COLLOQUIUM MATHEMATICUM

VOL. 72

1997

NO. 1

ON LOCALLY BOUNDED CATEGORIES STABLY EQUIVALENT TO THE REPETITIVE ALGEBRAS OF TUBULAR ALGEBRAS

ΒY

ZYGMUNT POGORZAŁY (TORUŃ)

1. Introduction. Throughout the paper K is a fixed algebraically closed field. By an algebra we mean a finite-dimensional K-algebra, which we shall assume, without loss of generality, to be basic and connected. For an algebra A, we shall denote by mod(A) the category of finitely generated right A-modules, and by $\underline{mod}(A)$ the stable category of mod(A). Recall that the objects of $\underline{mod}(A)$ are the objects of mod(A) without projective direct summands, and for any two objects X, Y in $\underline{mod}(A)$ the space of morphisms from X to Y in $\underline{mod}(A)$ is $\underline{Hom}_A(X,Y) = Hom_A(X,Y)/\mathcal{P}(X,Y)$, where $\mathcal{P}(X,Y)$ is the subspace of $Hom_A(X,Y)$ consisting of the A-homomorphisms which factorize through projective A-modules. For every $f \in Hom_A(X,Y)$ we shall denote by \underline{f} its coset modulo $\mathcal{P}(X,Y)$. Two algebras A and B are said to be *stably equivalent* if their stable module categories $\underline{mod}(A)$ and $\underline{mod}(B)$ are equivalent.

Following [5, 11] we shall say that a module T in mod(A) is a *tilting* (respectively, *cotilting*) module if it satisfies the following conditions:

(1) $\operatorname{Ext}_{A}^{2}(T, -) = 0$ (respectively, $\operatorname{Ext}_{A}^{2}(-, T) = 0$);

(2) $\operatorname{Ext}_{A}^{1}(T,T) = 0;$

(3) the number of nonisomorphic indecomposable summands of T equals the rank of the Grothendieck group $K_0(A)$.

Two algebras A and B are said to be *tilting-cotilting equivalent* if there exist a sequence of algebras $A = A_0, A_1, \ldots, A_m, A_{m+1} = B$ and a sequence of modules $T^i_{A_i}$, $0 \le i \le m$, such that $A_{i+1} = \operatorname{End}_{A_i}(T^i)$ and T^i is either a tilting or a cotilting module.

Following Gabriel [9], a K-category R is called *locally bounded* if the following conditions are satisfied:

1991 Mathematics Subject Classification: Primary 16G20.

Supported by Polish Scientific Grant KBN 590/PO3/95/08.

^[123]

(a) different objects are not isomorphic;

(b) the algebra R(x, x) of endomorphisms of x is local for every object x in R;

(c) $\sum_{y\in R}\dim_K R(x,y)<\infty$ and $\sum_{y\in R}\dim_K R(y,x)<\infty$ for every object x in R.

Interesting examples of locally bounded K-categories are the repetitive algebras introduced by Hughes and Waschbüsch in [12]. For an algebra Adenote by $D = \operatorname{Hom}_K(-, K)$ the standard duality on mod(A). Recall that the *repetitive algebra* \widehat{A} of A is the selfinjective, locally finite-dimensional matrix algebra without identity defined by

where matrices have only finitely many nonzero entries, $A_i = A$, $E_i = {}_{A}DA_A$ for all integers *i*, all the remaining coefficients are zero, and the multiplication is induced from the canonical bimodule structure of DA and the zero morphism $DA \otimes_A DA \to 0$.

One of the interesting problems concerning repetitive algebras is a classification of locally bounded K-categories which are stably equivalent to a given repetitive algebra. The problem was studied by several authors (see [1, 2, 14, 20, 21]). Wakamatsu proved in [21] that if A is tilting-cotilting equivalent to B then \hat{A} is stably equivalent to \hat{B} . Peng and Xiao proved in [14] that if H is a hereditary algebra and A is a locally bounded K-category which is stably equivalent to \hat{H} , then there is an algebra B tilting-cotilting equivalent to H such that $\hat{B} \cong A$. We shall prove the following theorem on locally bounded K-categories stably equivalent to the repetitive algebras of tubular algebras in the sense of Ringel [18].

THEOREM. Let A be a tubular algebra. A locally bounded K-category Λ is stably equivalent to \hat{A} if and only if Λ is isomorphic to the repetitive algebra \hat{B} of a tubular algebra B which is tilting-cotilting equivalent to A.

Our proof of the above result rests heavily on the main results obtained in [15, 16] for trivial extension algebras. In the case when Λ is a repetitive algebra the above theorem has been proved in [2]. We shall use freely results about Auslander–Reiten sequences which can be found in [3].

2. Preliminaries

2.1. Following Ringel [18], the canonical tubular algebras of type (2, 2, 2, 2) are defined by the quiver

with the relations $\alpha_1\alpha_2 + \beta_1\beta_2 + \gamma_1\gamma_2 = 0$ and $\alpha_1\alpha_2 + k\beta_1\beta_2 + \delta_1\delta_2 = 0$, where k is some fixed element from $K \setminus \{0, 1\}$. The canonical tubular algebras of type $(\mathbf{p}, \mathbf{q}, \mathbf{r}) = (\mathbf{3}, \mathbf{3}, \mathbf{3}), (\mathbf{2}, \mathbf{4}, \mathbf{4})$ or $(\mathbf{2}, \mathbf{3}, \mathbf{6})$ are given by the quiver

with $\alpha_1 \alpha_2 \dots \alpha_p + \beta_1 \beta_2 \dots \beta_q + \gamma_1 \gamma_2 \dots \gamma_r = 0.$

2.2. For the repetitive algebra \widehat{A} the identity morphisms $A_i \to A_{i-1}$, $E_i \to E_{i-1}$ induce an automorphism ν_A of \widehat{A} which is called the Nakayama automorphism. Moreover, the orbit space $\widehat{A}/(\nu_A)$ has the structure of a finite-dimensional K-algebra which is isomorphic to the trivial extension T(A) of A by its minimal injective cogenerator bimodule ${}_A DA_A$. This is the algebra whose additive structure coincides with that of the group $A \oplus DA$, and whose multiplication is defined by the formula (a, f)(b, g) = (ab, ag+fb) for $a, b \in A$, $f, g \in {}_A DA_A$. Thus \widehat{A} is a Galois cover in the sense of [9] of the selfinjective algebra T(A) with the infinite cyclic group (ν_A) generated by ν_A .

2.3. A locally bounded K-category R is said to be *locally support-finite* [6] if for every indecomposable projective R-module P, the set of isomorphism classes of indecomposable projective R-modules P' such that there exists an indecomposable finite-dimensional R-module M with $\operatorname{Hom}_R(P, M) \neq$

 $0 \neq \operatorname{Hom}_R(P', M)$ is finite. Of particular interest is the fact that the repetitive algebra \widehat{A} of a tubular algebra A is locally support-finite (see [13]). A locally bounded K-category is said to be *triangular* if its ordinary quiver has no oriented cycles.

2.4. Following Gabriel (see [9]), for a locally bounded K-category R and a torsion-free group G of K-automorphisms of R acting freely on the objects of R, R/G is the quotient category whose objects are the G-orbits of the objects of R. Moreover, there is a covering functor $F : R \to R/G$ which maps any object x of R to its G-orbit $G \cdot x$. F induces the pushdown functor $F_{\lambda} : \operatorname{mod}(R) \to \operatorname{mod}(R/G)$, which preserves indecomposables and Auslander–Reiten sequences, maps projective R-modules to projective R/G-modules and preserves projective resolutions. Furthermore, if R is locally support-finite then F_{λ} is dense and induces a bijection between the set $(\operatorname{ind}(R)/\cong)/G$ of the G-orbits of the isomorphism classes of finite-dimensional indecomposable R/G-modules [6].

2.5. Let $\Omega_R : \operatorname{mod}(R) \to \operatorname{mod}(R)$ be Heller's loop-space functor for a selfinjective locally bounded K-category R. Then $\Omega_R \tau_R^{-1} \Omega_R(S)$ is simple for every simple R-module S, where τ_R^{-1} stands for the Auslander–Reiten translate $\operatorname{Tr} D$ on $\operatorname{mod}(R)$. Thus we obtain a permutation of the isomorphism classes of the simple R-modules. This permutation induces a K-automorphism ν_R of R in an obvious way. We denote by (ν_R) the infinite cyclic group of K-automorphisms of R generated by ν_R .

3. Preparatory results

3.1. Throughout this section we shall assume that R_1 and R_2 are selfinjective locally bounded K-categories which are locally support-finite and have no indecomposable projective modules of length 2. Moreover, there is a fixed equivalence functor $\Phi : \operatorname{mod}(R_1) \to \operatorname{mod}(R_2)$.

3.2. PROPOSITION. If M is an indecomposable nonprojective finite-dimensional R_1 -module then $\Phi(\tau_{R_1}(M)) \cong \tau_{R_2}(\Phi(M))$ and $\Phi(\Omega_{R_1}(M)) \cong \Omega_{R_2}(\Phi(M))$.

Proof. A direct adaptation of the arguments from the proofs of Proposition 2.4 and Theorem 4.4 of [4].

3.3. LEMMA. If $\tau_{R_1}^{-1}(M) \not\cong \Omega_{R_1}^{-2}(M)$ for every indecomposable nonprojective finite-dimensional R_1 -module M then (ν_{R_2}) acts freely on the objects of R_2 .

Proof. We have to show that $\Omega_{R_2}\tau_{R_2}^{-1}\Omega_{R_2}(S) \not\cong S$ for every simple R_2 -module S. Suppose to the contrary that there exists a simple R_2 -module S

with $\Omega_{R_2}\tau_{R_2}^{-1}\Omega_{R_2}(S) \cong S$. Then there exists a nonprojective indecomposable finite-dimensional R_1 -module M such that $\Phi(M) \cong S$, and we infer by Proposition 3.2 that $\Omega_{R_1}\tau_{R_1}^{-1}\Omega_{R_1}(M) \cong M$, which contradicts our assumption, because this isomorphism implies $\tau_{R_1}^{-1}(M) \cong \Omega_{R_1}^{-2}(M)$.

3.4. LEMMA. Let $F_1 : \operatorname{mod}(R_1) \to \operatorname{mod}(R_1)$ and $F_2 : \operatorname{mod}(R_2) \to \operatorname{mod}(R_2)$ be exact equivalences satisfying the following conditions:

(a) If $F_i^s : \underline{\mathrm{mod}}(R_i) \to \underline{\mathrm{mod}}(R_i), i = 1, 2, \text{ are defined by } F_i^s(X) = F_i(X)$ for $X \in \underline{\mathrm{mod}}(R_i), F_i^s(\underline{f}) = \underline{F_i(f)}$ for $\underline{f} : X \to Y$ in $\underline{\mathrm{mod}}(R_i)$, then F_i^s are well-defined functors which are equivalences.

(b) For every object $X \in \underline{\mathrm{mod}}(R_1)$, $F_1^s(X) \cong \Phi^{-1}F_2^s\Phi(X)$, where Φ^{-1} is a fixed quasi-inverse of Φ .

Then F_1^s and $\Phi^{-1}F_2^s\Phi$ are isomorphic functors.

 $\mathbf{P}\,\mathbf{r}\,\mathbf{o}\,\mathbf{o}\,\mathbf{f}.$ In the first step of the proof we show that for every short exact sequence

$$0 \to U \stackrel{w}{\to} X \stackrel{p}{\to} V \to 0$$

in mod (R_1) with all terms without projective direct summands there are $w': \Phi^{-1}F_2^s\Phi(U) \to \Phi^{-1}F_2^s\Phi(X)$ and $p': \Phi^{-1}F_2^s\Phi(X) \to \Phi^{-1}F_2^s\Phi(V)$ such that the following sequences are exact in mod (R_1) :

$$\begin{split} 0 &\to F_1^s(U) \xrightarrow{F_1(w)} F_1^s(X) \xrightarrow{F_1(p)} F_1^s(V) \to 0, \\ 0 &\to \Phi^{-1} F_2^s \Phi(U) \xrightarrow{w'} \Phi^{-1} F_2^s \Phi(X) \xrightarrow{p'} \Phi^{-1} F_2^s \Phi(V) \to 0, \end{split}$$

where $\underline{w}' = \Phi^{-1} F_2^s \Phi(\underline{w})$ and $\underline{p}' = \Phi^{-1} F_2^s \Phi(\underline{p})$. The exactness of the first sequence is obvious by the definition of F_1^s , because F_1 is exact.

In order to show the exactness of the second, we first show that w' is a monomorphism, where w' is any representative of the coset $\Phi^{-1}F_2^s\Phi(\underline{w})$. Suppose to the contrary that w' is not a monomorphism. Then $w' = w'_2 w'_1$ with $w'_1: \Phi^{-1}F_2^s\Phi(U) \to \operatorname{im}(w')$ an epimorphism and $w'_2: \operatorname{im}(w') \to$ $\Phi^{-1}F_2^s\Phi(X)$ a monomorphism. Since w is a monomorphism, we infer by [17; Lecture 3] that $\underline{w} \neq 0$. Thus $\underline{w}' = \underline{w}'_2 \underline{w}'_1 \neq 0$ and there are $W \in \underline{\mathrm{mod}}(R_1)$ and $w_1: U \to W, w_2: W \to X$ such that $\Phi^{-1}F_2^s \Phi(w_i) = \underline{w}_i, i = 1, 2,$ because $\Phi^{-1}F_2^s\Phi$ is an equivalence. Since w'_1 is a proper epimorphism, we have the following inequality for lengths: $l(\operatorname{im}(w')) < l(\Phi^{-1}F_2^s\Phi(U))$. But F_1 is an additive exact equivalence, hence F_1 preserves the lengths of R_1 modules. Therefore F_1^s preserves the lengths of R_1 -modules without projective direct summands and so does $\Phi^{-1}F_2^s\Phi$, because $F_1^s(M) \cong \Phi^{-1}F_2^s\Phi(M)$ for any $M \in \underline{\mathrm{mod}}(R_1)$ by the assumption of our lemma. Consequently, l(W) = l(im(w')) < l(U). But $w - w_2 w_1$ factorizes through a projective R_1 -module, say P. Thus there are $q_1: U \to P$ and $q_2: P \to X$ such that $w - w_2 w_1 = q_2 q_1$. Since w is a monomorphism, there is $q'_1 : X \to P$ such

that $q_1 = q'_1 w$. Then $w - w_2 w_1 = q_2 q_1 = q_2 q'_1 w$ and $w - q_2 q'_1 w = w_2 w_1$. Hence $(\mathrm{id}_X - q_2 q'_1)w = w_2 w_1$. But $(\mathrm{id}_X - q_2 q'_1)w$ is a monomorphism, because $\mathrm{id}_X - q_2 q'_1$ is an isomorphism. Therefore we obtain a contradiction, because the monomorphism $(\mathrm{id}_X - q_2 q'_1)w$ factorizes through the module W of length smaller than U. Consequently, w' is a monomorphism.

Dually one proves that p' is an epimorphism, where p' is any representative of the coset $\Phi^{-1}F_2^s\Phi(p)$.

Since $\Phi^{-1}F_2^s\Phi$ preserves the lengths of R_1 -modules without projective direct summands, showing that p'w' = 0 is sufficient to show that the considered sequence is exact. Since pw = 0, we have $\underline{pw} = 0$. Thus $\underline{p'w'} = 0$. Hence there are a projective R_1 -module P and morphisms $q_1 : \Phi^{-1}F^s\Phi(U) \to P$ and $q_2 : P \to \Phi^{-1}F_2^s\Phi(V)$ such that $p'w' = q_2q_1$. Since w' is a monomorphism and p' is an epimorphism, there are morphisms $q'_2 : P \to \Phi^{-1}F_2^s\Phi(X)$ and $q'_1 : \Phi^{-1}F_2^s\Phi(X) \to P$ such that $p'w' = q_2q_1 = p'q'_2q'_1w'$. Then putting $w'' = (\mathrm{id}_X - q'_2q'_1)w'$ we obtain p'w'' = 0 and $\underline{w}'' = \underline{w}'$.

In the second step of the proof we show that there is an isomorphism $f: F_1^s \to \Phi^{-1}F_2^s \Phi$ given by a family $(f(X))_{X \in \underline{\mathrm{mod}}(R_1)}$ of isomorphisms in $\underline{\mathrm{mod}}(R_1)$ such that for every morphism $\underline{u}: X \to Y$ in $\underline{\mathrm{mod}}(R_1)$ the diagram

$$\begin{array}{ccccc}
F_1^s(X) & \stackrel{f(X)}{\longrightarrow} & \varPhi^{-1}F_2^s\varPhi(X) \\
F_1^s(\underline{u}) \downarrow & & \downarrow^{\varPhi^{-1}F_2^s\varPhi(\underline{u})} \\
F_1^s(Y) & \stackrel{f(Y)}{\longrightarrow} & \varPhi^{-1}F_2^s\varPhi(Y)
\end{array}$$

commutes. We construct a family $(f(X))_{X \in \underline{\mathrm{mod}}(R_1)}$ such that for every $X \in \underline{\mathrm{mod}}(R_1)$ there is an isomorphism f_X in $\mathrm{mod}(R_1)$ with $\underline{f_X} = f(X)$ and such that for every short exact sequence

$$0 \to U \xrightarrow{w} X \xrightarrow{p} V \to 0$$

in $mod(R_1)$ the diagram with exact rows

commutes, where w', p' are as in the first step of the proof. This condition is called the *commutativity condition* for f_X .

Our construction will run inductively on the length of X in $\operatorname{mod}(R_1)$. If l(X) = 1 then X is a simple R_1 -module. Fix an isomorphism $\underline{f}_X = f(X) : F_1^s(X) \to \Phi^{-1}F_2^s\Phi(X)$. Let $\underline{u} : X \to X$ be a nonzero morphism. Since X is simple, u is an automorphism. Thus $\Phi^{-1}F_2^s\Phi(\underline{u}) = \underline{v}$, where v is an

automorphism. But u is multiplication by $k_u \in K^* = K \setminus \{0\}$. Since

$$F_1^s(\underline{\operatorname{id}}_X) = \underline{\operatorname{id}}_{F_1^s(X)}$$
 and $\Phi^{-1}F_2^s\Phi(\underline{\operatorname{id}}_X) = \underline{\operatorname{id}}_{\Phi^{-1}F_2^s\Phi(X)},$

it follows that for $\underline{u} = \mathrm{id}_X \cdot k_u$ we have

$$F_1^s(\underline{u}) = \underbrace{\mathrm{id}_{F_1^s(X)}}_{I_1} \cdot k_u \quad \text{and} \quad \Phi^{-1}F_2^s \Phi(\underbrace{\mathrm{id}_X}_{I_2} \cdot k_u) = \underbrace{\mathrm{id}_{\Phi^{-1}F_2^s\Phi(X)}}_{I_2} \cdot k_u.$$

Thus for any f(X) we have $f(X)F_1^s(\underline{u}) = \Phi^{-1}F_2^s\Phi(\underline{u})f(X)$.

Now consider two isomorphic simple modules X, Y such that $X \neq Y$. For every isomorphism class [X] of a simple R_1 -module X fix a representative, say X. For every Y isomorphic to X fix an isomorphism $u_Y : X \to Y$. Then fix an isomorphism $f_X : F_1^s(X) \to \Phi^{-1}F_2^s\Phi(X)$, and for every $Y \in [X]$ define $f_Y : F_1^s(Y) \to \Phi^{-1}F_2^s\Phi(Y)$ by the formula

$$\underline{f_Y} = f(Y) = \varPhi^{-1} F_2^s \varPhi(\underline{u_Y}) f(X) F_1^s(\underline{u_Y^{-1}})$$

where f_Y is an arbitrary fixed representative of the coset f(Y). If $\underline{u}: Z \to Y$ is an isomorphism with $Y, Z \in [X]$ then for Z = X we have $u = u_Y \cdot k_u$ for some $k_u \in K^*$. Thus $F_1^s(\underline{u}) = F_1^s(\underline{u}_Y) \cdot k_u$ and $\Phi^{-1}F_2^s\Phi(\underline{u}) = \Phi^{-1}F_2^s\Phi(\underline{u}_Y) \cdot k_u$. Therefore $f(Y) = \Phi^{-1}F_2^s\Phi(\underline{u}_Y)f(X)F_1^s(u_Y^{-1})$, which implies that

$$f(Y) = (\Phi^{-1} F_2^s \Phi(\underline{u}_Y) \cdot k_u) f(X) (F_1^s(\underline{u}_Y^{-1}) \cdot k_u^{-1}) = \Phi^{-1} F_2^s \Phi(\underline{u}) f(X) F_1^s(\underline{u}_Y^{-1}) \cdot k_u^{-1}$$

Thus $f(Y)F_1^s(\underline{u}) = \Phi^{-1}F_2^s\Phi(\underline{u})f(X).$

Now consider the case Y = X. Then $u = u_Z^{-1} \cdot k_u^{-1}$ for some $k_u \in K^*$. Thus $F_1^s(\underline{u}) = F_1^s(\underline{u}_Z^{-1}) \cdot k_u^{-1}$ and $\Phi^{-1}F_2^s\Phi(\underline{u}) = \Phi^{-1}F_2^s\Phi(\underline{u}_Z^{-1}) \cdot k_u^{-1}$. Therefore $f(Z) = \Phi^{-1}F_2^s\Phi(\underline{u}_Z)f(X)F_1^s(u_Z^{-1})$, which implies

$$f(Z)^{-1} = F_1^s(\underline{u}_Z)f(X)^{-1}\Phi^{-1}F_2^s\Phi(\underline{u}_Z^{-1})$$

= $(F_1^s(\underline{u}_Z) \cdot k_u)f(X)^{-1}(\Phi^{-1}F_2^s\Phi(\underline{u}_Z^{-1}) \cdot k_u^{-1})$
= $F_1^s(\underline{u})^{-1}f(X)^{-1}\Phi^{-1}F_2^s\Phi(\underline{u}).$

Then

$$f(Z) = (\Phi^{-1}F_2^s \Phi(\underline{u}))^{-1} f(X)F_1^s(\underline{u})$$

and

$$\Phi^{-1}F_2^s\Phi(\underline{u})f(Z) = f(X)\Phi^{-1}F_2^s\Phi(\underline{u})$$

Finally, consider the case $Z \neq X \neq Y$. Then $\underline{u}_Y \cdot k_u = \underline{u}_Z$ for some $k_u \in K^*$. Moreover, we infer by the above considerations that $f(Z)F_1^s(\underline{u}_Z) = \Phi^{-1}F_2^s\Phi(\underline{u}_Z)f(X)$ and $f(Y)F_1^s(\underline{u}_Z) = \Phi^{-1}F_2^s\Phi(\underline{u}_Z)f(X)$. But $F_1^s(\underline{u}_Z) = F_1^s(\underline{u})F_1^s(\underline{u}_Z)$ and $\Phi^{-1}F_2^s\Phi(\underline{u}_Z) = \Phi^{-1}F_2^s\Phi(\underline{u})\Phi^{-1}F_2^s\Phi(\underline{u}_Z)$. Then we get

$$\begin{split} f(Y)F_1^s(\underline{u})f(Z)^{-1}f(Z)F_1^s(\underline{u}_Z) &= \varPhi^{-1}F_2^s\varPhi(\underline{u})\varPhi^{-1}F_2^s\varPhi(\underline{u}_Z)f(X)\\ \text{and}\ f(Y)F_1^s(\underline{u})f(Z)^{-1} &= \varPhi^{-1}F_2^s\varPhi(\underline{u}). \ \text{Consequently}, \end{split}$$

Z. POGORZAłY

$$f(Y)F_1^s(\underline{u}) = \Phi^{-1}F_2^s\Phi(\underline{u})f(Z),$$

and for simple R_1 -modules X the family (f(X)) is constructed.

Assume now that a family (f(X)) is constructed for every $X \in \underline{\mathrm{mod}}(R_1)$ with $l(X) \leq n$. Consider $Y \in \underline{\mathrm{mod}}(R_1)$ with l(Y) = n + 1. Let S be a simple submodule of Y. For the nonsplittable short exact sequence

$$0 \to S \xrightarrow{w} Y \xrightarrow{p} Y/S \to 0,$$

where w is the inclusion monomorphism and p is the canonical epimorphism, we have the short exact sequences

$$0 \to F_1^s(S) \xrightarrow{F_1(w)} F_1^s(Y) \xrightarrow{F_1(p)} F_1^s(Y/S) \to 0,$$

$$0 \to \Phi^{-1}F_2^s \Phi(S) \xrightarrow{w'} \Phi^{-1}F_2^s \Phi(Y) \xrightarrow{p'} \Phi^{-1}F_2^s \Phi(Y/S) \to 0$$

as in the first step of our proof. Let f_S be an isomorphism such that $\underline{f_S} = f(S)$. Let $f_{Y/S}$ be an isomorphism such that $\underline{f_{Y/S}} = f(Y/S)$. Let P be the projective cover of $F_1^s(Y/S)$. Then there is an epimorphism $\pi : P \to F_1^s(Y/S)$. Furthermore, $f_{Y/S}\pi : P \to \Phi^{-1}F_2^s\Phi(Y/S)$ is an epimorphism too, because $f_{Y/S}$ is an isomorphism. Thus there are morphisms $\pi_1 : P \to F_1^s(Y)$ and $\pi_2 : P \to \Phi^{-1}F_2^s\Phi(Y)$ such that $F_1(p)\pi_1 = \pi$ and $p'\pi_2 = f_{Y/S}\pi$. The morphisms π_1, π_2 are epimorphisms, because $top(F_1^s(Y)) \cong top(F_1^s(Y/S))$ and $top(\Phi^{-1}F_2^s\Phi(Y)) \cong top(\Phi^{-1}F_2^s\Phi(Y/S))$. Moreover, there is a submodule L of P such that there is an epimorphism $\kappa : L \to F_1^s(S)$ and $F_1(w)\kappa = \pi_1|_L$. Observe that $p'\pi_2(t) = 0$ for every $t \in L$, because $p'\pi_2(t) = f_{Y/S}\pi(t) = f_{Y/S}F_1(p)\pi_1(t) = f_{Y/S}F_1(p)F_1(w)\kappa(t) = 0$. Thus $im(\pi_2|_L) \subset im(w')$. Then $\pi_2|_L = w'f_S\kappa \cdot k$ for some $k \in K^*$. Changing w' if necessary, we may assume that $\pi_2|_L = w'f_S\kappa$, because if p'w' = 0 then $p'w' \cdot k^{-1} = 0$.

We define an isomorphism $f_Y : F_1^s(Y) \to \Phi^{-1}F_2^s\Phi(Y)$ in the following way. For $y \in F_1^s(Y)$ we can find $t \in P$ such that $\pi_1(t) = y$. Then we put $f_Y(y) = \pi_2(t)$. Since $\ker(\pi_1) \subset L$ and $\ker(\pi_2) \subset L$, we have $\ker(\pi_1) = \ker(\pi_2) = \ker(\kappa)$ because $\pi_2|_L = w'f_S\kappa$ and $\pi_1|_L = F_1(w)\kappa$. Therefore f_Y is a well-defined R_1 -homomorphism. Since $\ker(\pi_1) = \ker(\pi_2)$, f_Y is an isomorphism. It is easy to see that the diagram

$$0 \rightarrow F_1^s(S) \xrightarrow{F_1(w)} F_1^s(Y) \xrightarrow{F_1(p)} F_1^s(Y/S) \rightarrow 0$$

$$0 \rightarrow \Phi^{-1}F_2^s \Phi(S) \xrightarrow{w'} \Phi^{-1}F_2^s \Phi(Y) \xrightarrow{p'} \Phi^{-1}F_2^s \Phi(Y/S) \rightarrow 0$$

commutes.

Suppose now that we have a short exact sequence $0 \to U \xrightarrow{a} Y \xrightarrow{b} V \to 0$. If im(w) is contained in im(a) then there are R_1 -morphisms $i: S \to U$ and $r: Y/S \to V$ such that the diagram

commutes. Moreover, we deduce from the first step of the proof that there are short exact sequences

$$\begin{split} 0 &\to F_1^s(U) \xrightarrow{F_1(a)} F_1^s(Y) \xrightarrow{F_1(b)} F_1^s(V) \to 0, \\ 0 &\to \Phi^{-1} F_2^s \Phi(U) \xrightarrow{a'} \Phi^{-1} F_2^s \Phi(Y) \xrightarrow{b'} \Phi^{-1} F_2^s \Phi(V) \to 0. \end{split}$$

By the inductive assumption for some $r': \Phi^{-1}F_2^s\Phi(Y/S) \to \Phi^{-1}F_2^s\Phi(V)$ such that $\underline{r}' = \Phi^{-1}F_2^s\Phi(\underline{r})$ we have $r'f_{Y/S} = f_VF_1(r)$. Then $r'f_{Y/S}F_1(p) = f_VF_1(r)F_1(p)$. Since $F_1(r)F_1(p) = F_1(b)$, we have $f_VF_1(b) = r'f_{Y/S}F_1(p) = r'p'f_Y$, because it was shown above that $f_{Y/S}F_1(p) = p'f_Y$. Observe that b' can be chosen in such a way that r'p' = b'. Indeed, since b = rp, we have $\underline{b}' = \Phi^{-1}F_2^s\Phi(\underline{b}) = \Phi^{-1}F_2^s\Phi(\underline{rp}) = \underline{r}'\underline{p}'$. Suppose that $b' - r'p' \neq 0$. Then b' - r'p' factorizes through a projective R_1 -module Q. Since b' is an epimorphism by the first step of our proof and $b' - r'p' = q_2q_1$ with $q_1: \Phi^{-1}F_2^s\Phi(Y) \to Q, q_2: Q \to \Phi^{-1}F_2^s\Phi(V)$, there is $q'_2: Q \to \Phi^{-1}F_2^s\Phi(Y)$ such that $q_2q_1 = b'q'_2q_1$. Therefore $r'p' = b' - b'q'_2q_1$. Thus put $b'' = b'(\mathrm{id}_{\Phi^{-1}F_2^s\Phi(Y)} - q'_2q_1)^{-1}$ then $\underline{a}'' = \underline{a}'$ and a'' is a monomorphism with b''a'' = 0. Since b'' = r'p', we get $f_VF_1(b) = b''f_Y$.

We deduce from the last commutative diagram by the snake lemma that there is a commutative diagram with exact rows

By the inductive assumption $v' f_{U/S} = f_{Y/S} F_1(v)$ for some v'. Thus

$$v' f_{U/S} F_1(c) = f_{Y/S} F_1(v) F_1(c).$$

Therefore $v'f_{U/S}F_1(c) = f_{Y/S}F_1(p)F_1(a)$ and $f_{Y/S}F_1(p)F_1(a) = p'f_YF_1(a)$, since we proved that $f_{Y/S}F_1(p) = p'f_Y$. Now observe that for a suitable c'we have $f_{U/S}F_1(c) = c'f_U$ by the inductive assumption. But we may assume that v'c' = p'a''. Indeed, suppose to the contrary that $p'a'' - v'c' \neq 0$ but p'a'' - v'c' = 0. Thus this difference factorizes through a projective R_1 module, say Q_1 . Then there are $z_1 : \Phi^{-1}F_2^s\Phi(U) \to Q_1$ and $z_2 : Q_1 \to \Phi^{-1}F_2^s\Phi(Y/S)$ such that $p'a'' - v'c' = z_2z_1$. Since p' is an epimorphism by the first step of our proof, there is $z'_2 : Q_1 \to \Phi^{-1}F_2^s\Phi(Y)$ such that $p'z'_2 = z_2$. Then replacing a'' by $a'_1 = a'' - z'_2z_1$ we obtain $p'a'_1 = v'c'$. Moreover, observe that a'_1 is well-defined, because it is a monomorphism by the first step of the proof and $b''a'_1 = r'p'a'_1 = r'v'c' = 0$ since r'v' = 0.

Hence we may assume that p'a'' - v'c' = 0. Therefore we obtain $v'c'f_U = p'a''f_U$. Furthermore,

$$p'a''f_U = v'c'f_U = v'f_{U/S}F_1(c) = f_{Y/S}F_1(v)F_1(c)$$

= $f_{Y/S}F_1(p)F_1(a) = p'f_YF_1(a).$

Thus $p'(a''f_U - f_YF_1(a)) = 0$. Then $d = (a''f_U - f_YF_1(a)) : U \to \Phi^{-1}F_2^s \Phi(Y)$ and $\operatorname{im}(d) \subset \operatorname{ker}(p') = \operatorname{im}(w')$. Thus $dF_1(i) = 0$, because $dF_1(i) = a''f_UF_1(i)$ $-f_YF_1(a)F_1(i) = a''i'f_S - f_YF_1(w)$. But a''i' = w'. Indeed, if $a''i' - w' \neq 0$ then it is a monomorphism by simplicity of $\Phi^{-1}F_2^s\Phi(S)$. On the other hand, we know that $\underline{a''i' - w'} = 0$. Therefore we find that a monomorphism factorizes through a projective module, which is impossible by [17; Lecture 3]. Then $a''i'f_S - f_YF_1(w) = w'f_S - f_YF_1(w) = 0$.

Now we can consider the decompositions of K-spaces $F_1^s(Y) = \operatorname{im}(F_1(w)) \oplus Y'$ and $\Phi^{-1}F_2^s\Phi(Y) = \operatorname{im}(w') \oplus Y''$. Since f_Y is an R_1 -isomorphism, f_Y is a K-linear isomorphism. Since $w'f_S = f_YF_1(w)$ and $p'f_Y = f_{Y/S}F_1(p)$, f_Y restricted to Y' is a K-linear isomorphism of Y' to Y''. But if $z \in \operatorname{im}(F_1(a)) \cap Y'$ then $f_Y(z) \in Y''$. Furthermore, we can consider the decomposition of the K-space $F_1^s(U) = \operatorname{im}(F_1(w)) \oplus U'$. Then by the inductive assumption for the decomposition $\Phi^{-1}F_2^s\Phi(U) = \operatorname{im}(i') \oplus U''$ the restriction of f_U to U' is a K-linear isomorphism between U' and U''. Since a''i' = w', we get $a''f_U(z) \in Y''$, where $z \in \operatorname{im}(F_1(w)) \cap Y'$. Thus $\operatorname{im}(a''f_U - f_YF_1(a)) \subset Y''$, and so $a''f_U - f_YF_1(a) = 0$.

Now consider the case when im(a) does not contain im(w). First assume that U is simple. Then we have the following commutative diagram with exact rows and columns:

By the inductive assumption,

$$a'_{1}f_{U} = f_{Y/S}F_{1}(a_{1}) = f_{Y/S}F_{1}(p)F_{1}(a) = p'f_{Y}F_{1}(a),$$

where $\underline{a}'_1 = \Phi^{-1} F_2^s \Phi(\underline{a}_1)$ satisfies the required condition by the inductive assumption. We may assume that $p'_1 b' = b'_1 p'$, where a', b' are so chosen

that the considered column of our diagram is exact after $\Phi^{-1}F_2^s\Phi$ has been applied. Indeed, we know that $\underline{p'_1b'} - \underline{b'_1p'} = 0$. Then if $p'_1b' - \underline{b'_1p'} \neq 0$ then there are a projective R_1 -module Q and morphisms $q_1 : \Phi^{-1}F_2^s\Phi(Y) \to Q$ and $q_2 : Q \to \Phi^{-1}F_2^s\Phi(Y)$ such that $p'_1b' - \underline{b'_1p'} = p'_1b'q_2q_1$, because p'_1, b' are epimorphisms by the first step of the proof. Denote by t the automorphism $\mathrm{id}_{\Phi^{-1}F_2^s\Phi(Y)} - q_2q_1$. Then putting b'' = b't we get $p'_1b'' = b'_1p'$. If we put $a'' = t^{-1}a'$ then b''a'' = 0 and the sequence

$$0 \to \Phi^{-1} F_2^s \Phi(U) \xrightarrow{a''} \Phi^{-1} F_2^s \Phi(Y) \xrightarrow{b''} \Phi^{-1} F_2^s \Phi(V) \to 0$$

is exact again. Moreover, $p'a''=a_1'.$ Indeed, if $p'a''-a_1'\neq 0$ then it factorizes through a projective R_1 -module, since $p'a'' - a'_1 = 0$. But U is simple and hence the considered difference is a monomorphism which cannot factorize through a projective module by [17; Lecture 3]. Thus $p'a'' = a'_1$. Therefore $p'a''f_U = p'f_YF_1(a)$. Then $p'(a''f_U - f_YF_1(a)) = 0$ and for $d = a'' f_U - f_Y F_1(a)$ we have $\operatorname{im}(d) \subset \operatorname{ker}(p') = \operatorname{im}(w')$. If we consider the decompositions of the K-spaces $F_1^s(Y) = \operatorname{im}(F_1(w)) \oplus Y'$ and $\Phi^{-1}F_2^s \Phi(Y) =$ $\operatorname{im}(w') \oplus Y''$ then f_Y , being a K-linear isomorphism, when restricted to Y'is a K-linear isomorphism between Y' and Y''. Moreover, $F_1(p)$, being a K-linear morphism, when restricted to Y' is a K-linear isomorphism between Y' and $F_1^s(Y/S)$. Furthermore, p', being a K-linear morphism, when restricted to Y'' is a K-linear isomorphism between Y'' and $\Phi^{-1}F_2^s\Phi(Y/S)$. Then $\operatorname{im}(a'') \subset Y''$ by the equality $p'a'' = a'_1$. Thus $\operatorname{im}(a''f_U) \subset \overline{Y''}$. Since $\operatorname{im}(F_1(a)) \subset Y'$, we have $\operatorname{im}(f_Y F_1(a)) \subset Y''$, because we already proved that $p'f_Y = f_{Y/S}F_1(p)$. Therefore $\operatorname{im}(a''f_U - f_YF_1(a)) \subset Y''$, and so it is zero. Consequently, $a'' f_U = f_Y F_1(a)$.

Now we infer by the inductive assumption that $p'_1 f_V = f_{V/S} F_1(p_1)$. Then $p'_1 f_V F_1(b) = f_{V/S} F_1(p_1) F_1(b) = f_{V/S} F_1(b_1) F_1(p) = b'_1 f_{Y/S} F_1(p)$, where p'_1 and b'_1 are well-defined morphisms in the inductive step. Furthermore, $b'_1 f_{Y/S} F_1(p) = b'_1 p' f_Y$. Since $b'_1 p' = p'_1 b''$, we have $p'_1 f_V F_1(b) = p'_1 b'' f_Y$. Then $p'_1 (f_V F_1(b) - b'' f_Y) = 0$. Then $\operatorname{im}(f_V F_1(b) - b'' f_Y) \subset \operatorname{ker}(p'_1) = \operatorname{im}(w'_1)$.

Consider the decompositions of K-linear spaces $F_1^s(Y) = \operatorname{im}(F_1(w)) \oplus Y'$, $\Phi^{-1}F_2^s\Phi(Y) = \operatorname{im}(w') \oplus Y''$. Since $a''f_U = f_YF_1(a)$, we have $p'a''f_U = p'f_YF_1(a) = f_{Y/S}F_1(p)F_1(a) = f_{Y/S}F_1(a_1)$. Therefore $p'a''f_U$ is a monomorphism, and so $\operatorname{im}(a''f_U) \subset Y''$. Then we consider the decompositions of K-linear spaces $Y' = \operatorname{im}(F_1(a)) \oplus Y_1'$ and $Y'' = \operatorname{im}(a''f_U) \oplus Y_1''$. Clearly $F_1^s(V) \cong \operatorname{im}(F_1(w)) \oplus Y_1'$ and $\Phi^{-1}F_2^s\Phi(V) \cong \operatorname{im}(w') \oplus Y_1''$ as K-spaces, because $p_1'b''a''f_U = b_1'p'a''f_U = b_1'a_1'f_U = 0$. Since $w'f_S = f_YF_1(w)$ and $a''f_U = f_YF_1(a)$, the K-linear morphism f_Y restricted to $\operatorname{im}(F_1(w))$ yields an isomorphism between $\operatorname{im}(F_1(w))$ and $\operatorname{im}(w')$. Moreover, the K-linear morphism f_Y restricted to Y_1' yields an isomorphism between Y_1' and Y_1'' . Z. POGORZAłY

and $F_1^s(V)$, $\operatorname{im}(w') \oplus Y_1''$ and $\Phi^{-1}F_2^s\Phi(V)$, respectively. They have the property that $F_1(b)|_{Y_1'}: Y_1' \to V'$, $b''|_{Y_1''}: Y_1'' \to V''$ are isomorphisms, where $F_1^s(V) = \operatorname{im}(F_1(w_1)) \oplus V'$ and $\Phi^{-1}F_2^s\Phi(V) = \operatorname{im}(w_1') \oplus V''$ are decompositions of K-spaces. Therefore $f_VF_1(b)(z) \in V''$ for every $z \in Y_1'$, because $p_1'f_V = f_{V/S}F_1(p_1)$ by the inductive assumption and $F_1(p_1)$ is a K-linear isomorphism between V' and $F_1^s(V/S)$. Furthermore, $b''f_Y(z) \in V''$ for every $z \in Y_1'$. Then $\operatorname{im}((f_VF_1(b) - b''f_Y)|_{Y_1'}) = 0$, because we have already proved that $\operatorname{im}(f_VF_1(b) - b''f_Y) \subset \operatorname{im}(w_1')$. But if $z \in \operatorname{im}(F_1(w))$ then $b''f_Y(z) = b''f_YF_1(w)(z_1), z_1 \in F_1^s(S)$, and

$$b'' f_Y F_1(w)(z_1) = b'' w' f_S(z_1) = w'_1 f_S(z_1) = f_V F_1(w_1)(z_1)$$

= $f_V F_1(b) F_1(w)(z_1) = f_V F_1(b)(z).$

Consequently, $f_V F_1(b) = b'' f_Y$. If U is not simple then take a simple submodule T of U. Since we proved the required condition for simple T, we may repeat the arguments from the case $\operatorname{im}(a) \supset \operatorname{im}(w)$ for U, with T instead of S. Thus we have finished the proof of the commutativity condition for f_Y .

Now we show that the required squares are commutative. First consider the case when $F_1^s(\underline{u}) : F_1^s(Y) \to F_1^s(Z)$ is an isomorphism. Then clearly so is $u : Y \to Z$. Let S be a simple direct summand in the socle of Y. We have the short exact sequence

$$0 \to S \xrightarrow{w} Y \xrightarrow{p} Y/S \to 0.$$

Denote by S_1 the simple submodule uw(S) of Z. Then the following diagram is commutative:

where $u_1 = uw$, v is inclusion, q is the canonical epimorphism and u_2 is some isomorphism. By the inductive assumption, $u'_1 f_S = f_{S_1} F_1(u_1)$ and $u'_2 f_{Y/S} = f_{Z/S_1} F_1(u_2)$. We show that $u' f_Y = f_Z F_1(u)$ for $\underline{u}' = \Phi^{-1} F_2^s \Phi(\underline{u})$. As above, we can show that there are v' and q' such that the following diagrams are commutative:

$$0 \quad \rightarrow \quad \varPhi^{-1}F_2^s\varPhi(T) \quad \stackrel{v'}{\rightarrow} \quad \varPhi^{-1}F_2^s\varPhi(Z) \quad \stackrel{q'}{\rightarrow} \quad \varPhi^{-1}F_2^s\varPhi(Z/T) \quad \rightarrow \quad 0$$

Now consider the decompositions of K-spaces $F_1^s(Y) = \operatorname{im}(F_1(w)) \oplus Y'$, $F_1^s(Z) = \operatorname{im}(F_1(v)) \oplus Z', \ \Phi^{-1}F_2^s \Phi(Y) = \operatorname{im}(w') \oplus Y'', \ \Phi^{-1}F_2^s \Phi(Z) = \operatorname{im}(v')$ $\oplus Z''.$ Take $y \in \operatorname{im}(F_1(w))$. Then $u'f_Y(y) = u'f_YF_1(w)(y_1), \ y_1 \in F_1^s(S)$. Furthermore,

$$u'f_Y F_1(w)(y_1) = u'w'f_S(y_1) = v'u'_1 f_S(y_1) = v'f_T F_1(u_1)(y_1)$$

= $f_Z F_1(v)F_1(u_1)(y_1) = f_Z F_1(u)F_1(w)(y_1) = f_Z F_1(u)(y).$

If $y \in Y'$ then $u'f_Y(y) = u'f_YF_1(p)^{-1}(y_1)$, where $y_1 \in F_1^s(Y/S)$ and $F_1(p)^{-1}$ is the linear inverse of $F_1(p)$ restricted to Y'. Then $u'f_YF_1(p)^{-1}(y_1) = u'(p')^{-1}f_{Y/S}(y_1)$, where $(p')^{-1}$ is the linear inverse of p' restricted to Y''. But $u'(p')^{-1} = (q')^{-1}u'_2$, where $(q')^{-1}$ is the linear inverse of q' restricted to Z''. Thus

$$u'(p')^{-1}f_{Y/S}(y_1) = (q')^{-1}u'_2f_{Y/S}(y_1) = (q')^{-1}f_{Z/T}F_1(u_2)F_1(p)(y)$$

= $(q')^{-1}f_{Z/T}F_1(q)F_1(u)(y) = (q')^{-1}q'f_ZF_1(u)(y)$
= $f_ZF_1(u)(y).$

Consequently, $u'f_Y = f_Z F_1(u)$, and so $\Phi^{-1}F_2^s \Phi(\underline{u})f(Y) = f(Z)F_1^s(\underline{u})$.

Now suppose that there is $0 \neq u : Y \to Z$ which is not an isomorphism and $l(Z) \leq l(Y)$. Since we have a decomposition $u = a_2a_1$ with an epimorphism $a_1 : Y \to im(u)$ and a monomorphism $a_2 : im(u) \to Z$, it is enough to assume that u is either an epimorphism or a monomorphism. But if u is an epimorphism then there is a short exact sequence

$$0 \to V \xrightarrow{v} Y \xrightarrow{u} Z \to 0$$

with $V = \ker(u)$. Then by the commutativity condition for f_Y there is u'such that $u'f_Y = f_Z F_1(u)$. Thus $\Phi^{-1}F_2^s \Phi(\underline{u})f(Y) = f(Z)F_1^s(\underline{u})$. The same arguments can be applied for a monomorphism u. Consequently, our lemma is proved by induction.

3.5. LEMMA. Let $F_1 : \operatorname{mod}(R_1) \to \operatorname{mod}(R_1)$ and $F_2 : \operatorname{mod}(R_2) \to \operatorname{mod}(R_2)$ be exact equivalences satisfying the conditions (a) and (b) of Lemma 3.4. Then there is a quasi-inverse Φ_1^{-1} of Φ such that $F_1^s(X) = \Phi_1^{-1}F_2^s\Phi(X)$ for every object $X \in \operatorname{mod}(R_1)$.

Proof. First we construct a functor $\Delta : \underline{\mathrm{mod}}(R_1) \to \underline{\mathrm{mod}}(R_1)$ such that $F_1^s(X) = \Delta \Phi^{-1} F_2^s(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$. We know from Lemma 3.4 that $F_1^s \cong \Phi^{-1} F_2^s \Phi$. Fix an isomorphism $f: F_1^s \to \Phi^{-1} F_2^s \Phi$. For every $X \in \underline{\mathrm{mod}}(R_1)$ either there is $Y \in \underline{\mathrm{mod}}(R_1)$ such that $X = \Phi^{-1} F_2^s \Phi(Y)$ or X does not lie in the image of $\Phi^{-1} F_2^s \Phi$. If $X = \Phi^{-1} F_2^s \Phi(Y)$ then we put $\Delta(X) = F_1^s(Y)$. If X is not contained in the image of $\Phi^{-1} F_2^s \Phi$ then we put $\Delta(X) = X$. If $\underline{h}: X_1 \to X_2$ is a morphism in $\underline{\mathrm{mod}}(R_1)$ and $X_i = \Phi^{-1} F_2^s \Phi(Y_i)$, i = 1, 2, then we put $\Delta(\underline{h}) = \underline{t}$, where $\underline{t} = f(X_2)^{-1} \Phi^{-1} F_2^s \Phi(\underline{h}) f(X_1)$. If $\underline{h}: X_1 \to X_2$ is a morphism in $\underline{\mathrm{mod}}(R_1)$ and X_1 does not lie in the image

of $\Phi^{-1}F_2^s\Phi$ and $X_2 = \Phi^{-1}F_2^s\Phi(Y_2)$ then $\Delta(\underline{h}) = f(X_2)^{-1}\underline{h}$. If $\underline{h}: X_1 \to X_2$, $X_1 = \Phi^{-1}F_2^s\Phi(Y_1)$ and X_2 is not contained in the image of $\Phi^{-1}F_2^s\Phi$ then $\Delta(\underline{h}) = \underline{h}f(X_1)$. If $\underline{h}: X_1 \to X_2$ is a morphism in $\underline{\mathrm{mod}}(R_1)$ and X_1, X_2 do not lie in the image of $\Phi^{-1}F_2^s\Phi$ then we put $\Delta(\underline{h}) = \underline{h}$.

A simple verification shows that Δ is a well-defined functor. Moreover, Δ is dense since F_1^s is dense. Furthermore, Δ is fully faithful since F_1^s and $\Phi^{-1}F_2^s\Phi$ are. Thus Δ is an equivalence. Consequently, $\Delta\Phi^{-1} = \Phi_1^{-1}$ is a quasi-inverse of Φ . Indeed, $\Phi_1^{-1}\Phi(X) \cong \Phi^{-1}\Phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$ by the definition of Δ . Hence $\Phi_1^{-1}\Phi(X) \cong X$. If $\phi : 1_{\underline{\mathrm{mod}}(R_1)} \to \Phi^{-1}\Phi$ is an isomorphism of functors then fix an isomorphism $\alpha(X) : \Phi^{-1}\Phi(X) \to \Phi_1^{-1}\Phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$ and define $\phi_1 : 1_{\underline{\mathrm{mod}}(R_1)} \to \Phi_1^{-1}\Phi$ by $\phi_1(X) = \alpha(X)\phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$. Thus for every morphism $\underline{u}: X \to Z$ we have to check whether the diagram

$$\begin{array}{cccc} X & \stackrel{\phi_1(X)}{\longrightarrow} & \varPhi_1^{-1}\varPhi(X) \\ \stackrel{u}{\longrightarrow} & & \downarrow^{\varPhi_1^{-1}\varPhi(\underline{u})} \\ Z & \stackrel{\phi_1(Z)}{\longrightarrow} & \varPhi_1^{-1}\varPhi(Z) \end{array}$$

commutes. Clearly it is sufficient to prove that the diagram

$$\begin{array}{ccccc}
\Phi^{-1}\Phi(X) & \stackrel{\alpha(X)}{\longrightarrow} & \Phi_1^{-1}\Phi(X) \\
 & \stackrel{\Phi^{-1}\Phi(\underline{u})}{\longrightarrow} & & \downarrow^{\Phi_1^{-1}\Phi(\underline{u})} \\
\Phi^{-1}\Phi(Z) & \stackrel{\alpha(Z)}{\longrightarrow} & \Phi_1^{-1}\Phi(Z)
\end{array}$$

commutes. If $\Phi^{-1}\Phi(X) = \Phi^{-1}F_2^s\Phi(Y)$ and $\Phi^{-1}\Phi(Z) = \Phi^{-1}F_2^s\Phi(W)$ then for $\alpha(X) = f(X)^{-1}$ and $\alpha(Z) = f(Z)^{-1}$ the above diagram commutes. If $\Phi^{-1}\Phi(X) = \Phi^{-1}F_2^s\Phi(Y)$ and $\Phi^{-1}\Phi(Z)$ is not contained in the image of $\Phi^{-1}F_2^s\Phi$ then for $\alpha(X) = f(X)^{-1}$ and $\alpha(Z) = 1_{\Phi^{-1}\Phi(Z)}$ the diagram commutes. If $\Phi^{-1}\Phi(X)$ is not contained in the image of $\Phi^{-1}F_2^s\Phi$ and $\Phi^{-1}\Phi(Z) = \Phi^{-1}F_2^s\Phi(W)$ then for $\alpha(X) = 1_{\Phi^{-1}\Phi(X)}$ and $\alpha(Z) = f(Z)^{-1}$ the above diagram commutes. If neither $\Phi^{-1}\Phi(X)$ nor $\Phi^{-1}\Phi(Z)$ lies in the image of $\Phi^{-1}F_2^s\Phi$ then for $\alpha(X) = 1_{\Phi^{-1}\Phi(X)}$ and $\alpha(Z) = 1_{\Phi^{-1}\Phi(Z)}$ the required commutativity holds. Thus for the isomorphism $\alpha : \Phi^{-1}\Phi \to \Phi_1^{-1}\Phi$ chosen above ϕ_1 is an isomorphism of functors. Similarly we show that there is an isomorphism $\psi_1 : 1_{\mathrm{mod}(R_2)} \to \Phi\Phi_1^{-1}$. This finishes our proof.

3.6. PROPOSITION. Let $F_1 : \operatorname{mod}(R_1) \to \operatorname{mod}(R_1)$ and $F_2 : \operatorname{mod}(R_2) \to \operatorname{mod}(R_2)$ be exact equivalences satisfying the following conditions:

(a) If $F_i^s : \underline{\mathrm{mod}}(R_i) \to \underline{\mathrm{mod}}(R_i), i = 1, 2$, is defined by $F_i^s(X) = F_i(X)$, $X \in \underline{\mathrm{mod}}(R_i), \ \overline{F_i^s}(\underline{f}) = \underline{F_i(f)}, \ \underline{f} : X \to Y \text{ a morphism in } \underline{\mathrm{mod}}(R_i), \ then F_i^s \text{ is an equivalence.}$ (b) For every object $X \in \underline{\mathrm{mod}}(R_1)$, $F_1^s(X) \cong \Phi^{-1}F_2^s\Phi(X)$, where Φ^{-1} is a quasi-inverse of Φ .

Then there is an equivalence $\Phi' : \underline{\mathrm{mod}}(R_1) \to \underline{\mathrm{mod}}(R_2)$ such that $\Phi' F_1^s = F_2^s \Phi'$.

Proof. By Lemma 3.5 there is a quasi-inverse Φ_1^{-1} of Φ such that $F_1^s(X) = \Phi_1^{-1}F_2^s\Phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$. We deduce from Lemma 3.4 that F_1^s and $\Phi_1^{-1}F_2^s\Phi$ are isomorphic functors. Then there is an isomorphism $f: F_1^s \to \Phi^{-1}F_2^s\Phi$. We define $\Phi': \underline{\mathrm{mod}}(R_1) \to \underline{\mathrm{mod}}(R_2)$ by the formula $\Phi' = (F_2^s)^{-1}\Phi F_2^s$. It is easy to verify that Φ^{-1} is a quasi-inverse of Φ' . Then $f: F_1^s \to \Phi^{-1}F_2^s\Phi'$ yields the equality of functors and the proposition follows.

3.7. PROPOSITION. If ν_{R_1} and ν_{R_2} act freely on the objects of R_1 and R_2 , respectively, then $R_1/(\nu_{R_1})$ and $R_2/(\nu_{R_2})$ are stably equivalent.

Proof. Observe that, under our assumptions, the action of (ν_{R_i}) on R_i induces the Nakayama functor \mathcal{N}_{R_i} : $\mathrm{mod}(R_i) \to \mathrm{mod}(R_i)$ given by the formula $\mathcal{N}_{R_i} = D \operatorname{Hom}_{R_i}(-, R_i)$ (see [8; 2.1]). Furthermore, \mathcal{N}_{R_i} is an exact equivalence such that $\mathcal{N}_{R_i}^s : \underline{\mathrm{mod}}(R_i) \to \underline{\mathrm{mod}}(R_i)$ is an equivalence. Then $\mathcal{N}_{R_i}^s \cong \Omega_{R_i}^{-2} \tau_{R_i}$ by [8; 2.5]. Thus we deduce from Proposition 3.2 that for every object $X \in \underline{\mathrm{mod}}(R_i)$ we have $\mathcal{N}_{R_1}^s(X) \cong \Phi_1^{-1} \mathcal{N}_{R_2}^s \Phi(X)$ for some quasi-inverse Φ_1^{-1} of Φ . Therefore, by Proposition 3.6, $\Phi \mathcal{N}_{R_1}^s = \mathcal{N}_{R_2}^s \Phi$. Thus $\Phi \mathcal{N}_{R_1}^s(X) = \mathcal{N}_{R_2}^s \Phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$. But the push-down functor $F_{\lambda,i}$: mod $(R_i) \to \text{mod}(R_i/(\nu_{R_i}))$ is induced by \mathcal{N}_{R_i} . Hence $F_{\lambda,i}$ maps every \mathcal{N}_{R_i} -orbit of an R_i -module M onto one $R_i/(\nu_{R_i})$ -module $F_{\lambda,i}(M)$. Consequently, Φ maps the \mathcal{N}_{R_1} -orbits of nonprojective R_1 -modules onto \mathcal{N}_{R_2} -orbits of nonprojective R_2 -modules, because $\Phi \mathcal{N}_{R_1}^s(X) = \mathcal{N}_{R_2}^s \Phi(X)$ for every $X \in \underline{\mathrm{mod}}(R_1)$. Furthermore, Φ maps the $\mathcal{N}_{R_1}^s$ -orbits of morphisms in $\underline{\mathrm{mod}}(R_1)$ onto the $\mathcal{N}_{R_2}^s$ -orbits of morphisms in $\underline{\mathrm{mod}}(R_2)$, because by the definition of \mathcal{N}_{R_i} a morphism $f: X \to Y$ in $\operatorname{mod}(R_i)$ factorizes through a projective R_i -module iff $F_{\lambda,i}(f) : F_{\lambda,i}(X) \to F_{\lambda,i}(Y)$ factorizes through a projective $R_i/(\nu_{R_i})$ -module.

Now we can define a functor $\Psi : \underline{\mathrm{mod}}(R_1/(\nu_{R_1})) \to \underline{\mathrm{mod}}(R_2/(\nu_{R_2}))$ as follows. For every indecomposable M in $\underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ there is an indecomposable R_1 -module \widetilde{M} which is nonprojective and satisfies $F_{\lambda,1}(\widetilde{M}) = M$. Then we put $\Psi(M) = F_{\lambda,2}\Phi(\widetilde{M})$. If $M = M_1 \oplus \ldots \oplus M_n \in \underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ with M_j indecomposable, $j = 1, \ldots, n$, then we put $\Psi(M) = \Psi(M_1) \oplus \ldots \oplus \Psi(M_n)$. If $f : M \to N$ is a morphism in $\underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ then there is a morphism $\underline{\widetilde{f}} : \widetilde{M} \to \widetilde{N}$ in $\underline{\mathrm{mod}}(R_1)$ such that $\underline{f} = \underline{F_{\lambda,1}(\widetilde{f})}$. Then there is $\underline{h} = \Phi(\underline{\widetilde{f}})$ and we put $\Psi(\underline{f}) = \underline{F_{\lambda,2}(h)}$. Since Φ maps the \mathcal{N}_{R_1} -orbits of indecomposable nonprojective R_1 -modules onto \mathcal{N}_{R_2} -orbits of indecomposable nonprojective R_2 -modules and the $\mathcal{N}_{R_1}^s$ -orbits of morphisms in $\underline{\mathrm{mod}}(R_1)$ onto the $\mathcal{N}_{R_2}^s$ -orbits of morphisms in $\underline{\mathrm{mod}}(R_2)$, the above definition does not depend on the choice of \widetilde{M} and \widetilde{f} .

Observe that $\Psi : \underline{\mathrm{mod}}(R_1/(\nu_{R_1})) \to \underline{\mathrm{mod}}(R_2/(\nu_{R_2}))$ is a functor. Indeed, $\Psi(\underline{\mathrm{id}}_M) = \underline{\mathrm{id}}_{\Psi(M)}$ since for $F_{\lambda,1}(\widetilde{M}) = M$ we have $F_{\lambda,1}(\underline{\mathrm{id}}_{\widetilde{M}}) = \underline{\mathrm{id}}_M$. Then $\Phi(\underline{\mathrm{id}}_{\widetilde{M}}) = \underline{\mathrm{id}}_{\Phi(\widetilde{M})}$ since Φ is a functor. Thus $F_{\lambda,2}(\underline{\mathrm{id}}_{\Phi(\widetilde{M})}) = \underline{\mathrm{id}}_{F_{\lambda,2}\Phi(\widetilde{M})}$. If $\underline{f_1} : M \to N$ and $\underline{f_2} : N \to L$ are morphisms in $\underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ then $F_{\lambda,1}(\widehat{f_2f_1}) = f_2f_1$ with $\widehat{f_2f_1} = \widetilde{f_2}\widetilde{f_1}$. Thus $\Phi(\underline{\widetilde{f_2f_1}}) = \Phi(\underline{\widetilde{f_2f_1}}) = \underline{h} = \underline{h_2h_1}$ with $\Phi(\underline{\widetilde{f_i}}) = \underline{h_i}, i = 1, 2$. Therefore

$$\Psi(\underline{f_2 f_1}) = \underline{F_{\lambda,2}(h_2 h_1)} = \underline{F_{\lambda,2}(h_2)F_{\lambda,2}(h_1)} = \Psi(\underline{f_2})\Psi(\underline{f_1}).$$

Since R_1 and R_2 are locally support-finite, Ψ is dense.

Observe that if $0 \neq \underline{f} : M \to N$ in $\underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ then $\underline{\widetilde{f}} \neq 0$ for every \widetilde{f} such that $F_{\lambda,1}(\widetilde{f}) = \overline{f}$. Hence $\Phi(\underline{\widetilde{f}}) \neq 0$ since Φ is an equivalence. Thus $\Phi(\underline{\widetilde{f}}) = \underline{h} \neq 0$ and clearly $\underline{F}_{\lambda,2}(\underline{h}) \neq 0$. Therefore $\Psi(\underline{f}) \neq 0$, which shows that Ψ is faithful. If $0 \neq \underline{t} : \overline{\Psi(M)} \to \Psi(N)$ for some $M, N \in \underline{\mathrm{mod}}(R_1/(\nu_{R_1}))$ then there are $\widetilde{M}, \widetilde{N} \in \underline{\mathrm{mod}}(R_1)$ with $F_{\lambda,2}\Phi(\widetilde{M}) = \Psi(M)$ and $F_{\lambda,2}\Phi(\widetilde{N}) = \Psi(N)$. But there is $\widetilde{t} : \Phi(\widetilde{M}) \to \Phi(\widetilde{N})$ such that $\underline{t} = \underline{F}_{\lambda,2}(\widetilde{t})$. Since Φ is an equivalence, there is $0 \neq \underline{\widetilde{f}} : \widetilde{M} \to \widetilde{N}$ such that $\Phi(\underline{\widetilde{f}}) = \underline{\widetilde{t}}$. If we put $f = F_{\lambda,1}(\widetilde{f})$ then $\Psi(\underline{f}) = \underline{t}$. Consequently, Ψ is full and the proposition follows.

3.8. PROPOSITION. If R_1 and R_2 are triangular selfinjective locally support-finite K-categories with free actions of (ν_{R_1}) and (ν_{R_2}) , respectively, and $R_1/(\nu_{R_1}) \cong R_2/(\nu_{R_2})$ then $R_1 \cong R_2$.

Proof. Fix some representatives $\{P_i\}_{i\in I}$ of the isomorphism classes of indecomposable projective R_1 -modules and some representatives $\{Q_j\}_{j\in J}$ of the isomorphism classes of the indecomposable projective R_2 -modules. Then $R_1 \cong \operatorname{End}_{R_1}(\bigoplus_{i\in I} P_i)^{\operatorname{op}}$ and $R_2 \cong \operatorname{End}_{R_2}(\bigoplus_{j\in J} Q_j)^{\operatorname{op}}$. Let $F_{\lambda,t}$: $\operatorname{mod}(R_t) \to \operatorname{mod}(R_t/(\nu_{R_t})), t = 1, 2$, be the push-down functors induced by the actions of (ν_{R_t}) on R_t . Fix some $i_0 \in I$. Let $LF_{\lambda,1}(P_{i_0}) = F_{\lambda,2}(Q_{j_0})$ for a fixed $j_0 \in J$, where $L : \operatorname{mod}(R_1/(\nu_{R_1})) \to \operatorname{mod}(R_2/(\nu_{R_2}))$ is the equivalence induced by a fixed isomorphism from $R_1/(\nu_{R_1})$ onto $R_2/(\nu_{R_2})$. Let $R_{1,1}$ be the subcategory of R_1 formed by P_{i_0} and the $P_i, P_{i'}$ such that the following conditions are satisfied:

(a) there is a nonzero morphism $f_i : P_i \to P_{i_0}$ of the form $f_i = f^* f'_i$, where $f'_i : P_i \to \operatorname{rad}(P_{i_0})$ satisfies $\pi_{i_0} f'_i \neq 0$ for the canonical epimorphism $\pi_{i_0} : \operatorname{rad}(P_{i_0}) \to \operatorname{top}(\operatorname{rad}(P_{i_0}))$, and $f^* : \operatorname{rad}(P_{i_0}) \to P_{i_0}$ is the identity monomorphism; (b) there is a nonzero morphism $h_{i'}: P_{i_0} \to P_{i'}$ of the form $h''_{i'}h'_{i'}$, where $h'_{i'}: P_{i_0} \to \operatorname{rad}(P_{i'})$ satisfies $\pi_{i'}h'_{i'} \neq 0$ for the canonical epimorphism $\pi_{i'}: \operatorname{rad}(P_{i'}) \to \operatorname{top}(\operatorname{rad}(P_{i'}))$, and $h''_{i'}: \operatorname{rad}(P_{i'}) \to P_{i'}$ is the identity monomorphism.

If P, P' are objects of $R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}(P, P')$ is the subspace of $\operatorname{Hom}_{R_1}(P, P')$ generated by the isomorphisms between P and P' and the morphisms of the form $t = t_1t_2$, where $t_1 = h_{i'}$ for some i' and t_2 is an automorphism of P_{i_0} , or $t_2 = f_i$ for some i and t_1 is an automorphism of P_{i_0} , or $t_2 = f_i$ for some i and t_1 is an automorphism of P_{i_0} , or else $t_1 = h_{i'}$ for some i' and $t_2 = f_i$ for some i. Since R_1 is locally support-finite, $R_{1,1}$ is finite.

Let $R_{2,1}$ be the subcategory of R_2 formed by Q_{j_0} and the Q_j , $Q_{j'}$ such that the following conditions are satisfied:

(a) there is a nonzero morphism $r_j : Q_j \to Q_{j_0}$ of the form $r_j = r^* r'_j$, where $r'_j : Q_j \to \operatorname{rad}(Q_{j_0})$ satisfies $\kappa_{j_0} r'_j \neq 0$ for the canonical epimorphism $\kappa_{j_0} : \operatorname{rad}(Q_{j_0}) \to \operatorname{top}(\operatorname{rad}(Q_{j_0}))$, and $r^* : \operatorname{rad}(Q_{j_0}) \to Q_{j_0}$ is the identity monomorphism;

(b) there is a nonzero morphism $s_{j'}: Q_{j_0} \to Q_{j'}$ of the form $s''_{j'}s'_{j'}$, where $s'_{j'}: Q_{j_0} \to \operatorname{rad}(Q_{j'})$ satisfies $\kappa_{j'}s'_{j'} \neq 0$ for the canonical epimorphism $\kappa_{j'}: \operatorname{rad}(Q_{j'}) \to \operatorname{top}(\operatorname{rad}(Q_{j'}))$, and $s''_{j'}: \operatorname{rad}(Q_{j'}) \to Q_{j'}$ is the identity monomorphism.

If Q, Q' are objects of $R_{2,1}$ then $\operatorname{Hom}_{R_{2,1}}(Q, Q')$ is the subspace of $\operatorname{Hom}_{R_2}(Q, Q')$ generated by the isomorphisms between Q and Q' and the morphisms of the form $w = w_1w_2$, where $w_1 = s_{j'}$ for some j' and w_2 is an automorphism of Q_{j_0} , or $w_2 = r_j$ for some j and w_1 is an automorphism of Q_{j_0} , or else $w_1 = s_{j'}$ for some j' and $w_2 = r_j$ for some j. Since R_2 is locally support-finite, $R_{2,1}$ is finite.

Observe that if $P_{i_1} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}(P_{i_1}, P_{i_0}) \neq 0$ then there is a unique $Q_{j_1} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{j_1}, Q_{j_0}) \neq 0$ and $LF_{\lambda,1}(P_{i_1}) \cong F_{\lambda,2}(Q_{j_1})$. Indeed, if there are $Q_{j_1}, Q_{j_2} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{j_1}, Q_{j_0}) \neq 0$ and $LF_{\lambda,1}(P_{i_1}) \cong F_{\lambda,2}(Q_{j_1}), l = 1, 2$, then there is $z \in \mathbb{Z}$ such that ${}^{\nu_{R_2}}(Q_{j_1}) = Q_{j_2}$. Furthermore, there are $0 \neq r_{j_1} : Q_{j_1} \to Q_{j_0}, l = 1, 2$, such that r_{j_1} factorize through $\operatorname{rad}(Q_{j_0})$ by the definition of $R_{2,1}$. Hence $\operatorname{top}(Q_{j_1})$ are direct summands in $\operatorname{top}(\operatorname{rad}(Q_{j_0}))$. Then for z > 0 we get a sequence Q'_1, \ldots, Q'_z of indecomposable projective R_2 -modules such that $\operatorname{soc}(Q'_m) \cong \operatorname{top}(Q'_{m-1}),$ $m = 2, \ldots, z, \operatorname{top}(Q_{j_1}) \cong \operatorname{soc}(Q'_1), \operatorname{top}(Q'_z) \cong \operatorname{soc}(Q_{j_2})$. But $\operatorname{top}(Q_{j_0}) \in$ $\operatorname{supp}(Q'_1), R_2$ is not triangular, which contradicts our assumption. Similarly we obtain a contradiction if z < 0. Thus z = 0 and $Q_{j_1} = Q_{j_2}$.

Dually one proves that if $P_{i'_1} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}(P_{i_0}, P_{i'_1}) \neq 0$ then there is a unique $Q_{j'_1} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{j_0}, Q_{j'_1}) \neq 0$ and $LF_{\lambda,1}(P_{i'_1}) \cong F_{\lambda,2}(Q_{j'_1})$.

Now we define a functor F_1 : $R_{1,1} \rightarrow R_{2,1}$ putting $F_1(P_{i_0}) = Q_{j_0}$, $F_1(P_{i_1}) = Q_{j_1}, F_1(P_{i'_1}) = Q_{j'_1}$ for the objects of $R_{1,1}$. If $P, P' \in R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}(P, P')$ either consists of isomorphisms (if P = P') or is generated by the above t. If P = P' then $\operatorname{Hom}_{R_{1,1}}(P, P) \cong K \cdot \operatorname{id}_P \cong K \cdot \operatorname{id}_{F_{\lambda,1}(P)}$ as Kspaces. Then $K \cdot \mathrm{id}_{F_{\lambda,1}(P)} \cong K \cdot \mathrm{id}_{LF_{\lambda,1}(P)} \cong K \cdot \mathrm{id}_{F_1(P)}$ as K-spaces. Hence for every $f \in \operatorname{Hom}_{R_{1,1}}(P, P)$ there is exactly one $r \in \operatorname{Hom}_{R_{2,1}}(F_1(P), F_1(P))$ such that $LF_{\lambda,1}(f) = F_{\lambda,2}(r)$. Thus we put $F_1(f) = r$. If $P \neq P'$ then we construct F_1 for the morphisms of the form t = t''t', where $t' : P \to \operatorname{rad}(P')$ satisfies $\pi t' \neq 0$ for the canonical epimorphism $\pi : \operatorname{rad}(P') \to \operatorname{top}(\operatorname{rad}(P'))$ and t'': rad $(P') \to P'$ is inclusion. For such a t, there is a unique r : $F_1(P) \to F_1(P')$ in $\operatorname{Hom}_{R_{2,1}}(F_1(P), F_1(P'))$ such that $LF_{\lambda,1}(t) = F_{\lambda,2}(r)$. Indeed, if r_1, r_2 satisfy $LF_{\lambda,1}(t) = F_{\lambda,2}(r_1) = F_{\lambda,2}(r_2)$ then there are $r'_1, r'_2 : F_1(P) \to \operatorname{rad}(F_1(P'))$ such that $\pi'r'_1, \pi'r'_2 \neq 0$ for the canonical projection π' : rad $(F_1(P')) \to \text{top}(\text{rad}(F_1(P')))$. Furthermore, for the inclusion $r'': \operatorname{rad}(F_1(P')) \to F_1(P')$ we have $r_1 = r''r'_1$ and $r_2 = r''r'_2$. But if $r'_1 \neq r'_2$ then $F_{\lambda,2}(r'_1) \neq F_{\lambda,2}(r'_2)$, because R_2 is triangular and $F_{\lambda,2}$ is induced by the action of (ν_{R_2}) . Thus $F_{\lambda,2}(r_1) \neq F_{\lambda,2}(r_2)$ for $r_1 \neq r_2$. Consequently, $r_1 = r_2$ if $F_{\lambda,2}(r_1) = F_{\lambda,2}(r_2)$. Then we put $F_1(t) = r$. If $t = t_1 t_2$ is a composition of either an isomorphism and a morphism of the above form or two morphisms of the above form then we put $F_1(t) = F_1(t_1)F_1(t_2)$. Finally, we extend F_1 linearly to a K-functor. It is clear by the above considerations that we have obtained a functor $F_1: R_{1,1} \to R_{2,1}$ which is dense and fully faithful. Thus F_1 yields an equivalence of categories.

Assume now that we defined a subcategory $R_{1,n}$ in R_1 such that for every pair P, P' of objects from $R_{1,n}$ either P = P' and $\operatorname{Hom}_{R_{1,n}}(P, P')$ consists only of automorphisms, or $P \neq P'$ and $\operatorname{Hom}_{R_{1,n}}(P, P')$ is generated by the morphisms of the form $t = t_s \dots t_2 t_1$ such that:

(i) $t_l : P_l \to P_{l+1}$ for some objects P_1, \ldots, P_{s+1} of $R_{1,n}$, where $P_1 = P$, $P_{s+1} = P'$;

(ii) $t_l = t_l'' t_l', l = 1, ..., s$, and $t_l' : P_l \to \operatorname{rad}(P_{l+1})$ satisfies $\pi_{l+1} t_l' \neq 0$ for the canonical epimorphism $\pi_{l+1} : \operatorname{rad}(P_{l+1}) \to \operatorname{top}(\operatorname{rad}(P_{l+1}));$

(iii) $t_l'' : \operatorname{rad}(P_{l+1}) \to P_{l+1}$ is inclusion for $l = 1, \ldots, s$.

Moreover, assume that we have defined a subcategory $R_{2,n}$ of R_2 satisfying the above conditions for morphisms, and a functor $F_n : R_{1,n} \to R_{2,n}$ which is a K-linear equivalence and maps the generators of $\operatorname{Hom}_{R_{1,n}}(P, P')$ to the generators of $\operatorname{Hom}_{R_{2,n}}(F_n(P), F_n(P'))$.

Define a subcategory $R_{1,n+1}$ of R_1 in the following way. The objects of $R_{1,n+1}$ are those of $R_{1,n}$ and additionally the objects P of R_1 such that either there is a nonzero morphism $t: P \to P'$ with P' in $R_{1,n}$ and t =t''t', where $t': P \to \operatorname{rad}(P')$ satisfies $\pi't' \neq 0$ for the canonical projection $\pi': \operatorname{rad}(P') \to \operatorname{top}(\operatorname{rad}(P'))$ and $t'': \operatorname{rad}(P') \to P'$ is inclusion, or there is a nonzero morphism $h: P' \to P$ with $P' \in R_{1,n}$ and h = h''h', where $h': P' \to \operatorname{rad}(P)$ satisfies $\pi h' \neq 0$ for the canonical epimorphism $\pi: \operatorname{rad}(P) \to \operatorname{top}(\operatorname{rad}(P))$ and $h'': \operatorname{rad}(P) \to P$ is inclusion. For every P, P'' from $R_{1,n+1}$, $\operatorname{Hom}_{R_{1,n+1}}(P, P'')$ is generated by the isomorphisms between P and P'' and the compositions $h = h_s \dots h_1$ which satisfy conditions (i)–(iii) above.

In the same way we define a subcategory $R_{2,n+1}$ of R_2 . Then repeating the arguments used for $R_{1,1}$ and $R_{2,1}$ we find that for every $P \in R_{1,n+1}$ such that there is a nonzero morphism $t: P \to P'$ with $P' \in R_{1,n}$ there is a unique $Q \in R_{2,n+1}$ such that there is a nonzero morphism $r: Q \to F_n(P')$ in $R_{2,n+1}$ and $LF_{\lambda,1}(P) \cong F_{\lambda,2}(Q)$. Furthermore, for every $P \in R_{1,n+1}$ such that there is a nonzero morphism $h: P' \to P$ in $R_{1,n+1}$ with $P' \in R_{1,n}$ there is a unique $Q \in R_{2,n+1}$ such that there is a nonzero morphism $r: F_n(P') \to Q$ in $R_{2,n+1}$ and $LF_{\lambda,1}(P) \cong F_{\lambda,2}(Q)$. Moreover, we also have the same uniqueness for generating morphisms $t: P \to P'$ and $h: P' \to P$ with $P' \in R_{1,n}$ and $P \in R_{1,n+1} \setminus R_{1,n}$.

Thus we define $F_{n+1}: R_{1,n+1} \to R_{2,n+1}$ in the following way. For every $P \in R_{1,n+1} \setminus R_{1,n}$ we put $F_{n+1}(P) = Q$, where Q is as above. For every $P' \in R_{1,n}$ we put $F_{n+1}(P') = F_n(P')$. For $P, P' \in R_{1,n+1}$ with $P \in R_{1,n+1} \setminus R_{1,n}$ and $P' \in R_{1,n}$, if $t: P \to P'$ is a generator of $\operatorname{Hom}_{R_{1,n+1}}(P,P')$ then we put $F_{n+1}(t) = r$, where r is the uniquely determined generator of $\operatorname{Hom}_{R_{2,n+1}}(F_{n+1}(P), F_{n+1}(P'))$. If $h: P' \to P$ is a generator of $\operatorname{Hom}_{R_{1,n+1}}(P',P)$ then we put $F_{n+1}(h) = r$, where r is the uniquely determined generator of $\operatorname{Hom}_{R_{2,n+1}}(F_{n+1}(P'), F_{n+1}(P))$. If $t: P \to P'$ is a generator of $\operatorname{Hom}_{R_{1,n+1}}(P,P')$ with $P, P' \in R_{1,n}$ then we put $F_{n+1}(t) = F_n(t)$. If $t: P \to P''$ is an isomorphism with $P, P'' \in R_{1,n+1} \setminus R_{1,n}$ then we put $F_{n+1}(t) = r$, where $LF_{\lambda,1}(t) = F_{\lambda,2}(r)$. Finally, we extend F_{n+1} to a K-linear functor $F_{n+1}: R_{1,n+1} \to R_{2,n+1}$ which is dense and fully faithful. Thus F_{n+1} yields an equivalence of categories.

Consequently, we construct inductively a functor $F : R_1 \to R_2$ which is dense and fully faithful since R_1 and R_2 are connected and locally supportfinite. The proposition follows.

4. The repetitive algebras of canonical tubular algebras

4.1. For a locally bounded K-category R, we shall not distinguish between an indecomposable R-module, its isomorphism class and the vertex of Γ_R corresponding to it. Moreover, we denote by Γ_R^s the stable quiver of Γ_R obtained from Γ_R by removing the τ_R -orbits of all projective modules, all injective modules and the arrows attached to them. Following [7], a component \mathbf{T} of Γ_R (respectively, of Γ_R^s) is said to be a *tube* if \mathbf{T} contains a cyclic path and its geometrical realization $|\mathbf{T}|$ is homeomorphic to $S^1 \times \mathbb{R}_0^+$, where S^1 is the unit circle and \mathbb{R}^+_0 is the set of nonnegative real numbers. A stable tube of rank $n \geq 1$ is a translation quiver of the form $\mathbb{Z}\mathbf{A}_{\infty}/(\tau^n)$. The stable tubes of rank one are said to be homogeneous. A family $\mathcal{T} = (T_i)_{i \in I}$ of tubes in Γ_R (respectively, in Γ_R^s) is said to be standard if the full subcategory of $\operatorname{mod}(R)$ (respectively, of $\operatorname{mod}(R)$) is equivalent to the mesh-category $K(\mathcal{T})$ of \mathcal{T} . Finally, we say that a family of tubes $\mathcal{T} = (T_i)_{i \in I}$ in Γ_R (respectively, in $\Gamma_B^{\rm s}$) separates a family of components \mathcal{X} from a family of components \mathcal{Y} if for any $X \in \mathcal{X}, Y \in \mathcal{Y}$ and $i \in I$, every morphism from X to Y in $\operatorname{mod}(R)$ (respectively, in $\operatorname{mod}(R)$) can be factorized through a module Z in the additive category $add(T_i)$ and there is no nonzero morphism from Y to X in mod(R) (respectively, in mod(R)).

4.2. Let A be a canonical tubular algebra of type $\mathbb{T} = (n_1, \ldots, n_t) =$ (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). To describe the structure of $\underline{mod}(A)$ we need the following types of tubular families. A family $\mathcal{T} = (T_{\mu})_{\mu \in \mathbb{P}_1(K)}$, $\mathbb{P}_1(K) = K \cup \{\infty\}$, of tubes in $\Gamma_{\hat{A}}$ is said to be a tubular $\mathbb{P}_1(K)$ -family of $type~\mathbb{T}$ if the following conditions are satisfied:

(1) The stable part \mathcal{T}^{s} of \mathcal{T} is a disjoint union of stable tubes $\mathcal{T}^{s}_{\mu}, \mu \in$ $\mathbb{P}_1(K)$, such that t of these tubes have ranks n_1, \ldots, n_t , and the remaining ones are homogeneous.

(2) One of the following conditions holds:

- (a) All tubes $T_{\mu}, \mu \in \mathbb{P}_1(K)$, are stable.
- (b) The tubes $T_{\mu}, \ \mu \in K$, are stable and T_{∞} admits a projectiveinjective vertex.
- (c) There are $\mu_1, \ldots, \mu_t \in \mathbb{P}_1(K)$ such that the tubes T_{μ} with $\mu \neq \infty$ μ_1, \ldots, μ_t are stable and for each $1 \leq i \leq t$, the tube T_{μ_i} admits $n_i - 1$ projective-injective vertices.

4.3. PROPOSITION. Let A be a canonical tubular algebra of type \mathbb{T} . Then

(a) $\Gamma_{\hat{A}} = \bigsqcup_{q \in \mathbb{Q}} \mathcal{T}_q$ where, for each $q \in \mathbb{Q}$, \mathcal{T}_q is a tubular $\mathbb{P}_1(K)$ -family $\mathcal{T}_q(\mu), \ \mu \in \mathbb{P}_1(K).$

(b) For every $q \in \mathbb{Q}$, \mathcal{T}_q separates $\bigsqcup_{q \leq i} \mathcal{T}_q$ from $\bigsqcup_{i < q} \mathcal{T}_q$. (c) For each $q \in \mathbb{Q} \setminus \mathbb{Z}$, \mathcal{T}_q is a standard family of stable tubes.

(d) For each $q \in \mathbb{Z}$, \mathcal{T}_q contains finitely many projective A-modules.

Proof. This result was obtained in [10].

4.4. In [10] the following increasing map $\sigma : \mathbb{Q} \to \mathbb{Q}$ was defined:

$$\sigma\left(m + \frac{r}{s}\right) = \begin{cases} m + 1 + \frac{s - r}{2s - 3r} & \text{if } 0 \le 2r \le s, \\ m + 2 + \frac{2r - s}{3r - s} & \text{if } 1 \le r < s \le 2r. \end{cases}$$

We have the following lemma.

LEMMA. Let A be a canonical tubular algebra of type \mathbb{T} . Then

(a) For every indecomposable nonprojective \widehat{A} -module M in \mathcal{T}_q the module $\Omega_{\widehat{A}}(M)$ belongs to $\mathcal{T}_{\sigma(q)}$.

(b) For every $q \in \mathbb{Z}$, $\mathcal{T}_{q+1/2}$ contains simple \widehat{A} -modules.

(c) If $0 \neq \underline{f} : X \to Y$ for two indecomposable nonprojective A-modules X, Y with $X \in \mathcal{T}_{q_1}, Y \in \mathcal{T}_{q_2}$ then $q_2 - q_1 \leq 1\frac{1}{2}$.

Proof. (a) is a consequence of [10; 4.9]. (b) is a consequence of Proposition 4.3 and (a). In order to check (c) observe that if $0 \neq \underline{f} : X \to Y$ then there is a nonzero morphism $\underline{h} : \tau_{\hat{A}}^{-1}\Omega_{\hat{A}}(Y) \to X$ with $\underline{f}\underline{h} = 0$ by [4; Proposition 4.1]. Thus (c) follows from (a).

4.5. If R is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} of a canonical tubular algebra A then the stable Auslander–Reiten quiver Γ_R^s of R is isomorphic to $\Gamma_{\widehat{A}}^s$. Thus $\Gamma_R^s = \bigsqcup_{q \in \mathbb{Q}} \mathcal{T}'_q$, and we have the following.

LEMMA. For every $r \in \mathbb{Q}$ there are only finitely many isomorphism classes of simple R-modules in $\bigsqcup_{q \in [r, r+3] \cap \mathbb{Q}} \mathcal{T}'_q$.

Proof. Suppose to the contrary that there are infinitely many nonisomorphic simple R-modules in $\bigsqcup_{q \in [r_0, r_0+3] \cap \mathbb{Q}} \mathcal{T}'_q$ for some $r_0 \in \mathbb{Q}$. Fix an equivalence $\Phi : \underline{\mathrm{mod}}(\widehat{A}) \to \underline{\mathrm{mod}}(R)$. It is easily seen that there is some $s_0 \in \mathbb{Q}$ such that for every indecomposable nonprojective $X \in \bigsqcup_{q \in [s_0, s_0+3] \cap \mathbb{Q}} \mathcal{T}_q$ we have $\Phi(X) \in \bigsqcup_{q \in [r_0, r_0+3] \cap \mathbb{Q}} \mathcal{T}'_q$. Moreover, if S_1, \ldots, S_n are all pairwise nonisomorphic simple \widehat{A} -modules such that the top of every $X \in \bigsqcup_{q \in [s_0, s_0+3] \cap \mathbb{Q}} \mathcal{T}_q$ belongs to $\mathrm{add}(S_1, \ldots, S_n)$ then there is an epimorphism $f : X \to S$ with $S \cong S_i$, for some $i = 1, \ldots, n$. Clearly $\underline{f} \neq 0$ by [17; Lecture 3], and so $0 \neq \Phi(f) : \Phi(X) \to \Phi(S)$. Therefore for every simple R-module T contained in $\bigsqcup_{q \in [r_0, r_0+3] \cap \mathbb{Q}} \mathcal{T}'_q$ there is an injection of T into some of the $\Phi(S_1), \ldots, \Phi(S_n)$. Moreover, for every such T there is an injection into $\Phi(S_1) \oplus \ldots \oplus \Phi(S_n)$, which contradicts the finite-dimensionality of $\Phi(S_1) \oplus \ldots \oplus \Phi(S_n)$. Consequently, the lemma follows.

4.6. COROLLARY. For every $r \in \mathbb{Q}$ there are only finitely many isomorphism classes of *R*-modules of the form $P/\operatorname{soc}(P)$ in $\bigsqcup_{q \in [r,r+3] \cap \mathbb{Q}} \mathcal{T}'_q$, where *P* ranges over pairwise nonisomorphic indecomposable projective *R*-modules.

Proof. Obvious by Lemma 4.5, because $P/\operatorname{soc}(P) \cong \tau_R^{-1}\Omega_R(\operatorname{top}(P))$.

4.7. PROPOSITION. Let A be a canonical tubular algebra. If R is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} of A, then R is locally support-finite and selfinjective. Moreover, (ν_R) acts freely on R.

Proof. A more general version of this proposition is proved in [19; Proposition 1]. But under our special assumptions we can give a simple proof which we present for the convenience of the reader.

We shall show that there is a natural number d such that for any indecomposable R-module M there are at most d pairwise nonisomorphic indecomposable projective R-modules P_1, \ldots, P_d with $\operatorname{Hom}_R(P_i, M) \neq 0$, $i = 1, \ldots, d$. Let d denote the number of nonisomorphic indecomposable projective R-modules P such that $P/\operatorname{soc}(P) \in \bigsqcup_{q \in [r, r+3] \cap \mathbb{Q}} \mathcal{T}'_q$. If M is an indecomposable nonprojective R-module then $M \in \mathcal{T}'_{q_0}$. For every indecomposable projective P with $\operatorname{Hom}_R(P, M) \neq 0$ we have $\operatorname{Hom}_R(P/\operatorname{soc}(P), M) \neq 0$. If we consider $0 \neq f : P/\operatorname{soc}(P) \to M$ then $f = f_2 f_1$ with $f_1 : P/\operatorname{soc}(P) \to$ $\operatorname{im}(f)$ an epimorphism and $f_2 : \operatorname{im}(f) \to M$ a monomorphism. Thus $\underline{f_1} \neq$ $0 \neq \underline{f_2}$ and we infer by Lemma 4.4(c) that $P/\operatorname{soc}(P) \in \bigsqcup_{q \in [q_0-3,q_0] \cap \mathbb{Q}} \mathcal{T}'_q$. Since d is finite by Corollary 4.6, it satisfies the above condition. The group (ν_R) acts freely on R by Lemma 3.2 since $\tau_{\hat{A}}^{-1}(M) \not\cong \Omega_{\hat{A}}^{-2}(M)$ for every indecomposable nonprojective \hat{A} -module M by Lemma 4.4. Consequently, the proposition follows, because the selfinjectivity of R is clear.

5. Proof of the theorem

5.1. We start this section with the following simple fact.

LEMMA. Let A be a canonical tubular algebra. If Λ is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} then Λ is triangular.

Proof. It is sufficient to show that there is no oriented cycle of nonisomorphisms in Γ_A between projective vertices. Suppose to the contrary that there is a cycle of nonzero nonisomorphisms $P_1 \stackrel{f_1}{\to} P_2 \stackrel{f_2}{\to} \dots \stackrel{f_{t-1}}{\to} P_t \stackrel{f_t}{\to} P_1$ between indecomposable projective Λ -modules. Then by 4.5, Corollary 4.6 and Proposition 4.3, all P_1, \dots, P_t are contained in the same component \mathcal{C} of Γ_A and f_i , $i = 1, \dots, t$, do not factorize through a module from $\operatorname{add}(\Gamma_A \setminus \mathcal{C})$. But we deduce from Propositions 4.7 and 3.7 that $\widehat{A}/(\nu_{\widehat{A}})$ is stably equivalent to $A/(\nu_A)$. Thus there is a cycle of nonzero nonisomorphisms $Q_1 \stackrel{r_1}{\to} Q_2 \stackrel{r_2}{\to} \dots \stackrel{r_t}{\to} Q_1$ in a component \mathcal{C}_1 of $\Gamma_{A/(\nu_A)}$ between projective $A/(\nu_A)$ -modules such that r_i , $i = 1, \dots, t$, do not factorize through a module from $\operatorname{add}(\Gamma_{A/(\nu_A)} \setminus \mathcal{C}_1)$. Furthermore, we know from [15; Theorem] that $A/(\nu_A) \cong T(B)$ for a tubular algebra B. But in $\Gamma_{T(B)}$ there is no such cycle, hence Λ is triangular.

5.2. Proof of Theorem. The "only if" part is due to Wakamatsu [21]. Since a tubular algebra is tilting-cotilting equivalent to a canonical tubular algebra, we may assume that A is canonical. Assume that A is a locally bounded K-category which is stably equivalent to the repetitive

algebra \widehat{A} . Then Λ is selfinjective locally support-finite by Proposition 4.7. Moreover, Λ is triangular by Lemma 5.1. Thus we infer by Proposition 3.7 that $\widehat{A}/(\nu_A) \cong T(A)$ is stably equivalent to $\Lambda/(\nu_A)$. Then we deduce from [15; Theorem] that there is a tubular algebra B which is tilting-cotilting equivalent to A such that $\Lambda/(\nu_A) \cong T(B) \cong \widehat{B}/(\nu_B)$. Since \widehat{B} is triangular, we conclude by Proposition 3.8 that $\Lambda \cong \widehat{B}$ and the theorem follows.

REFERENCES

- I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84.
- [2] —, —, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441–463.
- [3] M. Auslander and I. Reiten, *Representation theory of artin algebras III*, Comm. Algebra 3 (1975), 239–294.
- [4] —, —, Representation theory of artin algebras VI, ibid. 6 (1978), 257–300.
- [5] K. Bongartz, *Tilted algebras*, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 26–38.
- P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311–337.
- [7] G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201.
- [8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1–71.
- [9] —, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 68–105.
- [10] D. Happel and C. M. Ringel, *The derived category of a tubular algebra*, in: Lecture Notes in Math. 1177, Springer, Berlin, 1986, 156–180.
- [11] —, —, *Tilted algebras*, Trans. Amer. Math. Soc. 274 (1982), 399–443.
- [12] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347–364.
- [13] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117–134.
- [14] L. Peng and J. Xiao, Invariability of repetitive algebras of tilted algebras under stable equivalence, J. Algebra 170 (1994), 54–68.
- [15] Z. Pogorzały, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint, Toruń, 1994.
- [16] Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra 181 (1996), 95–111.
- [17] C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham Symposium 1985, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1986, 7–79.
- [18] —, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- [19] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68–76.
- [20] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138–165.

[21] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299–316.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: zypo@mat.uni.torun.pl

> Received 10 August 1995; revised 13 May 1996

146