means of all seminorms of

the form x 7→ |f(x)|, where f is an arbitrary linear functional on A. Clearly
both topologies make the multiplication separately continuous and they are
different. The conclusion follows.

It is not hard to observe that for any infinite-dimensional vector space
the topology τw

max is never complete. In fact, we do not know the answer to
the following question.

Problem 1. Let A be a real or complex algebra. Can it be made into
a complete locally convex semitopological algebra in two different ways?

We cannot even answer the following weaker question.

Problem 2. Let A be a real or complex algebra. Can it be made into
a complete semitopological algebra in two different ways?

As mentioned in the introduction, this question is open only for at most
countably generated algebras. Perhaps the problem should be first attacked
for algebras whose elements are all algebraic (cf. [6]). We do not know the
answer for Problem 1 for arbitrarily generated algebras. Of course, for more
general classes of algebras the construction of counterexamples is easier, so
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perhaps solving (in the affirmative) the following more restrictive questions
3–6 still will not be too hard.

Problem 3. Let A be an infinite-dimensional topological algebra. Can
it be made into a topological algebra by means of a different topology?

Problem 4. Let A be an infinite-dimensional complete topological al-
gebra. Can it be made into a complete topological algebra with a different
topology?

Problem 5. Let A be an infinite-dimensional locally convex topological
algebra. Can it be made into such an algebra with a different topology?

Problem 6. This is Problem 5 but with “locally convex” replaced by
“complete locally convex”.

In case when the answers to Problems 1, 5 or 6 are negative we can ask
the following question.

Problem 7. Suppose that an algebra A has a unique locally convex
topology making it a topological (resp. complete topological or complete
semitopological) algebra. Does it follow that it has a unique topology mak-
ing it a topological (resp. complete topological or complete semitopological)
algebra?

Finally, we ask two questions concerning cardinalities of topologies on
an algebra.

Problem 8. Consider an algebra of all polynomials in a given number
of variables. How many different topologies make it a complete topological
algebra?

The answer should provide a function leading from the cardinality of the
set of variables to the cardinality of the set of topologies. A similar question
can be asked about the cardinality of locally convex topologies. One can
also consider the case of incomplete topologies and of topologies making the
algebra in question a semitopological algebra.

The following question extends Problem 7.

Problem 9. Does there exist an algebra for which the cardinality of
the set of all topologies making it a complete topological algebra (resp. a
topological algebra, a complete semitopological algebra, a semitopological
algebra) is larger than the cardinality of the set of all such locally convex
topologies?
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