ON LOCALLY BOUNDED CATEGORIES STABLY
 EQUIVALENT TO THE REPETITIVE ALGEBRAS OF TUBULAR ALGEBRAS

BY

ZYGMUNT POGORZAEY (TORUŃ)

1. Introduction. Throughout the paper K is a fixed algebraically closed field. By an algebra we mean a finite-dimensional K-algebra, which we shall assume, without loss of generality, to be basic and connected. For an algebra A, we shall denote by $\bmod (A)$ the category of finitely generated right A-modules, and by $\bmod (A)$ the stable category of $\bmod (A)$. Recall that the objects of $\underline{\bmod }(A)$ are the objects of $\bmod (A)$ without projective direct summands, and for any two objects X, Y in $\bmod (A)$ the space of morphisms from X to Y in $\underline{\bmod }(A)$ is $\underline{\operatorname{Hom}}_{A}(X, Y)=\operatorname{Hom}_{A}(X, Y) / \mathcal{P}(X, Y)$, where $\mathcal{P}(X, Y)$ is the subspace of $\operatorname{Hom}_{A}(X, Y)$ consisting of the A-homomorphisms which factorize through projective A-modules. For every $f \in \operatorname{Hom}_{A}(X, Y)$ we shall denote by f its coset modulo $\mathcal{P}(X, Y)$. Two algebras A and B are said to be stably equivalent if their stable module categories $\underline{\bmod }(A)$ and $\underline{\bmod (B)}$ are equivalent.

Following [5, 11] we shall say that a $\operatorname{module} T$ in $\bmod (A)$ is a tilting (respectively, cotilting) module if it satisfies the following conditions:
(1) $\operatorname{Ext}_{A}^{2}(T,-)=0$ (respectively, $\operatorname{Ext}_{A}^{2}(-, T)=0$);
(2) $\operatorname{Ext}_{A}^{1}(T, T)=0$;
(3) the number of nonisomorphic indecomposable summands of T equals the rank of the Grothendieck group $K_{0}(A)$.

Two algebras A and B are said to be tilting-cotilting equivalent if there exist a sequence of algebras $A=A_{0}, A_{1}, \ldots, A_{m}, A_{m+1}=B$ and a sequence of modules $T_{A_{i}}^{i}, 0 \leq i \leq m$, such that $A_{i+1}=\operatorname{End}_{A_{i}}\left(T^{i}\right)$ and T^{i} is either a tilting or a cotilting module.

Following Gabriel [9], a K-category R is called locally bounded if the following conditions are satisfied:

[^0](a) different objects are not isomorphic;
(b) the algebra $R(x, x)$ of endomorphisms of x is local for every object x in R;
(c) $\sum_{y \in R} \operatorname{dim}_{K} R(x, y)<\infty$ and $\sum_{y \in R} \operatorname{dim}_{K} R(y, x)<\infty$ for every object x in R.

Interesting examples of locally bounded K-categories are the repetitive algebras introduced by Hughes and Waschbüsch in [12]. For an algebra A denote by $D=\operatorname{Hom}_{K}(-, K)$ the standard duality on $\bmod (A)$. Recall that the repetitive algebra \widehat{A} of A is the selfinjective, locally finite-dimensional matrix algebra without identity defined by

$$
\widehat{A}=\left[\begin{array}{cccccccc}
\cdot & & & & & & & \\
\cdot & \cdot & & & & & & \\
& \cdot & \cdot & & & & & \\
& & \cdot & A_{i-1} & & & & \\
& & E_{i-1} & A_{i} & & & & \\
& & & & E_{i} & A_{i+1} & & \\
& & & & & \cdot & \cdot & \\
0 & & & & & \cdot & \cdot & \\
0 & & & & & & \cdot & .
\end{array}\right]
$$

where matrices have only finitely many nonzero entries, $A_{i}=A, E_{i}=$ ${ }_{A} D A_{A}$ for all integers i, all the remaining coefficients are zero, and the multiplication is induced from the canonical bimodule structure of $D A$ and the zero morphism $D A \otimes_{A} D A \rightarrow 0$.

One of the interesting problems concerning repetitive algebras is a classification of locally bounded K-categories which are stably equivalent to a given repetitive algebra. The problem was studied by several authors (see $[1,2,14,20,21])$. Wakamatsu proved in [21] that if A is tilting-cotilting equivalent to B then \widehat{A} is stably equivalent to \widehat{B}. Peng and Xiao proved in [14] that if H is a hereditary algebra and Λ is a locally bounded K-category which is stably equivalent to \widehat{H}, then there is an algebra B tilting-cotilting equivalent to H such that $\widehat{B} \cong \Lambda$. We shall prove the following theorem on locally bounded K-categories stably equivalent to the repetitive algebras of tubular algebras in the sense of Ringel [18].

Theorem. Let A be a tubular algebra. A locally bounded K-category Λ is stably equivalent to \widehat{A} if and only if Λ is isomorphic to the repetitive algebra \widehat{B} of a tubular algebra B which is tilting-cotilting equivalent to A.

Our proof of the above result rests heavily on the main results obtained in $[15,16]$ for trivial extension algebras. In the case when Λ is a repetitive algebra the above theorem has been proved in [2].

We shall use freely results about Auslander-Reiten sequences which can be found in [3].

2. Preliminaries

2.1. Following Ringel [18], the canonical tubular algebras of type $(2,2,2,2)$ are defined by the quiver

with the relations $\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}+\gamma_{1} \gamma_{2}=0$ and $\alpha_{1} \alpha_{2}+k \beta_{1} \beta_{2}+\delta_{1} \delta_{2}=0$, where k is some fixed element from $K \backslash\{0,1\}$. The canonical tubular algebras of type $(\mathbf{p}, \mathbf{q}, \mathbf{r})=(\mathbf{3}, \mathbf{3}, \mathbf{3}),(\mathbf{2}, \mathbf{4}, \mathbf{4})$ or $(\mathbf{2}, \mathbf{3}, \mathbf{6})$ are given by the quiver

with $\alpha_{1} \alpha_{2} \ldots \alpha_{p}+\beta_{1} \beta_{2} \ldots \beta_{q}+\gamma_{1} \gamma_{2} \ldots \gamma_{r}=0$.
2.2. For the repetitive algebra \widehat{A} the identity morphisms $A_{i} \rightarrow A_{i-1}$, $E_{i} \rightarrow E_{i-1}$ induce an automorphism ν_{A} of \widehat{A} which is called the Nakayama automorphism. Moreover, the orbit space $\widehat{A} /\left(\nu_{A}\right)$ has the structure of a finite-dimensional K-algebra which is isomorphic to the trivial extension $T(A)$ of A by its minimal injective cogenerator bimodule ${ }_{A} D A_{A}$. This is the algebra whose additive structure coincides with that of the group $A \oplus D A$, and whose multiplication is defined by the formula $(a, f)(b, g)=(a b, a g+f b)$ for $a, b \in A, f, g \in{ }_{A} D A_{A}$. Thus \widehat{A} is a Galois cover in the sense of [9] of the selfinjective algebra $T(A)$ with the infinite cyclic group $\left(\nu_{A}\right)$ generated by ν_{A}.
2.3. A locally bounded K-category R is said to be locally support-finite [6] if for every indecomposable projective R-module P, the set of isomorphism classes of indecomposable projective R-modules P^{\prime} such that there exists an indecomposable finite-dimensional R-module M with $\operatorname{Hom}_{R}(P, M) \neq$
$0 \neq \operatorname{Hom}_{R}\left(P^{\prime}, M\right)$ is finite. Of particular interest is the fact that the repetitive algebra \widehat{A} of a tubular algebra A is locally support-finite (see [13]). A locally bounded K-category is said to be triangular if its ordinary quiver has no oriented cycles.
2.4. Following Gabriel (see [9]), for a locally bounded K-category R and a torsion-free group G of K-automorphisms of R acting freely on the objects of $R, R / G$ is the quotient category whose objects are the G-orbits of the objects of R. Moreover, there is a covering functor $F: R \rightarrow R / G$ which maps any object x of R to its G-orbit $G \cdot x . F$ induces the pushdown functor $F_{\lambda}: \bmod (R) \rightarrow \bmod (R / G)$, which preserves indecomposables and Auslander-Reiten sequences, maps projective R-modules to projective R / G-modules and preserves projective resolutions. Furthermore, if R is locally support-finite then F_{λ} is dense and induces a bijection between the set $(\operatorname{ind}(R) / \cong) / G$ of the G-orbits of the isomorphism classes of finitedimensional indecomposable R-modules and the set $\operatorname{ind}(R / G) / \cong$ of the isomorphism classes of finite-dimensional indecomposable R / G-modules [6].
2.5. Let $\Omega_{R}: \underline{\bmod }(R) \rightarrow \underline{\bmod }(R)$ be Heller's loop-space functor for a selfinjective locally bounded K-category R. Then $\Omega_{R} \tau_{R}^{-1} \Omega_{R}(S)$ is simple for every simple R-module S, where τ_{R}^{-1} stands for the Auslander-Reiten translate $\operatorname{Tr} D$ on $\bmod (R)$. Thus we obtain a permutation of the isomorphism classes of the simple R-modules. This permutation induces a K automorphism ν_{R} of R in an obvious way. We denote by $\left(\nu_{R}\right)$ the infinite cyclic group of K-automorphisms of R generated by ν_{R}.

3. Preparatory results

3.1. Throughout this section we shall assume that R_{1} and R_{2} are selfinjective locally bounded K-categories which are locally support-finite and have no indecomposable projective modules of length 2 . Moreover, there is a fixed equivalence functor $\Phi: \underline{\bmod }\left(R_{1}\right) \rightarrow \underline{\bmod }\left(R_{2}\right)$.
3.2. Proposition. If M is an indecomposable nonprojective finite-dimensional R_{1}-module then $\Phi\left(\tau_{R_{1}}(M)\right) \cong \tau_{R_{2}}(\Phi(M))$ and $\Phi\left(\Omega_{R_{1}}(M)\right) \cong$ $\Omega_{R_{2}}(\Phi(M))$.

Proof. A direct adaptation of the arguments from the proofs of Proposition 2.4 and Theorem 4.4 of [4].
3.3. Lemma. If $\tau_{R_{1}}^{-1}(M) \not \not \Omega_{R_{1}}^{-2}(M)$ for every indecomposable nonprojective finite-dimensional R_{1}-module M then ($\nu_{R_{2}}$) acts freely on the objects of R_{2}.

Proof. We have to show that $\Omega_{R_{2}} \tau_{R_{2}}^{-1} \Omega_{R_{2}}(S) \not \not \equiv S$ for every simple $R_{2^{-}}$ module S. Suppose to the contrary that there exists a simple R_{2}-module S
with $\Omega_{R_{2}} \tau_{R_{2}}^{-1} \Omega_{R_{2}}(S) \cong S$. Then there exists a nonprojective indecomposable finite-dimensional R_{1}-module M such that $\Phi(M) \cong S$, and we infer by Proposition 3.2 that $\Omega_{R_{1}} \tau_{R_{1}}^{-1} \Omega_{R_{1}}(M) \cong M$, which contradicts our assumption, because this isomorphism implies $\tau_{R_{1}}^{-1}(M) \cong \Omega_{R_{1}}^{-2}(M)$.
3.4. Lemma. Let $F_{1}: \bmod \left(R_{1}\right) \rightarrow \bmod \left(R_{1}\right)$ and $F_{2}: \bmod \left(R_{2}\right) \rightarrow$ $\bmod \left(R_{2}\right)$ be exact equivalences satisfying the following conditions:
(a) If $F_{i}^{s}: \underline{\bmod }\left(R_{i}\right) \rightarrow \underline{\bmod }\left(R_{i}\right), i=1,2$, are defined by $F_{i}^{s}(X)=F_{i}(X)$ for $X \in \underline{\bmod }\left(R_{i}\right), F_{i}^{s}(\underline{f})=F_{i}(f)$ for $\underline{f}: X \rightarrow Y$ in $\bmod \left(R_{i}\right)$, then F_{i}^{s} are well-defined functors which are equivalences.
(b) For every object $X \in \underline{\bmod }\left(R_{1}\right), F_{1}^{s}(X) \cong \Phi^{-1} F_{2}^{s} \Phi(X)$, where Φ^{-1} is a fixed quasi-inverse of Φ.

Then F_{1}^{s} and $\Phi^{-1} F_{2}^{s} \Phi$ are isomorphic functors.
Proof. In the first step of the proof we show that for every short exact sequence

$$
0 \rightarrow U \xrightarrow{w} X \xrightarrow{p} V \rightarrow 0
$$

in $\bmod \left(R_{1}\right)$ with all terms without projective direct summands there are $w^{\prime}: \Phi^{-1} F_{2}^{s} \Phi(U) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(X)$ and $p^{\prime}: \Phi^{-1} F_{2}^{s} \Phi(X) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(V)$ such that the following sequences are exact in $\bmod \left(R_{1}\right)$:

$$
\begin{gathered}
0 \rightarrow F_{1}^{s}(U) \xrightarrow{F_{1}(w)} F_{1}^{s}(X) \xrightarrow{F_{1}(p)} F_{1}^{s}(V) \rightarrow 0, \\
0 \rightarrow \Phi^{-1} F_{2}^{s} \Phi(U) \xrightarrow{w} \Phi^{-1} F_{2}^{s} \Phi(X) \xrightarrow{p^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(V) \rightarrow 0,
\end{gathered}
$$

where $\underline{w}^{\prime}=\Phi^{-1} F_{2}^{s} \Phi(\underline{w})$ and $p^{\prime}=\Phi^{-1} F_{2}^{s} \Phi(p)$. The exactness of the first sequence is obvious by the definition of F_{1}^{s}, because F_{1} is exact.

In order to show the exactness of the second, we first show that w^{\prime} is a monomorphism, where w^{\prime} is any representative of the $\operatorname{coset} \Phi^{-1} F_{2}^{s} \Phi(\underline{w})$. Suppose to the contrary that w^{\prime} is not a monomorphism. Then $w^{\prime}=w_{2}^{\prime} w_{1}^{\prime}$ with $w_{1}^{\prime}: \Phi^{-1} F_{2}^{s} \Phi(U) \rightarrow \operatorname{im}\left(w^{\prime}\right)$ an epimorphism and $w_{2}^{\prime}: \operatorname{im}\left(w^{\prime}\right) \rightarrow$ $\Phi^{-1} F_{2}^{s} \Phi(X)$ a monomorphism. Since w is a monomorphism, we infer by [17; Lecture 3] that $\underline{w} \neq 0$. Thus $\underline{w}^{\prime}=\underline{w}_{2}^{\prime} \underline{w}_{1}^{\prime} \neq 0$ and there are $W \in \underline{\bmod }\left(R_{1}\right)$ and $w_{1}: U \rightarrow W, w_{2}: W \rightarrow X$ such that $\Phi^{-1} F_{2}^{s} \Phi\left(\underline{w_{i}}\right)=\underline{w}_{i}^{\prime}, i=1,2$, because $\Phi^{-1} F_{2}^{s} \Phi$ is an equivalence. Since w_{1}^{\prime} is a proper epimorphism, we have the following inequality for lengths: $l\left(\operatorname{im}\left(w^{\prime}\right)\right)<l\left(\Phi^{-1} F_{2}^{s} \Phi(U)\right)$. But F_{1} is an additive exact equivalence, hence F_{1} preserves the lengths of $R_{1}-$ modules. Therefore F_{1}^{s} preserves the lengths of R_{1}-modules without projective direct summands and so does $\Phi^{-1} F_{2}^{s} \Phi$, because $F_{1}^{s}(M) \cong \Phi^{-1} F_{2}^{s} \Phi(M)$ for any $M \in \underline{\bmod }\left(R_{1}\right)$ by the assumption of our lemma. Consequently, $l(W)=l\left(\operatorname{im}\left(w^{\prime}\right)\right)<l(U)$. But $w-w_{2} w_{1}$ factorizes through a projective R_{1}-module, say P. Thus there are $q_{1}: U \rightarrow P$ and $q_{2}: P \rightarrow X$ such that $w-w_{2} w_{1}=q_{2} q_{1}$. Since w is a monomorphism, there is $q_{1}^{\prime}: X \rightarrow P$ such
that $q_{1}=q_{1}^{\prime} w$. Then $w-w_{2} w_{1}=q_{2} q_{1}=q_{2} q_{1}^{\prime} w$ and $w-q_{2} q_{1}^{\prime} w=w_{2} w_{1}$. Hence $\left(\operatorname{id}_{X}-q_{2} q_{1}^{\prime}\right) w=w_{2} w_{1}$. But $\left(\operatorname{id}_{X}-q_{2} q_{1}^{\prime}\right) w$ is a monomorphism, because $\mathrm{id}_{X}-q_{2} q_{1}^{\prime}$ is an isomorphism. Therefore we obtain a contradiction, because the monomorphism $\left(\mathrm{id}_{X}-q_{2} q_{1}^{\prime}\right) w$ factorizes through the module W of length smaller than U. Consequently, w^{\prime} is a monomorphism.

Dually one proves that p^{\prime} is an epimorphism, where p^{\prime} is any representative of the coset $\Phi^{-1} F_{2}^{s} \Phi(\underline{p})$.

Since $\Phi^{-1} F_{2}^{s} \Phi$ preserves the lengths of R_{1}-modules without projective direct summands, showing that $p^{\prime} w^{\prime}=0$ is sufficient to show that the considered sequence is exact. Since $p w=0$, we have $\underline{p} \underline{w}=0$. Thus $\underline{p}^{\prime} \underline{w}^{\prime}=0$. Hence there are a projective R_{1}-module P and morphisms $q_{1}: \Phi^{-1} F^{s} \Phi(U) \rightarrow P$ and $q_{2}: P \rightarrow \Phi^{-1} F_{2}^{s} \Phi(V)$ such that $p^{\prime} w^{\prime}=q_{2} q_{1}$. Since w^{\prime} is a monomorphism and p^{\prime} is an epimorphism, there are morphisms $q_{2}^{\prime}: P \rightarrow \Phi^{-1} F_{2}^{s} \Phi(X)$ and $q_{1}^{\prime}: \Phi^{-1} F_{2}^{s} \Phi(X) \rightarrow P$ such that $p^{\prime} w^{\prime}=q_{2} q_{1}=p^{\prime} q_{2}^{\prime} q_{1}^{\prime} w^{\prime}$. Then putting $w^{\prime \prime}=\left(\mathrm{id}_{X}-q_{2}^{\prime} q_{1}^{\prime}\right) w^{\prime}$ we obtain $p^{\prime} w^{\prime \prime}=0$ and $\underline{w}^{\prime \prime}=\underline{w}^{\prime}$.

In the second step of the proof we show that there is an isomorphism $f: F_{1}^{s} \rightarrow \Phi^{-1} F_{2}^{s} \Phi$ given by a family $(f(X))_{X \in \underline{\bmod }\left(R_{1}\right)}$ of isomorphisms in $\underline{\bmod }\left(R_{1}\right)$ such that for every morphism $\underline{u}: X \rightarrow \bar{Y}$ in $\underline{\bmod }\left(R_{1}\right)$ the diagram

$$
\begin{array}{rrr}
F_{1}^{s}(X) & \xrightarrow{f(X)} & \Phi^{-1} F_{2}^{s} \Phi(X) \\
F_{1}^{s}(\underline{u}) \downarrow & & \downarrow^{\Phi^{-1} F_{2}^{s} \Phi(\underline{u})} \\
F_{1}^{s}(Y) & \xrightarrow{f(Y)} & \Phi^{-1} F_{2}^{s} \Phi(Y)
\end{array}
$$

commutes. We construct a family $(f(X))_{X \in \bmod \left(R_{1}\right)}$ such that for every $X \in \underline{\bmod }\left(R_{1}\right)$ there is an isomorphism f_{X} in $\bmod \left(R_{1}\right)$ with $\underline{f_{X}}=f(X)$ and such that for every short exact sequence

$$
0 \rightarrow U \xrightarrow{w} X \xrightarrow{p} V \rightarrow 0
$$

in $\bmod \left(R_{1}\right)$ the diagram with exact rows

$$
\begin{array}{cccccccc}
0 & \rightarrow & F_{1}^{s}(U) & \xrightarrow{F_{1}(w)} & F_{1}^{s}(X) & \xrightarrow{F_{1}(p)} & F_{1}^{s}(V) & \rightarrow \\
& & \downarrow^{f_{U}} & & \downarrow^{f_{X}} & & \downarrow^{f_{V}} & \\
0 & \rightarrow & \Phi^{-1} F_{2}^{s} \Phi(U) & \xrightarrow{w^{\prime}} & \Phi^{-1} F_{2}^{s} \Phi(X) & \xrightarrow{p^{\prime}} & \Phi^{-1} F_{2}^{s} \Phi(V) & \rightarrow
\end{array}
$$

commutes, where w^{\prime}, p^{\prime} are as in the first step of the proof. This condition is called the commutativity condition for f_{X}.

Our construction will run inductively on the length of X in $\bmod \left(R_{1}\right)$. If $l(X)=1$ then X is a simple R_{1}-module. Fix an isomorphism $f_{X}=f(X)$: $F_{1}^{s}(X) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(X)$. Let $\underline{u}: X \rightarrow X$ be a nonzero morphism. Since X is simple, u is an automorphism. Thus $\Phi^{-1} F_{2}^{s} \Phi(\underline{u})=\underline{v}$, where v is an
automorphism. But u is multiplication by $k_{u} \in K^{*}=K \backslash\{0\}$. Since

$$
F_{1}^{s}\left(\underline{\operatorname{id}_{X}}\right)=\underline{\operatorname{id}_{F_{1}^{s}(X)}} \quad \text { and } \quad \Phi^{-1} F_{2}^{s} \Phi\left(\underline{\operatorname{id}_{X}}\right)=\underline{\operatorname{id}_{\Phi^{-1} F_{2}^{s} \Phi(X)}},
$$

it follows that for $\underline{u}=\underline{\mathrm{id}_{X}} \cdot k_{u}$ we have

$$
\left.F_{1}^{s}(\underline{u})=\underline{\operatorname{id}_{F_{1}^{s}(X)}} \cdot k_{u} \quad \text { and } \quad \Phi^{-1} F_{2}^{s} \Phi \underline{\left(\operatorname{id}_{X}\right.} \cdot k_{u}\right)=\underline{\operatorname{id}_{\Phi^{-1} F_{2}^{s} \Phi(X)}} \cdot k_{u} .
$$

Thus for any $f(X)$ we have $f(X) F_{1}^{s}(\underline{u})=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(X)$.
Now consider two isomorphic simple modules X, Y such that $X \neq Y$. For every isomorphism class [X] of a simple R_{1}-module X fix a representative, say X. For every Y isomorphic to X fix an isomorphism $u_{Y}: X \rightarrow Y$. Then fix an isomorphism $f_{X}: F_{1}^{s}(X) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(X)$, and for every $Y \in[X]$ define $f_{Y}: F_{1}^{s}(Y) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ by the formula

$$
\underline{f_{Y}}=f(Y)=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Y}}\right) f(X) F_{1}^{s}\left(\underline{u_{Y}^{-1}}\right),
$$

where f_{Y} is an arbitrary fixed representative of the coset $f(Y)$. If $\underline{u}: Z \rightarrow Y$ is an isomorphism with $Y, Z \in[X]$ then for $Z=X$ we have $u=u_{Y} \cdot k_{u}$ for some $k_{u} \in K^{*}$. Thus $F_{1}^{s}(\underline{u})=F_{1}^{s}\left(\underline{u_{Y}}\right) \cdot k_{u}$ and $\Phi^{-1} F_{2}^{s} \Phi(\underline{u})=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Y}}\right)$. k_{u}. Therefore $f(Y)=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Y}}\right) f(X) F_{1}^{s}\left(\underline{u_{Y}^{-1}}\right)$, which implies that $f(Y)=\left(\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Y}}\right) \cdot k_{u}\right) f(X)\left(F_{1}^{s}\left(\underline{u_{Y}^{-1}}\right) \cdot k_{u}^{-1}\right)=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(X) F_{1}^{s}\left(\underline{u_{Y}^{-1}}\right)$. Thus $f(Y) F_{1}^{s}(\underline{u})=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(X)$.

Now consider the case $Y=X$. Then $u=u_{Z}^{-1} \cdot k_{u}^{-1}$ for some $k_{u} \in K^{*}$. Thus $F_{1}^{s}(\underline{u})=F_{1}^{s}\left(\underline{u_{Z}^{-1}}\right) \cdot k_{u}^{-1}$ and $\Phi^{-1} F_{2}^{s} \Phi(\underline{u})=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}^{-1}}\right) \cdot k_{u}^{-1}$. Therefore $f(Z)=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}}\right) f(X) F_{1}^{s}\left(\underline{u_{Z}^{-1}}\right)$, which implies

$$
\begin{aligned}
f(Z)^{-1} & =F_{1}^{s}\left(\underline{u_{Z}}\right) f(X)^{-1} \Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}^{-1}}\right) \\
& =\left(F_{1}^{s}\left(\underline{u_{Z}}\right) \cdot k_{u}\right) f(X)^{-1}\left(\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}^{-1}}\right) \cdot k_{u}^{-1}\right) \\
& =F_{1}^{s}(\underline{u})^{-1} f(X)^{-1} \Phi^{-1} F_{2}^{s} \Phi(\underline{u}) .
\end{aligned}
$$

Then

$$
f(Z)=\left(\Phi^{-1} F_{2}^{s} \Phi(\underline{u})\right)^{-1} f(X) F_{1}^{s}(\underline{u})
$$

and

$$
\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(Z)=f(X) \Phi^{-1} F_{2}^{s} \Phi(\underline{u}) .
$$

Finally, consider the case $Z \neq X \neq Y$. Then $\underline{u_{Y}} \cdot k_{u}=\underline{u_{Z}}$ for some $k_{u} \in$ K^{*}. Moreover, we infer by the above considerations that $f(Z) F_{1}^{s}\left(u_{Z}\right)=$ $\Phi^{-1} F_{2}^{s} \Phi\left(u_{Z}\right) f(X)$ and $f(Y) F_{1}^{s}\left(\underline{u u_{Z}}\right)=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u u_{Z}}\right) f(X)$. But $F_{1}^{s}\left(\underline{u} u_{Z}\right)$ $=F_{1}^{s}(\underline{u}) \overline{F_{1}^{s}}\left(\underline{u_{Z}}\right)$ and $\Phi^{-1} F_{2}^{s} \Phi\left(\underline{u} \overline{u_{Z}}\right)=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) \Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}}\right)$. Then we get

$$
f(Y) F_{1}^{s}(\underline{u}) f(Z)^{-1} f(Z) F_{1}^{s}\left(\underline{u_{Z}}\right)=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) \Phi^{-1} F_{2}^{s} \Phi\left(\underline{u_{Z}}\right) f(X)
$$

and $f(Y) F_{1}^{s}(\underline{u}) f(Z)^{-1}=\Phi^{-1} F_{2}^{s} \Phi(\underline{u})$. Consequently,

$$
f(Y) F_{1}^{s}(\underline{u})=\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(Z)
$$

and for simple R_{1}-modules X the family $(f(X))$ is constructed.
Assume now that a family $(f(X))$ is constructed for every $X \in \underline{\bmod }\left(R_{1}\right)$ with $l(X) \leq n$. Consider $Y \in \underline{\bmod }\left(R_{1}\right)$ with $l(Y)=n+1$. Let S be a simple submodule of Y. For the nonsplittable short exact sequence

$$
0 \rightarrow S \xrightarrow{w} Y \xrightarrow{p} Y / S \rightarrow 0
$$

where w is the inclusion monomorphism and p is the canonical epimorphism, we have the short exact sequences

$$
\begin{gathered}
0 \rightarrow F_{1}^{s}(S) \xrightarrow{F_{1}(w)} F_{1}^{s}(Y) \xrightarrow{F_{1}(p)} F_{1}^{s}(Y / S) \rightarrow 0, \\
0 \rightarrow \Phi^{-1} F_{2}^{s} \Phi(S) \xrightarrow{w^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(Y) \xrightarrow{p^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(Y / S) \rightarrow 0
\end{gathered}
$$

as in the first step of our proof. Let f_{S} be an isomorphism such that $\underline{f_{S}}=f(S)$. Let $f_{Y / S}$ be an isomorphism such that $f_{Y / S}=f(Y / S)$. Let P be the projective cover of $F_{1}^{s}(Y / S)$. Then there is an epimorphism $\pi: P \rightarrow F_{1}^{s}(Y / S)$. Furthermore, $f_{Y / S} \pi: P \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y / S)$ is an epimorphism too, because $f_{Y / S}$ is an isomorphism. Thus there are morphisms $\pi_{1}: P \rightarrow F_{1}^{s}(Y)$ and $\pi_{2}: P \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ such that $F_{1}(p) \pi_{1}=$ π and $p^{\prime} \pi_{2}=f_{Y / S} \pi$. The morphisms π_{1}, π_{2} are epimorphisms, because $\operatorname{top}\left(F_{1}^{s}(Y)\right) \cong \operatorname{top}\left(F_{1}^{s}(Y / S)\right)$ and $\operatorname{top}\left(\Phi^{-1} F_{2}^{s} \Phi(Y)\right) \cong \operatorname{top}\left(\Phi^{-1} F_{2}^{s} \Phi(Y / S)\right)$. Moreover, there is a submodule L of P such that there is an epimorphism $\kappa: L \rightarrow F_{1}^{s}(S)$ and $F_{1}(w) \kappa=\left.\pi_{1}\right|_{L}$. Observe that $p^{\prime} \pi_{2}(t)=0$ for every $t \in L$, because $p^{\prime} \pi_{2}(t)=f_{Y / S} \pi(t)=f_{Y / S} F_{1}(p) \pi_{1}(t)=f_{Y / S} F_{1}(p) F_{1}(w) \kappa(t)=0$. Thus $\operatorname{im}\left(\left.\pi_{2}\right|_{L}\right) \subset \operatorname{im}\left(w^{\prime}\right)$. Then $\left.\pi_{2}\right|_{L}=w^{\prime} f_{S} \kappa \cdot k$ for some $k \in K^{*}$. Changing w^{\prime} if necessary, we may assume that $\left.\pi_{2}\right|_{L}=w^{\prime} f_{S} \kappa$, because if $p^{\prime} w^{\prime}=0$ then $p^{\prime} w^{\prime} \cdot k^{-1}=0$.

We define an isomorphism $f_{Y}: F_{1}^{s}(Y) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ in the following way. For $y \in F_{1}^{s}(Y)$ we can find $t \in P$ such that $\pi_{1}(t)=y$. Then we put $f_{Y}(y)=\pi_{2}(t)$. Since $\operatorname{ker}\left(\pi_{1}\right) \subset L$ and $\operatorname{ker}\left(\pi_{2}\right) \subset L$, we have $\operatorname{ker}\left(\pi_{1}\right)=$ $\operatorname{ker}\left(\pi_{2}\right)=\operatorname{ker}(\kappa)$ because $\left.\pi_{2}\right|_{L}=w^{\prime} f_{S} \kappa$ and $\left.\pi_{1}\right|_{L}=F_{1}(w) \kappa$. Therefore f_{Y} is a well-defined R_{1}-homomorphism. Since $\operatorname{ker}\left(\pi_{1}\right)=\operatorname{ker}\left(\pi_{2}\right), f_{Y}$ is an isomorphism. It is easy to see that the diagram

commutes.
Suppose now that we have a short exact sequence $0 \rightarrow U \xrightarrow{a} Y \xrightarrow{b} V \rightarrow 0$. If $\operatorname{im}(w)$ is contained in $\operatorname{im}(a)$ then there are R_{1}-morphisms $i: S \rightarrow U$ and $r: Y / S \rightarrow V$ such that the diagram

$$
\begin{array}{lllllcll}
0 & \rightarrow & S & \rightarrow & { }^{p} & Y / S & \rightarrow & 0 \\
& \downarrow^{i} & & \| & & \downarrow^{r} & & \\
0 & \rightarrow U & \rightarrow & H & \rightarrow & V & \rightarrow & 0
\end{array}
$$

commutes. Moreover, we deduce from the first step of the proof that there are short exact sequences

$$
\begin{gathered}
0 \rightarrow F_{1}^{s}(U) \xrightarrow{F_{1}(a)} F_{1}^{s}(Y) \xrightarrow{F_{1}(b)} F_{1}^{s}(V) \rightarrow 0, \\
0 \rightarrow \Phi^{-1} F_{2}^{s} \Phi(U) \xrightarrow{a^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(Y) \xrightarrow{b^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(V) \rightarrow 0 .
\end{gathered}
$$

By the inductive assumption for some $r^{\prime}: \Phi^{-1} F_{2}^{s} \Phi(Y / S) \rightarrow \Phi^{-1} F_{2}^{s} \Phi(V)$ such that $\underline{r}^{\prime}=\Phi^{-1} F_{2}^{s} \Phi(\underline{r})$ we have $r^{\prime} f_{Y / S}=f_{V} F_{1}(r)$. Then $r^{\prime} f_{Y / S} F_{1}(p)=$ $f_{V} F_{1}(r) F_{1}(p)$. Since $F_{1}(r) F_{1}(p)=F_{1}(b)$, we have $f_{V} F_{1}(b)=r^{\prime} f_{Y / S} F_{1}(p)=$ $r^{\prime} p^{\prime} f_{Y}$, because it was shown above that $f_{Y / S} F_{1}(p)=p^{\prime} f_{Y}$. Observe that b^{\prime} can be chosen in such a way that $r^{\prime} p^{\prime}=b^{\prime}$. Indeed, since $b=r p$, we have $\underline{b}^{\prime}=\Phi^{-1} F_{2}^{s} \Phi(\underline{b})=\Phi^{-1} F_{2}^{s} \Phi(r p)=\underline{r}^{\prime} p^{\prime}$. Suppose that $b^{\prime}-r^{\prime} p^{\prime} \neq 0$. Then $b^{\prime}-r^{\prime} p^{\prime}$ factorizes through a projective R_{1}-module Q. Since b^{\prime} is an epimorphism by the first step of our proof and $b^{\prime}-r^{\prime} p^{\prime}=q_{2} q_{1}$ with $q_{1}: \Phi^{-1} F_{2}^{s} \Phi(Y) \rightarrow Q, q_{2}: Q \rightarrow \Phi^{-1} F_{2}^{s} \Phi(V)$, there is $q_{2}^{\prime}: Q \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ such that $q_{2} q_{1}=b^{\prime} q_{2}^{\prime} q_{1}$. Therefore $r^{\prime} p^{\prime}=b^{\prime}-b^{\prime} q_{2}^{\prime} q_{1}$. Thus put $b^{\prime \prime}=$ $b^{\prime}\left(\operatorname{id}_{\Phi^{-1} F_{2}^{s} \Phi(Y)}-q_{2}^{\prime} q_{1}\right)$. Then $\underline{b}^{\prime \prime}=\underline{b^{\prime}}$ and $b^{\prime \prime}$ is an epimorphism. Moreover, if we put $a^{\prime \prime}=\left(\operatorname{id}_{\Phi^{-1} F_{2}^{s} \Phi(Y)}-q_{2}^{\prime} q_{1}\right)^{-1}$ then $\underline{a}^{\prime \prime}=\underline{a}^{\prime}$ and $a^{\prime \prime}$ is a monomorphism with $b^{\prime \prime} a^{\prime \prime}=0$. Since $b^{\prime \prime}=r^{\prime} p^{\prime}$, we get $f_{V} F_{1}(b)=b^{\prime \prime} f_{Y}$.

We deduce from the last commutative diagram by the snake lemma that there is a commutative diagram with exact rows

$$
\begin{array}{lllllll}
0 & \rightarrow S & \rightarrow & U & \rightarrow & U / S & \rightarrow
\end{array} 00 .{ }^{i}
$$

By the inductive assumption $v^{\prime} f_{U / S}=f_{Y / S} F_{1}(v)$ for some v^{\prime}. Thus

$$
v^{\prime} f_{U / S} F_{1}(c)=f_{Y / S} F_{1}(v) F_{1}(c) .
$$

Therefore $v^{\prime} f_{U / S} F_{1}(c)=f_{Y / S} F_{1}(p) F_{1}(a)$ and $f_{Y / S} F_{1}(p) F_{1}(a)=p^{\prime} f_{Y} F_{1}(a)$, since we proved that $f_{Y / S} F_{1}(p)=p^{\prime} f_{Y}$. Now observe that for a suitable c^{\prime} we have $f_{U / S} F_{1}(c)=c^{\prime} f_{U}$ by the inductive assumption. But we may assume that $v^{\prime} c^{\prime}=p^{\prime} a^{\prime \prime}$. Indeed, suppose to the contrary that $p^{\prime} a^{\prime \prime}-v^{\prime} c^{\prime} \neq 0$ but $\underline{p}^{\prime} a^{\prime \prime}-v^{\prime} c^{\prime}=0$. Thus this difference factorizes through a projective R_{1} module, say Q_{1}. Then there are $z_{1}: \Phi^{-1} F_{2}^{s} \Phi(U) \rightarrow Q_{1}$ and $z_{2}: Q_{1} \rightarrow$ $\Phi^{-1} F_{2}^{s} \Phi(Y / S)$ such that $p^{\prime} a^{\prime \prime}-v^{\prime} c^{\prime}=z_{2} z_{1}$. Since p^{\prime} is an epimorphism by the first step of our proof, there is $z_{2}^{\prime}: Q_{1} \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ such that $p^{\prime} z_{2}^{\prime}=z_{2}$. Then replacing $a^{\prime \prime}$ by $a_{1}^{\prime}=a^{\prime \prime}-z_{2}^{\prime} z_{1}$ we obtain $p^{\prime} a_{1}^{\prime}=v^{\prime} c^{\prime}$.

Moreover, observe that a_{1}^{\prime} is well-defined, because it is a monomorphism by the first step of the proof and $b^{\prime \prime} a_{1}^{\prime}=r^{\prime} p^{\prime} a_{1}^{\prime}=r^{\prime} v^{\prime} c^{\prime}=0$ since $r^{\prime} v^{\prime}=0$.

Hence we may assume that $p^{\prime} a^{\prime \prime}-v^{\prime} c^{\prime}=0$. Therefore we obtain $v^{\prime} c^{\prime} f_{U}=$ $p^{\prime} a^{\prime \prime} f_{U}$. Furthermore,

$$
\begin{aligned}
p^{\prime} a^{\prime \prime} f_{U} & =v^{\prime} c^{\prime} f_{U}=v^{\prime} f_{U / S} F_{1}(c)=f_{Y / S} F_{1}(v) F_{1}(c) \\
& =f_{Y / S} F_{1}(p) F_{1}(a)=p^{\prime} f_{Y} F_{1}(a)
\end{aligned}
$$

Thus $p^{\prime}\left(a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)\right)=0$. Then $d=\left(a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)\right): U \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ and $\operatorname{im}(d) \subset \operatorname{ker}\left(p^{\prime}\right)=\operatorname{im}\left(w^{\prime}\right)$. Thus $d F_{1}(i)=0$, because $d F_{1}(i)=a^{\prime \prime} f_{U} F_{1}(i)$ $-f_{Y} F_{1}(a) F_{1}(i)=a^{\prime \prime} i^{\prime} f_{S}-f_{Y} F_{1}(w)$. But $a^{\prime \prime} i^{\prime}=w^{\prime}$. Indeed, if $a^{\prime \prime} i^{\prime}-w^{\prime}$ $\neq 0$ then it is a monomorphism by simplicity of $\Phi^{-1} F_{2}^{s} \Phi(S)$. On the other hand, we know that $a^{\prime \prime} i^{\prime}-w^{\prime}=0$. Therefore we find that a monomorphism factorizes through a projective module, which is impossible by [17; Lecture 3]. Then $a^{\prime \prime} i^{\prime} f_{S}-f_{Y} F_{1}(w)=w^{\prime} f_{S}-f_{Y} F_{1}(w)=0$.

Now we can consider the decompositions of K-spaces $F_{1}^{s}(Y)=\operatorname{im}\left(F_{1}(w)\right)$ $\oplus Y^{\prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(Y)=\operatorname{im}\left(w^{\prime}\right) \oplus Y^{\prime \prime}$. Since f_{Y} is an R_{1}-isomorphism, f_{Y} is a K-linear isomorphism. Since $w^{\prime} f_{S}=f_{Y} F_{1}(w)$ and $p^{\prime} f_{Y}=f_{Y / S} F_{1}(p), f_{Y}$ restricted to Y^{\prime} is a K-linear isomorphism of Y^{\prime} to $Y^{\prime \prime}$. But if $z \in \operatorname{im}\left(F_{1}(a)\right)$ $\cap Y^{\prime}$ then $f_{Y}(z) \in Y^{\prime \prime}$. Furthermore, we can consider the decomposition of the K-space $F_{1}^{s}(U)=\operatorname{im}\left(F_{1}(w)\right) \oplus U^{\prime}$. Then by the inductive assumption for the decomposition $\Phi^{-1} F_{2}^{s} \Phi(U)=\operatorname{im}\left(i^{\prime}\right) \oplus U^{\prime \prime}$ the restriction of f_{U} to U^{\prime} is a K-linear isomorphism between U^{\prime} and $U^{\prime \prime}$. Since $a^{\prime \prime} i^{\prime}=w^{\prime}$, we get $a^{\prime \prime} f_{U}(z) \in Y^{\prime \prime}$, where $z \in \operatorname{im}\left(F_{1}(w)\right) \cap Y^{\prime} . \operatorname{Thus} \operatorname{im}\left(a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)\right) \subset Y^{\prime \prime}$, and so $a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)=0$.

Now consider the case when $\operatorname{im}(a)$ does not contain $\operatorname{im}(w)$. First assume that U is simple. Then we have the following commutative diagram with exact rows and columns:

By the inductive assumption,

$$
a_{1}^{\prime} f_{U}=f_{Y / S} F_{1}\left(a_{1}\right)=f_{Y / S} F_{1}(p) F_{1}(a)=p^{\prime} f_{Y} F_{1}(a)
$$

where $\underline{a_{1}^{\prime}}=\Phi^{-1} F_{2}^{s} \Phi\left(\underline{a_{1}}\right)$ satisfies the required condition by the inductive assumption. We may assume that $p_{1}^{\prime} b^{\prime}=b_{1}^{\prime} p^{\prime}$, where a^{\prime}, b^{\prime} are so chosen
that the considered column of our diagram is exact after $\Phi^{-1} F_{2}^{s} \Phi$ has been applied. Indeed, we know that $\underline{p_{1}^{\prime} b^{\prime}-b_{1}^{\prime} p^{\prime}}=0$. Then if $p_{1}^{\prime} b^{\prime}-b_{1}^{\prime} p^{\prime} \neq 0$ then there are a projective R_{1}-module Q and morphisms $q_{1}: \Phi^{-1} F_{2}^{s} \Phi(Y) \rightarrow Q$ and $q_{2}: Q \rightarrow \Phi^{-1} F_{2}^{s} \Phi(Y)$ such that $p_{1}^{\prime} b^{\prime}-b_{1}^{\prime} p^{\prime}=p_{1}^{\prime} b^{\prime} q_{2} q_{1}$, because $p_{1}^{\prime}, b^{\prime}$ are epimorphisms by the first step of the proof. Denote by t the automorphism $\operatorname{id}_{\Phi^{-1} F_{2}^{s} \Phi(Y)}-q_{2} q_{1}$. Then putting $b^{\prime \prime}=b^{\prime} t$ we get $p_{1}^{\prime} b^{\prime \prime}=b_{1}^{\prime} p^{\prime}$. If we put $a^{\prime \prime}=t^{-1} a^{\prime}$ then $b^{\prime \prime} a^{\prime \prime}=0$ and the sequence

$$
0 \rightarrow \Phi^{-1} F_{2}^{s} \Phi(U) \xrightarrow{a^{\prime \prime}} \Phi^{-1} F_{2}^{s} \Phi(Y) \xrightarrow{b^{\prime \prime}} \Phi^{-1} F_{2}^{s} \Phi(V) \rightarrow 0
$$

is exact again. Moreover, $p^{\prime} a^{\prime \prime}=a_{1}^{\prime}$. Indeed, if $p^{\prime} a^{\prime \prime}-a_{1}^{\prime} \neq 0$ then it factorizes through a projective R_{1}-module, since $\underline{p^{\prime} a^{\prime \prime}-a_{1}^{\prime}}=0$. But U is simple and hence the considered difference is a monomorphism which cannot factorize through a projective module by [17; Lecture 3]. Thus $p^{\prime} a^{\prime \prime}=a_{1}^{\prime}$. Therefore $p^{\prime} a^{\prime \prime} f_{U}=p^{\prime} f_{Y} F_{1}(a)$. Then $p^{\prime}\left(a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)\right)=0$ and for $d=a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)$ we have $\operatorname{im}(d) \subset \operatorname{ker}\left(p^{\prime}\right)=\operatorname{im}\left(w^{\prime}\right)$. If we consider the decompositions of the K-spaces $F_{1}^{s}(Y)=\operatorname{im}\left(F_{1}(w)\right) \oplus Y^{\prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(Y)=$ $\operatorname{im}\left(w^{\prime}\right) \oplus Y^{\prime \prime}$ then f_{Y}, being a K-linear isomorphism, when restricted to Y^{\prime} is a K-linear isomorphism between Y^{\prime} and $Y^{\prime \prime}$. Moreover, $F_{1}(p)$, being a K-linear morphism, when restricted to Y^{\prime} is a K-linear isomorphism between Y^{\prime} and $F_{1}^{s}(Y / S)$. Furthermore, p^{\prime}, being a K-linear morphism, when restricted to $Y^{\prime \prime}$ is a K-linear isomorphism between $Y^{\prime \prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(Y / S)$. Then $\operatorname{im}\left(a^{\prime \prime}\right) \subset Y^{\prime \prime}$ by the equality $p^{\prime} a^{\prime \prime}=a_{1}^{\prime}$. Thus $\operatorname{im}\left(a^{\prime \prime} f_{U}\right) \subset Y^{\prime \prime}$. Since $\operatorname{im}\left(F_{1}(a)\right) \subset Y^{\prime}$, we have $\operatorname{im}\left(f_{Y} F_{1}(a)\right) \subset Y^{\prime \prime}$, because we already proved that $p^{\prime} f_{Y}=f_{Y / S} F_{1}(p)$. Therefore $\operatorname{im}\left(a^{\prime \prime} f_{U}-f_{Y} F_{1}(a)\right) \subset Y^{\prime \prime}$, and so it is zero. Consequently, $a^{\prime \prime} f_{U}=f_{Y} F_{1}(a)$.

Now we infer by the inductive assumption that $p_{1}^{\prime} f_{V}=f_{V / S} F_{1}\left(p_{1}\right)$. Then $p_{1}^{\prime} f_{V} F_{1}(b)=f_{V / S} F_{1}\left(p_{1}\right) F_{1}(b)=f_{V / S} F_{1}\left(b_{1}\right) F_{1}(p)=b_{1}^{\prime} f_{Y / S} F_{1}(p)$, where p_{1}^{\prime} and b_{1}^{\prime} are well-defined morphisms in the inductive step. Furthermore, $b_{1}^{\prime} f_{Y / S} F_{1}(p)=b_{1}^{\prime} p^{\prime} f_{Y}$. Since $b_{1}^{\prime} p^{\prime}=p_{1}^{\prime} b^{\prime \prime}$, we have $p_{1}^{\prime} f_{V} F_{1}(b)=p_{1}^{\prime} b^{\prime \prime} f_{Y}$. Then $p_{1}^{\prime}\left(f_{V} F_{1}(b)-b^{\prime \prime} f_{Y}\right)=0$. Then $\operatorname{im}\left(f_{V} F_{1}(b)-b^{\prime \prime} f_{Y}\right) \subset \operatorname{ker}\left(p_{1}^{\prime}\right)=\operatorname{im}\left(w_{1}^{\prime}\right)$.

Consider the decompositions of K-linear spaces $F_{1}^{s}(Y)=\operatorname{im}\left(F_{1}(w)\right) \oplus Y^{\prime}$, $\Phi^{-1} F_{2}^{s} \Phi(Y)=\operatorname{im}\left(w^{\prime}\right) \oplus Y^{\prime \prime}$. Since $a^{\prime \prime} f_{U}=f_{Y} F_{1}(a)$, we have $p^{\prime} a^{\prime \prime} f_{U}=$ $p^{\prime} f_{Y} F_{1}(a)=f_{Y / S} F_{1}(p) F_{1}(a)=f_{Y / S} F_{1}\left(a_{1}\right)$. Therefore $p^{\prime} a^{\prime \prime} f_{U}$ is a monomorphism, and so $\operatorname{im}\left(a^{\prime \prime} f_{U}\right) \subset Y^{\prime \prime}$. Then we consider the decompositions of K-linear spaces $Y^{\prime}=\operatorname{im}\left(F_{1}(a)\right) \oplus Y_{1}^{\prime}$ and $Y^{\prime \prime}=\operatorname{im}\left(a^{\prime \prime} f_{U}\right) \oplus Y_{1}^{\prime \prime}$. Clearly $F_{1}^{s}(V) \cong \operatorname{im}\left(F_{1}(w)\right) \oplus Y_{1}^{\prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(V) \cong \operatorname{im}\left(w^{\prime}\right) \oplus Y_{1}^{\prime \prime}$ as K-spaces, because $p_{1}^{\prime} b^{\prime \prime} a^{\prime \prime} f_{U}=b_{1}^{\prime} p^{\prime} a^{\prime \prime} f_{U}=b_{1}^{\prime} a_{1}^{\prime} f_{U}=0$. Since $w^{\prime} f_{S}=f_{Y} F_{1}(w)$ and $a^{\prime \prime} f_{U}=f_{Y} F_{1}(a)$, the K-linear morphism f_{Y} restricted to $\operatorname{im}\left(F_{1}(w)\right)$ yields an isomorphism between $\operatorname{im}\left(F_{1}(w)\right)$ and $\operatorname{im}\left(w^{\prime}\right)$. Moreover, the K-linear morphism f_{Y} restricted to Y_{1}^{\prime} yields an isomorphism between Y_{1}^{\prime} and $Y_{1}^{\prime \prime}$. Moreover, $F_{1}(b)$ and $b^{\prime \prime}$ are K-linear isomorphisms between $\operatorname{im}\left(F_{1}(w)\right) \oplus Y_{1}^{\prime}$
and $F_{1}^{s}(V), \operatorname{im}\left(w^{\prime}\right) \oplus Y_{1}^{\prime \prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(V)$, respectively. They have the property that $\left.F_{1}(b)\right|_{Y_{1}^{\prime}}: Y_{1}^{\prime} \rightarrow V^{\prime},\left.b^{\prime \prime}\right|_{Y_{1}^{\prime \prime}}: Y_{1}^{\prime \prime} \rightarrow V^{\prime \prime}$ are isomorphisms, where $F_{1}^{s}(V)=\operatorname{im}\left(F_{1}\left(w_{1}\right)\right) \oplus V^{\prime}$ and $\Phi^{-1} F_{2}^{s} \Phi(V)=\operatorname{im}\left(w_{1}^{\prime}\right) \oplus V^{\prime \prime}$ are decompositions of K-spaces. Therefore $f_{V} F_{1}(b)(z) \in V^{\prime \prime}$ for every $z \in Y_{1}^{\prime}$, because $p_{1}^{\prime} f_{V}=f_{V / S} F_{1}\left(p_{1}\right)$ by the inductive assumption and $F_{1}\left(p_{1}\right)$ is a K-linear isomorphism between V^{\prime} and $F_{1}^{s}(V / S)$. Furthermore, $b^{\prime \prime} f_{Y}(z) \in V^{\prime \prime}$ for every $z \in Y_{1}^{\prime}$. Then $\operatorname{im}\left(\left.\left(f_{V} F_{1}(b)-b^{\prime \prime} f_{Y}\right)\right|_{Y_{1}^{\prime}}\right)=0$, because we have already proved that $\operatorname{im}\left(f_{V} F_{1}(b)-b^{\prime \prime} f_{Y}\right) \subset \operatorname{im}\left(w_{1}^{\prime}\right)$. But if $z \in \operatorname{im}\left(F_{1}(w)\right)$ then $b^{\prime \prime} f_{Y}(z)=b^{\prime \prime} f_{Y} F_{1}(w)\left(z_{1}\right), z_{1} \in F_{1}^{s}(S)$, and

$$
\begin{aligned}
b^{\prime \prime} f_{Y} F_{1}(w)\left(z_{1}\right) & =b^{\prime \prime} w^{\prime} f_{S}\left(z_{1}\right)=w_{1}^{\prime} f_{S}\left(z_{1}\right)=f_{V} F_{1}\left(w_{1}\right)\left(z_{1}\right) \\
& =f_{V} F_{1}(b) F_{1}(w)\left(z_{1}\right)=f_{V} F_{1}(b)(z) .
\end{aligned}
$$

Consequently, $f_{V} F_{1}(b)=b^{\prime \prime} f_{Y}$. If U is not simple then take a simple submodule T of U. Since we proved the required condition for simple T, we may repeat the arguments from the case $\operatorname{im}(a) \supset \operatorname{im}(w)$ for U, with T instead of S. Thus we have finished the proof of the commutativity condition for f_{Y}.

Now we show that the required squares are commutative. First consider the case when $F_{1}^{s}(\underline{u}): F_{1}^{s}(Y) \rightarrow F_{1}^{s}(Z)$ is an isomorphism. Then clearly so is $u: Y \rightarrow Z$. Let S be a simple direct summand in the socle of Y. We have the short exact sequence

$$
0 \rightarrow S \xrightarrow{w} Y \xrightarrow{p} Y / S \rightarrow 0 .
$$

Denote by S_{1} the simple submodule $u w(S)$ of Z. Then the following diagram is commutative:

$$
\begin{array}{lllllllll}
0 & \rightarrow & S & \xrightarrow{w} & Y & \rightarrow & Y / S & \rightarrow & 0 \\
\downarrow^{u_{1}} & & \downarrow^{u} & & \downarrow^{u_{2}} & & \\
0 & \rightarrow & S_{1} & \rightarrow & Z & \rightarrow & Z / S_{1} & \rightarrow & 0,
\end{array}
$$

where $u_{1}=u w, v$ is inclusion, q is the canonical epimorphism and u_{2} is some isomorphism. By the inductive assumption, $u_{1}^{\prime} f_{S}=f_{S_{1}} F_{1}\left(u_{1}\right)$ and $u_{2}^{\prime} f_{Y / S}=f_{Z / S_{1}} F_{1}\left(u_{2}\right)$. We show that $u^{\prime} f_{Y}=f_{Z} F_{1}(u)$ for $\underline{u}^{\prime}=\Phi^{-1} F_{2}^{s} \Phi(\underline{u})$. As above, we can show that there are v^{\prime} and q^{\prime} such that the following diagrams are commutative:

$$
\begin{aligned}
& 0 \rightarrow F_{1}^{s}(T) \xrightarrow{F_{1}(v)} F_{1}^{s}(Z) \xrightarrow{F_{1}(q)} F_{1}^{s}(Z / T) \rightarrow 0 \\
& \begin{array}{ccccccc}
0 & \rightarrow \Phi^{-1} F_{2}^{s} \Phi(S) & \xrightarrow{w^{\prime}} & \Phi^{-1} F_{2}^{s} \Phi(Y) \\
u_{1}^{\prime} \\
\downarrow & & \xrightarrow{p^{\prime}} & \Phi^{-1} F_{2}^{s} \Phi(Y / S) & \rightarrow & 0 \\
u_{2}^{\prime} \\
& \downarrow & & \\
u_{2}^{\prime}
\end{array} \\
& 0 \rightarrow \Phi^{-1} F_{2}^{s} \Phi(T) \xrightarrow{v^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(Z) \xrightarrow{q^{\prime}} \Phi^{-1} F_{2}^{s} \Phi(Z / T) \quad \rightarrow \quad 0
\end{aligned}
$$

Now consider the decompositions of K-spaces $F_{1}^{s}(Y)=\operatorname{im}\left(F_{1}(w)\right) \oplus Y^{\prime}$, $F_{1}^{s}(Z)=\operatorname{im}\left(F_{1}(v)\right) \oplus Z^{\prime}, \Phi^{-1} F_{2}^{s} \Phi(Y)=\operatorname{im}\left(w^{\prime}\right) \oplus Y^{\prime \prime}, \Phi^{-1} F_{2}^{s} \Phi(Z)=\operatorname{im}\left(v^{\prime}\right)$ $\oplus Z^{\prime \prime}$. Take $y \in \operatorname{im}\left(F_{1}(w)\right)$. Then $u^{\prime} f_{Y}(y)=u^{\prime} f_{Y} F_{1}(w)\left(y_{1}\right), y_{1} \in F_{1}^{s}(S)$. Furthermore,

$$
\begin{aligned}
u^{\prime} f_{Y} F_{1}(w)\left(y_{1}\right) & =u^{\prime} w^{\prime} f_{S}\left(y_{1}\right)=v^{\prime} u_{1}^{\prime} f_{S}\left(y_{1}\right)=v^{\prime} f_{T} F_{1}\left(u_{1}\right)\left(y_{1}\right) \\
& =f_{Z} F_{1}(v) F_{1}\left(u_{1}\right)\left(y_{1}\right)=f_{Z} F_{1}(u) F_{1}(w)\left(y_{1}\right)=f_{Z} F_{1}(u)(y)
\end{aligned}
$$

If $y \in Y^{\prime}$ then $u^{\prime} f_{Y}(y)=u^{\prime} f_{Y} F_{1}(p)^{-1}\left(y_{1}\right)$, where $y_{1} \in F_{1}^{s}(Y / S)$ and $F_{1}(p)^{-1}$ is the linear inverse of $F_{1}(p)$ restricted to Y^{\prime}. Then $u^{\prime} f_{Y} F_{1}(p)^{-1}\left(y_{1}\right)=$ $u^{\prime}\left(p^{\prime}\right)^{-1} f_{Y / S}\left(y_{1}\right)$, where $\left(p^{\prime}\right)^{-1}$ is the linear inverse of p^{\prime} restricted to $Y^{\prime \prime}$. But $u^{\prime}\left(p^{\prime}\right)^{-1}=\left(q^{\prime}\right)^{-1} u_{2}^{\prime}$, where $\left(q^{\prime}\right)^{-1}$ is the linear inverse of q^{\prime} restricted to $Z^{\prime \prime}$. Thus

$$
\begin{aligned}
u^{\prime}\left(p^{\prime}\right)^{-1} f_{Y / S}\left(y_{1}\right) & =\left(q^{\prime}\right)^{-1} u_{2}^{\prime} f_{Y / S}\left(y_{1}\right)=\left(q^{\prime}\right)^{-1} f_{Z / T} F_{1}\left(u_{2}\right) F_{1}(p)(y) \\
& =\left(q^{\prime}\right)^{-1} f_{Z / T} F_{1}(q) F_{1}(u)(y)=\left(q^{\prime}\right)^{-1} q^{\prime} f_{Z} F_{1}(u)(y) \\
& =f_{Z} F_{1}(u)(y)
\end{aligned}
$$

Consequently, $u^{\prime} f_{Y}=f_{Z} F_{1}(u)$, and so $\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(Y)=f(Z) F_{1}^{s}(\underline{u})$.
Now suppose that there is $0 \neq u: Y \rightarrow Z$ which is not an isomorphism and $l(Z) \leq l(Y)$. Since we have a decomposition $u=a_{2} a_{1}$ with an epimorphism $a_{1}: Y \rightarrow \operatorname{im}(u)$ and a monomorphism $a_{2}: \operatorname{im}(u) \rightarrow Z$, it is enough to assume that u is either an epimorphism or a monomorphism. But if u is an epimorphism then there is a short exact sequence

$$
0 \rightarrow V \xrightarrow{v} Y \xrightarrow{u} Z \rightarrow 0
$$

with $V=\operatorname{ker}(u)$. Then by the commutativity condition for f_{Y} there is u^{\prime} such that $u^{\prime} f_{Y}=f_{Z} F_{1}(u)$. Thus $\Phi^{-1} F_{2}^{s} \Phi(\underline{u}) f(Y)=f(Z) F_{1}^{s}(\underline{u})$. The same arguments can be applied for a monomorphism u. Consequently, our lemma is proved by induction.
3.5. Lemma. Let $F_{1}: \bmod \left(R_{1}\right) \rightarrow \bmod \left(R_{1}\right)$ and $F_{2}: \bmod \left(R_{2}\right)$ $\rightarrow \bmod \left(R_{2}\right)$ be exact equivalences satisfying the conditions (a) and (b) of Lemma 3.4. Then there is a quasi-inverse Φ_{1}^{-1} of Φ such that $F_{1}^{s}(X)=$ $\Phi_{1}^{-1} F_{2}^{s} \Phi(X)$ for every object $X \in \underline{\bmod }\left(R_{1}\right)$.

Proof. First we construct a functor $\Delta: \underline{\bmod }\left(R_{1}\right) \rightarrow \underline{\bmod }\left(R_{1}\right)$ such that $F_{1}^{s}(X)=\Delta \Phi^{-1} F_{2}^{s}(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$. We know from Lemma 3.4 that $F_{1}^{s} \cong \Phi^{-1} F_{2}^{s} \Phi$. Fix an isomorphism $f: F_{1}^{s} \rightarrow \Phi^{-1} F_{2}^{s} \Phi$. For every $X \in$ $\underline{\bmod }\left(R_{1}\right)$ either there is $Y \in \underline{\bmod }\left(R_{1}\right)$ such that $X=\Phi^{-1} F_{2}^{s} \Phi(Y)$ or X does not lie in the image of $\Phi^{-1} F_{2}^{s} \Phi$. If $X=\Phi^{-1} F_{2}^{s} \Phi(Y)$ then we put $\Delta(X)=$ $F_{1}^{s}(Y)$. If X is not contained in the image of $\Phi^{-1} F_{2}^{s} \Phi$ then we put $\Delta(X)=$ X. If $\underline{h}: X_{1} \rightarrow X_{2}$ is a morphism in $\bmod \left(R_{1}\right)$ and $X_{i}=\Phi^{-1} F_{2}^{s} \Phi\left(Y_{i}\right)$, $i=1,2$, then we put $\Delta(\underline{h})=\underline{t}$, where $\underline{t}=f\left(X_{2}\right)^{-1} \Phi^{-1} F_{2}^{s} \Phi(\underline{h}) f\left(X_{1}\right)$. If $\underline{h}: X_{1} \rightarrow X_{2}$ is a morphism in $\underline{\bmod }\left(R_{1}\right)$ and X_{1} does not lie in the image
of $\Phi^{-1} F_{2}^{s} \Phi$ and $X_{2}=\Phi^{-1} F_{2}^{s} \Phi\left(Y_{2}\right)$ then $\Delta(\underline{h})=f\left(X_{2}\right)^{-1} \underline{h}$. If $\underline{h}: X_{1} \rightarrow X_{2}$, $X_{1}=\Phi^{-1} F_{2}^{s} \Phi\left(Y_{1}\right)$ and X_{2} is not contained in the image of $\Phi^{-1} F_{2}^{s} \Phi$ then $\Delta(\underline{h})=\underline{h} f\left(X_{1}\right)$. If $\underline{h}: X_{1} \rightarrow X_{2}$ is a morphism in $\underline{\bmod }\left(R_{1}\right)$ and X_{1}, X_{2} do not lie in the image of $\Phi^{-1} F_{2}^{s} \Phi$ then we put $\Delta(\underline{h})=\underline{h}$.

A simple verification shows that Δ is a well-defined functor. Moreover, Δ is dense since F_{1}^{s} is dense. Furthermore, Δ is fully faithful since F_{1}^{s} and $\Phi^{-1} F_{2}^{s} \Phi$ are. Thus Δ is an equivalence. Consequently, $\Delta \Phi^{-1}=\Phi_{1}^{-1}$ is a quasi-inverse of Φ. Indeed, $\Phi_{1}^{-1} \Phi(X) \cong \Phi^{-1} \Phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$ by the definition of Δ. Hence $\Phi_{1}^{-1} \Phi(X) \cong X$. If $\phi: 1_{\bmod \left(R_{1}\right)} \rightarrow \Phi^{-1} \Phi$ is an isomorphism of functors then fix an isomorphism $\alpha \overline{(X)}: \Phi^{-1} \Phi(X) \rightarrow$ $\Phi_{1}^{-1} \Phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$ and define $\phi_{1}: 1_{\underline{\bmod \left(R_{1}\right)}} \rightarrow \Phi_{1}^{-1} \Phi$ by $\phi_{1}(X)=\alpha(X) \phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$. Thus for every morphism $\underline{u}: X \rightarrow Z$ we have to check whether the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\phi_{1}(X)} & \Phi_{1}^{-1} \Phi(X) \\
\underline{u} \downarrow & & \downarrow \Phi_{1}^{\Phi_{1}^{-1} \Phi(\underline{u})} \\
Z & \xrightarrow{\phi_{1}(Z)} & \Phi_{1}^{-1} \Phi(Z)
\end{array}
$$

commutes. Clearly it is sufficient to prove that the diagram

$$
\begin{array}{lll}
\Phi^{-1} \Phi(X) & \xrightarrow{\alpha(X)} & \Phi_{1}^{-1} \Phi(X) \\
\Phi^{-1} \Phi(\underline{u}) \downarrow & & \downarrow^{\Phi_{1}^{-1} \Phi(\underline{u})} \\
\Phi^{-1} \Phi(Z) & \xrightarrow{\alpha(Z)} & \Phi_{1}^{-1} \Phi(Z)
\end{array}
$$

commutes. If $\Phi^{-1} \Phi(X)=\Phi^{-1} F_{2}^{s} \Phi(Y)$ and $\Phi^{-1} \Phi(Z)=\Phi^{-1} F_{2}^{s} \Phi(W)$ then for $\alpha(X)=f(X)^{-1}$ and $\alpha(Z)=f(Z)^{-1}$ the above diagram commutes. If $\Phi^{-1} \Phi(X)=\Phi^{-1} F_{2}^{s} \Phi(Y)$ and $\Phi^{-1} \Phi(Z)$ is not contained in the image of $\Phi^{-1} F_{2}^{s} \Phi$ then for $\alpha(X)=f(X)^{-1}$ and $\alpha(Z)=1_{\Phi^{-1} \Phi(Z)}$ the diagram commutes. If $\Phi^{-1} \Phi(X)$ is not contained in the image of $\Phi^{-1} F_{2}^{S} \Phi$ and $\Phi^{-1} \Phi(Z)=\Phi^{-1} F_{2}^{s} \Phi(W)$ then for $\alpha(X)=1_{\Phi^{-1} \Phi(X)}$ and $\alpha(Z)=f(Z)^{-1}$ the above diagram commutes. If neither $\Phi^{-1} \Phi(X)$ nor $\Phi^{-1} \Phi(Z)$ lies in the image of $\Phi^{-1} F_{2}^{s} \Phi$ then for $\alpha(X)=1_{\Phi^{-1} \Phi(X)}$ and $\alpha(Z)=1_{\Phi^{-1} \Phi(Z)}$ the required commutativity holds. Thus for the isomorphism $\alpha: \Phi^{-1} \Phi \rightarrow \Phi_{1}^{-1} \Phi$ chosen above ϕ_{1} is an isomorphism of functors. Similarly we show that there is an isomorphism $\psi_{1}: 1_{\underline{\bmod }\left(R_{2}\right)} \rightarrow \Phi \Phi_{1}^{-1}$. This finishes our proof.
3.6. Proposition. Let $F_{1}: \bmod \left(R_{1}\right) \rightarrow \bmod \left(R_{1}\right)$ and $F_{2}: \bmod \left(R_{2}\right) \rightarrow$ $\bmod \left(R_{2}\right)$ be exact equivalences satisfying the following conditions:
(a) If $F_{i}^{s}: \underline{\bmod }\left(R_{i}\right) \rightarrow \underline{\bmod }\left(R_{i}\right), i=1,2$, is defined by $F_{i}^{s}(X)=F_{i}(X)$, $X \in \underline{\bmod }\left(R_{i}\right), F_{i}^{s}(\underline{f})=F_{i}(f), \underline{f}: X \rightarrow Y$ a morphism in $\underline{\bmod }\left(R_{i}\right)$, then F_{i}^{s} is an equivalence.
(b) For every object $X \in \underline{\bmod }\left(R_{1}\right), F_{1}^{s}(X) \cong \Phi^{-1} F_{2}^{s} \Phi(X)$, where Φ^{-1} is a quasi-inverse of Φ.

Then there is an equivalence $\Phi^{\prime}: \underline{\bmod }\left(R_{1}\right) \rightarrow \underline{\bmod }\left(R_{2}\right)$ such that $\Phi^{\prime} F_{1}^{s}=$ $F_{2}^{s} \Phi^{\prime}$.

Proof. By Lemma 3.5 there is a quasi-inverse Φ_{1}^{-1} of Φ such that $F_{1}^{s}(X)=\Phi_{1}^{-1} F_{2}^{s} \Phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$. We deduce from Lemma 3.4 that F_{1}^{s} and $\Phi_{1}^{-1} F_{2}^{s} \Phi$ are isomorphic functors. Then there is an isomorphism $f: F_{1}^{s} \rightarrow \Phi^{-1} F_{2}^{s} \Phi$. We define $\Phi^{\prime}: \underline{\bmod }\left(R_{1}\right) \rightarrow \underline{\bmod }\left(R_{2}\right)$ by the formula $\Phi^{\prime}=\left(F_{2}^{s}\right)^{-1} \Phi F_{2}^{s}$. It is easy to verify that Φ^{-1} is a quasi-inverse of Φ^{\prime}. Then $f: F_{1}^{s} \rightarrow \Phi^{-1} F_{2}^{s} \Phi^{\prime}$ yields the equality of functors and the proposition follows.
3.7. Proposition. If $\nu_{R_{1}}$ and $\nu_{R_{2}}$ act freely on the objects of R_{1} and R_{2}, respectively, then $R_{1} /\left(\nu_{R_{1}}\right)$ and $R_{2} /\left(\nu_{R_{2}}\right)$ are stably equivalent.

Proof. Observe that, under our assumptions, the action of $\left(\nu_{R_{i}}\right)$ on R_{i} induces the Nakayama functor $\mathcal{N}_{R_{i}}: \bmod \left(R_{i}\right) \rightarrow \bmod \left(R_{i}\right)$ given by the formula $\mathcal{N}_{R_{i}}=D \operatorname{Hom}_{R_{i}}\left(-, R_{i}\right)$ (see [8; 2.1]). Furthermore, $\mathcal{N}_{R_{i}}$ is an exact equivalence such that $\mathcal{N}_{R_{i}}^{s}: \underline{\bmod }\left(R_{i}\right) \rightarrow \underline{\bmod }\left(R_{i}\right)$ is an equivalence. Then $\mathcal{N}_{R_{i}}^{s} \cong \Omega_{R_{i}}^{-2} \tau_{R_{i}}$ by [8; 2.5]. Thus we deduce from Proposition 3.2 that for every object $X \in \underline{\bmod }\left(R_{i}\right)$ we have $\mathcal{N}_{R_{1}}^{s}(X) \cong \Phi_{1}^{-1} \mathcal{N}_{R_{2}}^{s} \Phi(X)$ for some quasi-inverse Φ_{1}^{-1} of Φ. Therefore, by Proposition 3.6, $\Phi \mathcal{N}_{R_{1}}^{s}=\mathcal{N}_{R_{2}}^{s} \Phi$. Thus $\Phi \mathcal{N}_{R_{1}}^{s}(X)=\mathcal{N}_{R_{2}}^{s} \Phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$. But the push-down functor $F_{\lambda, i}: \bmod \left(R_{i}\right) \rightarrow \bmod \left(R_{i} /\left(\nu_{R_{i}}\right)\right)$ is induced by $\mathcal{N}_{R_{i}}$. Hence $F_{\lambda, i}$ maps every $\mathcal{N}_{R_{i}}$-orbit of an R_{i}-module M onto one $R_{i} /\left(\nu_{R_{i}}\right)$-module $F_{\lambda, i}(M)$. Consequently, Φ maps the $\mathcal{N}_{R_{1}}$-orbits of nonprojective R_{1}-modules onto $\mathcal{N}_{R_{2}}$-orbits of nonprojective R_{2}-modules, because $\Phi \mathcal{N}_{R_{1}}^{s}(X)=\mathcal{N}_{R_{2}}^{s} \Phi(X)$ for every $X \in \underline{\bmod }\left(R_{1}\right)$. Furthermore, Φ maps the $\mathcal{N}_{R_{1}}^{s}$-orbits of morphisms in $\underline{\bmod }\left(R_{1}\right)$ onto the $\mathcal{N}_{R_{2}}^{s}$-orbits of morphisms in $\underline{\bmod }\left(R_{2}\right)$, because by the definition of $\mathcal{N}_{R_{i}}$ a morphism $f: X \rightarrow Y$ in $\bmod \left(R_{i}\right)$ factorizes through a projective R_{i}-module iff $F_{\lambda, i}(f): F_{\lambda, i}(X) \rightarrow F_{\lambda, i}(Y)$ factorizes through a projective $R_{i} /\left(\nu_{R_{i}}\right)$-module.

Now we can define a functor $\Psi: \underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right) \rightarrow \underline{\bmod }\left(R_{2} /\left(\nu_{R_{2}}\right)\right)$ as follows. For every indecomposable M in $\underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right)$ there is an indecomposable R_{1}-module \widetilde{M} which is nonprojective and satisfies $F_{\lambda, 1}(\widetilde{M})=M$. Then we put $\Psi(M)=F_{\lambda, 2} \Phi(\widetilde{M})$. If $M=M_{1} \oplus \ldots \oplus M_{n} \in \underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right)$ with M_{j} indecomposable, $j=1, \ldots, n$, then we put $\Psi(M)=\Psi\left(M_{1}\right) \oplus \ldots \oplus$ $\Psi\left(M_{n}\right)$. If $f: M \rightarrow N$ is a morphism in $\bmod \left(R_{1} /\left(\nu_{R_{1}}\right)\right)$ then there is a morphism $\underline{\tilde{f}}: \widetilde{M} \rightarrow \widetilde{N}$ in $\underline{\bmod }\left(R_{1}\right)$ such that $\underline{f}=\underline{F_{\lambda, 1}(\widetilde{f})}$. Then there is $\underline{h}=\Phi(\underline{\tilde{f}})$ and we put $\Psi(\underline{f})=F_{\lambda, 2}(h)$. Since Φ maps the $\mathcal{N}_{R_{1}}$-orbits of indecomposable nonprojective R_{1}-modules onto $\mathcal{N}_{R_{2}}$-orbits of indecomposable
nonprojective R_{2}-modules and the $\mathcal{N}_{R_{1}}^{s}$-orbits of morphisms in $\underline{\bmod }\left(R_{1}\right)$ onto the $\mathcal{N}_{R_{2}}^{s}$-orbits of morphisms in $\bmod \left(R_{2}\right)$, the above definition does not depend on the choice of \widetilde{M} and \widetilde{f}.

Observe that $\Psi: \underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right) \rightarrow \underline{\bmod }\left(R_{2} /\left(\nu_{R_{2}}\right)\right)$ is a functor. Indeed, $\Psi\left(\underline{\mathrm{id}_{M}}\right)=\mathrm{id}_{\Psi(M)}$ since for $F_{\lambda, 1}(M)=M$ we have $F_{\lambda, 1}\left(\mathrm{id}_{\widetilde{M}}\right)=\mathrm{id}_{M}$. Then $\Phi\left(\mathrm{id}_{\widetilde{M}}\right)=\overline{\mathrm{id}_{\Phi(\widetilde{M})}}$ since Φ is a functor. Thus $F_{\lambda, 2}\left(\mathrm{id}_{\Phi(\widetilde{M})}\right)=\operatorname{id}_{F_{\lambda, 2} \Phi(\widetilde{M})}$. If $\underline{f_{1}}: M \rightarrow N$ and $\underline{f_{2}}: N \rightarrow L$ are morphisms in $\underline{\bmod }\left(R_{1} /\left(\overline{\nu_{R_{1}}}\right)\right)$ then $F_{\lambda, 1}\left(\widetilde{f_{2} f_{1}}\right)=f_{2} f_{1}$ with $\widetilde{f_{2} f_{1}}=\widetilde{f}_{2} \widetilde{f}_{1}$. Thus $\Phi\left(\underline{\tilde{f}_{2}} \widetilde{f}_{1}\right)=\Phi\left(\underline{\left(\widetilde{f_{2} f_{1}}\right.}\right)=\underline{h}=\underline{h_{2} h_{1}}$ with $\Phi\left(\underline{f_{i}}\right)=\underline{h_{i}}, i=1,2$. Therefore

$$
\Psi\left(\underline{f_{2} f_{1}}\right)=\underline{F_{\lambda, 2}}\left(h_{2} h_{1}\right)=\underline{F_{\lambda, 2}\left(h_{2}\right) F_{\lambda, 2}\left(h_{1}\right)}=\Psi\left(\underline{f_{2}}\right) \Psi\left(\underline{f_{1}}\right) .
$$

Since R_{1} and R_{2} are locally support-finite, Ψ is dense.
Observe that if $0 \neq \underline{f}: M \rightarrow N$ in $\underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right)$ then $\underline{f} \neq 0$ for every \tilde{f} such that $F_{\lambda, 1}(\widetilde{f})=\bar{f}$. Hence $\Phi(\underline{\tilde{f}}) \neq 0$ since Φ is an equivalence. Thus $\Phi(\underline{f})=\underline{h} \neq 0$ and clearly $F_{\lambda, 2}(h) \neq 0$. Therefore $\Psi(\underline{f}) \neq 0$, which shows that Ψ is faithful. If $0 \neq \underline{t}: \overline{\Psi(M)} \rightarrow \Psi(N)$ for some $M, N \in \underline{\bmod }\left(R_{1} /\left(\nu_{R_{1}}\right)\right)$
 $\Psi(N)$. But there is $\widetilde{t}: \Phi(\widetilde{M}) \rightarrow \Phi(\widetilde{N})$ such that $\underline{t}=\underline{F_{\lambda, 2}(\widetilde{t})}$. Since Φ is an equivalence, there is $0 \neq \underline{\tilde{f}}: \widetilde{M} \rightarrow \widetilde{N}$ such that $\Phi(\underline{\widetilde{f}})=\underline{\widetilde{t}}$. If we put $f=F_{\lambda, 1}(\widetilde{f})$ then $\Psi(\underline{f})=\underline{t}$. Consequently, Ψ is full and the proposition follows.
3.8. Proposition. If R_{1} and R_{2} are triangular selfinjective locally support-finite K-categories with free actions of $\left(\nu_{R_{1}}\right)$ and $\left(\nu_{R_{2}}\right)$, respectively, and $R_{1} /\left(\nu_{R_{1}}\right) \cong R_{2} /\left(\nu_{R_{2}}\right)$ then $R_{1} \cong R_{2}$.

Proof. Fix some representatives $\left\{P_{i}\right\}_{i \in I}$ of the isomorphism classes of indecomposable projective R_{1}-modules and some representatives $\left\{Q_{j}\right\}_{j \in J}$ of the isomorphism classes of the indecomposable projective R_{2}-modules. Then $R_{1} \cong \operatorname{End}_{R_{1}}\left(\bigoplus_{i \in I} P_{i}\right)^{\text {op }}$ and $R_{2} \cong \operatorname{End}_{R_{2}}\left(\bigoplus_{j \in J} Q_{j}\right)^{\text {op }}$. Let $F_{\lambda, t}$: $\bmod \left(R_{t}\right) \rightarrow \bmod \left(R_{t} /\left(\nu_{R_{t}}\right)\right), t=1,2$, be the push-down functors induced by the actions of $\left(\nu_{R_{t}}\right)$ on R_{t}. Fix some $i_{0} \in I$. Let $L F_{\lambda, 1}\left(P_{i_{0}}\right)=F_{\lambda, 2}\left(Q_{j_{0}}\right)$ for a fixed $j_{0} \in J$, where $L: \bmod \left(R_{1} /\left(\nu_{R_{1}}\right)\right) \rightarrow \bmod \left(R_{2} /\left(\nu_{R_{2}}\right)\right)$ is the equivalence induced by a fixed isomorphism from $R_{1} /\left(\nu_{R_{1}}\right)$ onto $R_{2} /\left(\nu_{R_{2}}\right)$. Let $R_{1,1}$ be the subcategory of R_{1} formed by $P_{i_{0}}$ and the $P_{i}, P_{i^{\prime}}$ such that the following conditions are satisfied:
(a) there is a nonzero morphism $f_{i}: P_{i} \rightarrow P_{i_{0}}$ of the form $f_{i}=f^{*} f_{i}^{\prime}$, where $f_{i}^{\prime}: P_{i} \rightarrow \operatorname{rad}\left(P_{i_{0}}\right)$ satisfies $\pi_{i_{0}} f_{i}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{i_{0}}: \operatorname{rad}\left(P_{i_{0}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{i_{0}}\right)\right)$, and $f^{*}: \operatorname{rad}\left(P_{i_{0}}\right) \rightarrow P_{i_{0}}$ is the identity monomorphism;
(b) there is a nonzero morphism $h_{i^{\prime}}: P_{i_{0}} \rightarrow P_{i^{\prime}}$ of the form $h_{i^{\prime}}^{\prime \prime} h_{i^{\prime}}^{\prime}$, where $h_{i^{\prime}}^{\prime}: P_{i_{0}} \rightarrow \operatorname{rad}\left(P_{i^{\prime}}\right)$ satisfies $\pi_{i^{\prime}} h_{i^{\prime}}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{i^{\prime}}: \operatorname{rad}\left(P_{i^{\prime}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{i^{\prime}}\right)\right)$, and $h_{i^{\prime}}^{\prime \prime}: \operatorname{rad}\left(P_{i^{\prime}}\right) \rightarrow P_{i^{\prime}}$ is the identity monomorphism.

If P, P^{\prime} are objects of $R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}\left(P, P^{\prime}\right)$ is the subspace of $\operatorname{Hom}_{R_{1}}\left(P, P^{\prime}\right)$ generated by the isomorphisms between P and P^{\prime} and the morphisms of the form $t=t_{1} t_{2}$, where $t_{1}=h_{i^{\prime}}$ for some i^{\prime} and t_{2} is an automorphism of $P_{i_{0}}$, or $t_{2}=f_{i}$ for some i and t_{1} is an automorphism of $P_{i_{0}}$, or else $t_{1}=h_{i^{\prime}}$ for some i^{\prime} and $t_{2}=f_{i}$ for some i. Since R_{1} is locally support-finite, $R_{1,1}$ is finite.

Let $R_{2,1}$ be the subcategory of R_{2} formed by $Q_{j_{0}}$ and the $Q_{j}, Q_{j^{\prime}}$ such that the following conditions are satisfied:
(a) there is a nonzero morphism $r_{j}: Q_{j} \rightarrow Q_{j_{0}}$ of the form $r_{j}=r^{*} r_{j}^{\prime}$, where $r_{j}^{\prime}: Q_{j} \rightarrow \operatorname{rad}\left(Q_{j_{0}}\right)$ satisfies $\kappa_{j_{0}} r_{j}^{\prime} \neq 0$ for the canonical epimorphism $\kappa_{j_{0}}: \operatorname{rad}\left(Q_{j_{0}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(Q_{j_{0}}\right)\right)$, and $r^{*}: \operatorname{rad}\left(Q_{j_{0}}\right) \rightarrow Q_{j_{0}}$ is the identity monomorphism;
(b) there is a nonzero morphism $s_{j^{\prime}}: Q_{j_{0}} \rightarrow Q_{j^{\prime}}$ of the form $s_{j^{\prime}}^{\prime \prime} s_{j^{\prime}}^{\prime}$, where $s_{j^{\prime}}^{\prime}: Q_{j_{0}} \rightarrow \operatorname{rad}\left(Q_{j^{\prime}}\right)$ satisfies $\kappa_{j^{\prime}} s_{j^{\prime}}^{\prime} \neq 0$ for the canonical epimorphism $\kappa_{j^{\prime}}: \operatorname{rad}\left(Q_{j^{\prime}}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(Q_{j^{\prime}}\right)\right)$, and $s_{j^{\prime}}^{\prime \prime}: \operatorname{rad}\left(Q_{j^{\prime}}\right) \rightarrow Q_{j^{\prime}}$ is the identity monomorphism.

If Q, Q^{\prime} are objects of $R_{2,1}$ then $\operatorname{Hom}_{R_{2,1}}\left(Q, Q^{\prime}\right)$ is the subspace of $\operatorname{Hom}_{R_{2}}\left(Q, Q^{\prime}\right)$ generated by the isomorphisms between Q and Q^{\prime} and the morphisms of the form $w=w_{1} w_{2}$, where $w_{1}=s_{j^{\prime}}$ for some j^{\prime} and w_{2} is an automorphism of $Q_{j_{0}}$, or $w_{2}=r_{j}$ for some j and w_{1} is an automorphism of $Q_{j_{0}}$, or else $w_{1}=s_{j^{\prime}}$ for some j^{\prime} and $w_{2}=r_{j}$ for some j. Since R_{2} is locally support-finite, $R_{2,1}$ is finite.

Observe that if $P_{i_{1}} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}\left(P_{i_{1}}, P_{i_{0}}\right) \neq 0$ then there is a unique $Q_{j_{1}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{j_{1}}, Q_{j_{0}}\right) \neq 0$ and $L F_{\lambda, 1}\left(P_{i_{1}}\right) \cong F_{\lambda, 2}\left(Q_{j_{1}}\right)$. Indeed, if there are $Q_{j_{1}}, Q_{j_{2}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{j_{l}}, Q_{j_{0}}\right) \neq 0$ and $L F_{\lambda, 1}\left(P_{i_{1}}\right) \cong F_{\lambda, 2}\left(Q_{j_{l}}\right), l=1,2$, then there is $z \in \mathbb{Z}$ such that ${ }^{\nu_{R_{2}}^{2}}\left(Q_{j_{1}}\right)=$ $Q_{j_{2}}$. Furthermore, there are $0 \neq r_{j_{l}}: Q_{j_{l}} \rightarrow Q_{j_{0}}, l=1,2$, such that $r_{j_{l}}$ factorize through $\operatorname{rad}\left(Q_{j_{0}}\right)$ by the definition of $R_{2,1}$. Hence $\operatorname{top}\left(Q_{j_{l}}\right)$ are direct summands in $\operatorname{top}\left(\operatorname{rad}\left(Q_{j_{0}}\right)\right)$. Then for $z>0$ we get a sequence $Q_{1}^{\prime}, \ldots, Q_{z}^{\prime}$ of indecomposable projective R_{2}-modules such that $\operatorname{soc}\left(Q_{m}^{\prime}\right) \cong \operatorname{top}\left(Q_{m-1}^{\prime}\right)$, $m=2, \ldots, z, \operatorname{top}\left(Q_{j_{1}}\right) \cong \operatorname{soc}\left(Q_{1}^{\prime}\right), \operatorname{top}\left(Q_{z}^{\prime}\right) \cong \operatorname{soc}\left(Q_{j_{2}}\right)$. But $\operatorname{top}\left(Q_{j_{0}}\right) \in$ $\operatorname{supp}\left(Q_{1}^{\prime}\right), R_{2}$ is not triangular, which contradicts our assumption. Similarly we obtain a contradiction if $z<0$. Thus $z=0$ and $Q_{j_{1}}=Q_{j_{2}}$.

Dually one proves that if $P_{i_{1}^{\prime}} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}\left(P_{i_{0}}, P_{i_{1}^{\prime}}\right) \neq 0$ then there is a unique $Q_{j_{1}^{\prime}} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}\left(Q_{j_{0}}, Q_{j_{1}^{\prime}}\right) \neq 0$ and $L F_{\lambda, 1}\left(P_{i_{1}^{\prime}}\right) \cong$ $F_{\lambda, 2}\left(Q_{j_{1}^{\prime}}\right)$.

Now we define a functor $F_{1}: R_{1,1} \rightarrow R_{2,1}$ putting $F_{1}\left(P_{i_{0}}\right)=Q_{j_{0}}$, $F_{1}\left(P_{i_{1}}\right)=Q_{j_{1}}, F_{1}\left(P_{i_{1}^{\prime}}\right)=Q_{j_{1}^{\prime}}$ for the objects of $R_{1,1}$. If $P, P^{\prime} \in R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}\left(P, P^{\prime}\right)$ either consists of isomorphisms (if $P=P^{\prime}$) or is generated by the above t. If $P=P^{\prime}$ then $\operatorname{Hom}_{R_{1,1}}(P, P) \cong K \cdot \mathrm{id}_{P} \cong K \cdot \mathrm{id}_{F_{\lambda, 1}(P)}$ as K spaces. Then $K \cdot \operatorname{id}_{F_{\lambda, 1}(P)} \cong K \cdot \operatorname{id}_{L F_{\lambda, 1}(P)} \cong K \cdot \mathrm{id}_{F_{1}(P)}$ as K-spaces. Hence for every $f \in \operatorname{Hom}_{R_{1,1}}(P, P)$ there is exactly one $r \in \operatorname{Hom}_{R_{2,1}}\left(F_{1}(P), F_{1}(P)\right)$ such that $L F_{\lambda, 1}(f)=F_{\lambda, 2}(r)$. Thus we put $F_{1}(f)=r$. If $P \neq P^{\prime}$ then we construct F_{1} for the morphisms of the form $t=t^{\prime \prime} t^{\prime}$, where $t^{\prime}: P \rightarrow \operatorname{rad}\left(P^{\prime}\right)$ satisfies $\pi t^{\prime} \neq 0$ for the canonical epimorphism $\pi: \operatorname{rad}\left(P^{\prime}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P^{\prime}\right)\right)$ and $t^{\prime \prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow P^{\prime}$ is inclusion. For such a t, there is a unique r : $F_{1}(P) \rightarrow F_{1}\left(P^{\prime}\right)$ in $\operatorname{Hom}_{R_{2,1}}\left(F_{1}(P), F_{1}\left(P^{\prime}\right)\right)$ such that $L F_{\lambda, 1}(t)=F_{\lambda, 2}(r)$. Indeed, if r_{1}, r_{2} satisfy $L F_{\lambda, 1}(t)=F_{\lambda, 2}\left(r_{1}\right)=F_{\lambda, 2}\left(r_{2}\right)$ then there are $r_{1}^{\prime}, r_{2}^{\prime}$: $F_{1}(P) \rightarrow \operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right)$ such that $\pi^{\prime} r_{1}^{\prime}, \pi^{\prime} r_{2}^{\prime} \neq 0$ for the canonical projection $\pi^{\prime}: \operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right)\right)$. Furthermore, for the inclusion $r^{\prime \prime}: \operatorname{rad}\left(F_{1}\left(P^{\prime}\right)\right) \rightarrow F_{1}\left(P^{\prime}\right)$ we have $r_{1}=r^{\prime \prime} r_{1}^{\prime}$ and $r_{2}=r^{\prime \prime} r_{2}^{\prime}$. But if $r_{1}^{\prime} \neq r_{2}^{\prime}$ then $F_{\lambda, 2}\left(r_{1}^{\prime}\right) \neq F_{\lambda, 2}\left(r_{2}^{\prime}\right)$, because R_{2} is triangular and $F_{\lambda, 2}$ is induced by the action of $\left(\nu_{R_{2}}\right)$. Thus $F_{\lambda, 2}\left(r_{1}\right) \neq F_{\lambda, 2}\left(r_{2}\right)$ for $r_{1} \neq r_{2}$. Consequently, $r_{1}=r_{2}$ if $F_{\lambda, 2}\left(r_{1}\right)=F_{\lambda, 2}\left(r_{2}\right)$. Then we put $F_{1}(t)=r$. If $t=t_{1} t_{2}$ is a composition of either an isomorphism and a morphism of the above form or two morphisms of the above form then we put $F_{1}(t)=F_{1}\left(t_{1}\right) F_{1}\left(t_{2}\right)$. Finally, we extend F_{1} linearly to a K-functor. It is clear by the above considerations that we have obtained a functor $F_{1}: R_{1,1} \rightarrow R_{2,1}$ which is dense and fully faithful. Thus F_{1} yields an equivalence of categories.

Assume now that we defined a subcategory $R_{1, n}$ in R_{1} such that for every pair P, P^{\prime} of objects from $R_{1, n}$ either $P=P^{\prime}$ and $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ consists only of automorphisms, or $P \neq P^{\prime}$ and $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ is generated by the morphisms of the form $t=t_{s} \ldots t_{2} t_{1}$ such that:
(i) $t_{l}: P_{l} \rightarrow P_{l+1}$ for some objects P_{1}, \ldots, P_{s+1} of $R_{1, n}$, where $P_{1}=P$, $P_{s+1}=P^{\prime}$;
(ii) $t_{l}=t_{l}^{\prime \prime} t_{l}^{\prime}, l=1, \ldots, s$, and $t_{l}^{\prime}: P_{l} \rightarrow \operatorname{rad}\left(P_{l+1}\right)$ satisfies $\pi_{l+1} t_{l}^{\prime} \neq 0$ for the canonical epimorphism $\pi_{l+1}: \operatorname{rad}\left(P_{l+1}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P_{l+1}\right)\right)$;
(iii) $t_{l}^{\prime \prime}: \operatorname{rad}\left(P_{l+1}\right) \rightarrow P_{l+1}$ is inclusion for $l=1, \ldots, s$.

Moreover, assume that we have defined a subcategory $R_{2, n}$ of R_{2} satisfying the above conditions for morphisms, and a functor $F_{n}: R_{1, n} \rightarrow R_{2, n}$ which is a K-linear equivalence and maps the generators of $\operatorname{Hom}_{R_{1, n}}\left(P, P^{\prime}\right)$ to the generators of $\operatorname{Hom}_{R_{2, n}}\left(F_{n}(P), F_{n}\left(P^{\prime}\right)\right)$.

Define a subcategory $R_{1, n+1}$ of R_{1} in the following way. The objects of $R_{1, n+1}$ are those of $R_{1, n}$ and additionally the objects P of R_{1} such that either there is a nonzero morphism $t: P \rightarrow P^{\prime}$ with P^{\prime} in $R_{1, n}$ and $t=$ $t^{\prime \prime} t^{\prime}$, where $t^{\prime}: P \rightarrow \operatorname{rad}\left(P^{\prime}\right)$ satisfies $\pi^{\prime} t^{\prime} \neq 0$ for the canonical projection $\pi^{\prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow \operatorname{top}\left(\operatorname{rad}\left(P^{\prime}\right)\right)$ and $t^{\prime \prime}: \operatorname{rad}\left(P^{\prime}\right) \rightarrow P^{\prime}$ is inclusion, or there is
a nonzero morphism $h: P^{\prime} \rightarrow P$ with $P^{\prime} \in R_{1, n}$ and $h=h^{\prime \prime} h^{\prime}$, where $h^{\prime}: P^{\prime} \rightarrow \operatorname{rad}(P)$ satisfies $\pi h^{\prime} \neq 0$ for the canonical epimorphism π : $\operatorname{rad}(P) \rightarrow \operatorname{top}(\operatorname{rad}(P))$ and $h^{\prime \prime}: \operatorname{rad}(P) \rightarrow P$ is inclusion. For every $P, P^{\prime \prime}$ from $R_{1, n+1}, \operatorname{Hom}_{R_{1, n+1}}\left(P, P^{\prime \prime}\right)$ is generated by the isomorphisms between P and $P^{\prime \prime}$ and the compositions $h=h_{s} \ldots h_{1}$ which satisfy conditions (i)-(iii) above.

In the same way we define a subcategory $R_{2, n+1}$ of R_{2}. Then repeating the arguments used for $R_{1,1}$ and $R_{2,1}$ we find that for every $P \in R_{1, n+1}$ such that there is a nonzero morphism $t: P \rightarrow P^{\prime}$ with $P^{\prime} \in R_{1, n}$ there is a unique $Q \in R_{2, n+1}$ such that there is a nonzero morphism $r: Q \rightarrow F_{n}\left(P^{\prime}\right)$ in $R_{2, n+1}$ and $L F_{\lambda, 1}(P) \cong F_{\lambda, 2}(Q)$. Furthermore, for every $P \in R_{1, n+1}$ such that there is a nonzero morphism $h: P^{\prime} \rightarrow P$ in $R_{1, n+1}$ with $P^{\prime} \in R_{1, n}$ there is a unique $Q \in R_{2, n+1}$ such that there is a nonzero morphism $r: F_{n}\left(P^{\prime}\right) \rightarrow Q$ in $R_{2, n+1}$ and $L F_{\lambda, 1}(P) \cong F_{\lambda, 2}(Q)$. Moreover, we also have the same uniqueness for generating morphisms $t: P \rightarrow P^{\prime}$ and $h: P^{\prime} \rightarrow P$ with $P^{\prime} \in R_{1, n}$ and $P \in R_{1, n+1} \backslash R_{1, n}$.

Thus we define $F_{n+1}: R_{1, n+1} \rightarrow R_{2, n+1}$ in the following way. For every $P \in R_{1, n+1} \backslash R_{1, n}$ we put $F_{n+1}(P)=Q$, where Q is as above. For every $P^{\prime} \in R_{1, n}$ we put $F_{n+1}\left(P^{\prime}\right)=F_{n}\left(P^{\prime}\right)$. For $P, P^{\prime} \in R_{1, n+1}$ with $P \in R_{1, n+1} \backslash R_{1, n}$ and $P^{\prime} \in R_{1, n}$, if $t: P \rightarrow P^{\prime}$ is a generator of $\operatorname{Hom}_{R_{1, n+1}}\left(P, P^{\prime}\right)$ then we put $F_{n+1}(t)=r$, where r is the uniquely determined generator of $\operatorname{Hom}_{R_{2, n+1}}\left(F_{n+1}(P), F_{n+1}\left(P^{\prime}\right)\right)$. If $h: P^{\prime} \rightarrow P$ is a generator of $\operatorname{Hom}_{R_{1, n+1}}\left(P^{\prime}, P\right)$ then we put $F_{n+1}(h)=r$, where r is the uniquely determined generator of $\operatorname{Hom}_{R_{2, n+1}}\left(F_{n+1}\left(P^{\prime}\right), F_{n+1}(P)\right)$. If $t: P \rightarrow P^{\prime}$ is a generator of $\operatorname{Hom}_{R_{1, n+1}}\left(P, P^{\prime}\right)$ with $P, P^{\prime} \in R_{1, n}$ then we put $F_{n+1}(t)=F_{n}(t)$. If $t: P \rightarrow P^{\prime \prime}$ is an isomorphism with $P, P^{\prime \prime} \in R_{1, n+1} \backslash R_{1, n}$ then we put $F_{n+1}(t)=r$, where $L F_{\lambda, 1}(t)=F_{\lambda, 2}(r)$. Finally, we extend F_{n+1} to a K-linear functor $F_{n+1}: R_{1, n+1} \rightarrow R_{2, n+1}$ which is dense and fully faithful. Thus F_{n+1} yields an equivalence of categories.

Consequently, we construct inductively a functor $F: R_{1} \rightarrow R_{2}$ which is dense and fully faithful since R_{1} and R_{2} are connected and locally supportfinite. The proposition follows.

4. The repetitive algebras of canonical tubular algebras

4.1. For a locally bounded K-category R, we shall not distinguish between an indecomposable R-module, its isomorphism class and the vertex of Γ_{R} corresponding to it. Moreover, we denote by Γ_{R}^{s} the stable quiver of Γ_{R} obtained from Γ_{R} by removing the τ_{R}-orbits of all projective modules, all injective modules and the arrows attached to them. Following [7], a component \mathbf{T} of $\Gamma_{R}\left(\right.$ respectively, of $\left.\Gamma_{R}^{\mathrm{S}}\right)$ is said to be a tube if \mathbf{T} contains a cyclic path and its geometrical realization $|\mathbf{T}|$ is homeomorphic to $S^{1} \times \mathbb{R}_{0}^{+}$, where
S^{1} is the unit circle and \mathbb{R}_{0}^{+}is the set of nonnegative real numbers. A stable tube of rank $n \geq 1$ is a translation quiver of the form $\mathbb{Z} \mathbf{A}_{\infty} /\left(\tau^{n}\right)$. The stable tubes of rank one are said to be homogeneous. A family $\mathcal{T}=\left(T_{i}\right)_{i \in I}$ of tubes in Γ_{R} (respectively, in Γ_{R}^{S}) is said to be standard if the full subcategory of $\bmod (R)$ (respectively, of $\underline{\bmod }(R))$ is equivalent to the mesh-category $K(\mathcal{T})$ of \mathcal{T}. Finally, we say that a family of tubes $\mathcal{T}=\left(T_{i}\right)_{i \in I}$ in Γ_{R} (respectively, in Γ_{R}^{S}) separates a family of components \mathcal{X} from a family of components \mathcal{Y} if for any $X \in \mathcal{X}, Y \in \mathcal{Y}$ and $i \in I$, every morphism from X to Y in $\bmod (R)$ (respectively, in $\underline{\bmod }(R)$) can be factorized through a module Z in the additive category $\operatorname{add}\left(T_{i}\right)$ and there is no nonzero morphism from Y to X in $\bmod (R)$ (respectively, in $\bmod (R))$.
4.2. Let A be a canonical tubular algebra of type $\mathbb{T}=\left(n_{1}, \ldots, n_{t}\right)=$ $(2,2,2,2),(3,3,3),(2,4,4)$ or $(2,3,6)$. To describe the structure of $\bmod (\widehat{A})$ we need the following types of tubular families. A family $\mathcal{T}=\left(T_{\mu}\right)_{\mu \in \mathbb{P}_{1}(K)}$, $\mathbb{P}_{1}(K)=K \cup\{\infty\}$, of tubes in $\Gamma_{\hat{A}}$ is said to be a tubular $\mathbb{P}_{1}(K)$-family of type \mathbb{T} if the following conditions are satisfied:
(1) The stable part \mathcal{T}^{s} of \mathcal{T} is a disjoint union of stable tubes $\mathcal{T}_{\mu}^{\mathrm{s}}, \mu \in$ $\mathbb{P}_{1}(K)$, such that t of these tubes have ranks n_{1}, \ldots, n_{t}, and the remaining ones are homogeneous.
(2) One of the following conditions holds:
(a) All tubes $T_{\mu}, \mu \in \mathbb{P}_{1}(K)$, are stable.
(b) The tubes $T_{\mu}, \mu \in K$, are stable and T_{∞} admits a projectiveinjective vertex.
(c) There are $\mu_{1}, \ldots, \mu_{t} \in \mathbb{P}_{1}(K)$ such that the tubes T_{μ} with $\mu \neq$ μ_{1}, \ldots, μ_{t} are stable and for each $1 \leq i \leq t$, the tube $T_{\mu_{i}}$ admits $n_{i}-1$ projective-injective vertices.
4.3. Proposition. Let A be a canonical tubular algebra of type \mathbb{T}. Then
(a) $\Gamma_{\hat{A}}=\bigsqcup_{q \in \mathbb{Q}} \mathcal{T}_{q}$ where, for each $q \in \mathbb{Q}, \mathcal{T}_{q}$ is a tubular $\mathbb{P}_{1}(K)$-family $\mathcal{T}_{q}(\mu), \mu \in \mathbb{P}_{1}(K)$.
(b) For every $q \in \mathbb{Q}, \mathcal{T}_{q}$ separates $\bigsqcup_{q<i} \mathcal{T}_{q}$ from $\bigsqcup_{i<q} \mathcal{T}_{q}$.
(c) For each $q \in \mathbb{Q} \backslash \mathbb{Z}, \mathcal{T}_{q}$ is a standard family of stable tubes.
(d) For each $q \in \mathbb{Z}, \mathcal{T}_{q}$ contains finitely many projective \widehat{A}-modules.

Proof. This result was obtained in [10].
4.4. In $[10]$ the following increasing $\operatorname{map} \sigma: \mathbb{Q} \rightarrow \mathbb{Q}$ was defined:

$$
\sigma\left(m+\frac{r}{s}\right)= \begin{cases}m+1+\frac{s-r}{2 s-3 r} & \text { if } 0 \leq 2 r \leq s \\ m+2+\frac{2 r-s}{3 r-s} & \text { if } 1 \leq r<s \leq 2 r\end{cases}
$$

We have the following lemma.

Lemma. Let A be a canonical tubular algebra of type \mathbb{T}. Then
(a) For every indecomposable nonprojective \widehat{A}-module M in \mathcal{T}_{q} the module $\Omega_{\hat{A}}(M)$ belongs to $\mathcal{T}_{\sigma(q)}$.
(b) For every $q \in \mathbb{Z}, \mathcal{T}_{q+1 / 2}$ contains simple \widehat{A}-modules.
(c) If $0 \neq \underline{f}: X \rightarrow Y$ for two indecomposable nonprojective \widehat{A}-modules X, Y with $X \in \mathcal{T}_{q_{1}}, Y \in \mathcal{T}_{q_{2}}$ then $q_{2}-q_{1} \leq 1 \frac{1}{2}$.

Proof. (a) is a consequence of $[10 ; 4.9]$. (b) is a consequence of Proposition 4.3 and (a). In order to check (c) observe that if $0 \neq f: X \rightarrow Y$ then there is a nonzero morphism $\underline{h}: \tau_{\hat{A}}^{-1} \Omega_{\hat{A}}(Y) \rightarrow X$ with $\underline{f} \underline{h}=0$ by [4; Proposition 4.1]. Thus (c) follows from (a).
4.5. If R is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} of a canonical tubular algebra A then the stable Auslander-Reiten quiver Γ_{R}^{s} of R is isomorphic to $\Gamma_{\hat{A}}^{\mathrm{S}}$. Thus $\Gamma_{R}^{\mathrm{S}}=\bigsqcup_{q \in \mathbb{Q}} \mathcal{T}_{q}^{\prime}$, and we have the following.

Lemma. For every $r \in \mathbb{Q}$ there are only finitely many isomorphism classes of simple R-modules in $\bigsqcup_{q \in[r, r+3] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$.

Proof. Suppose to the contrary that there are infinitely many nonisomorphic simple R-modules in $\bigsqcup_{q \in\left[r_{0}, r_{0}+3\right] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$ for some $r_{0} \in \mathbb{Q}$. Fix an equivalence $\Phi: \underline{\bmod }(\widehat{A}) \rightarrow \underline{\bmod }(R)$. It is easily seen that there is some $s_{0} \in$ \mathbb{Q} such that for every indecomposable nonprojective $X \in \bigsqcup_{q \in\left[s_{0}, s_{0}+3\right] \cap \mathbb{Q}} \mathcal{T}_{q}$ we have $\Phi(X) \in \bigsqcup_{q \in\left[r_{0}, r_{0}+3\right] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$. Moreover, if S_{1}, \ldots, S_{n} are all pairwise nonisomorphic simple \widehat{A}-modules such that the top of every $X \in$ $\bigsqcup_{q \in\left[s_{0}, s_{0}+3\right] \cap \mathbb{Q}} \mathcal{T}_{q}$ belongs to $\operatorname{add}\left(S_{1}, \ldots, S_{n}\right)$ then there is an epimorphism $f: X \rightarrow S$ with $S \cong S_{i}$, for some $i=1, \ldots, n$. Clearly $\underline{f} \neq 0$ by [17; Lecture 3], and so $0 \neq \Phi(f): \Phi(X) \rightarrow \Phi(S)$. Therefore for every simple R-module T contained in $\square_{q \in\left[r_{0}, r_{0}+3\right] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$ there is an injection of T into some of the $\Phi\left(S_{1}\right), \ldots, \Phi\left(S_{n}\right)$. Moreover, for every such T there is an injection into $\Phi\left(S_{1}\right) \oplus \ldots \oplus \Phi\left(S_{n}\right)$, which contradicts the finite-dimensionality of $\Phi\left(S_{1}\right) \oplus \ldots \oplus \Phi\left(S_{n}\right)$. Consequently, the lemma follows.
4.6. Corollary. For every $r \in \mathbb{Q}$ there are only finitely many isomorphism classes of R-modules of the form $P / \operatorname{soc}(P)$ in $\bigsqcup_{q \in[r, r+3] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$, where P ranges over pairwise nonisomorphic indecomposable projective R-modules.

Proof. Obvious by Lemma 4.5, because $P / \operatorname{soc}(P) \cong \tau_{R}^{-1} \Omega_{R}(\operatorname{top}(P))$.
4.7. Proposition. Let A be a canonical tubular algebra. If R is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} of A, then R is locally support-finite and selfinjective. Moreover, $\left(\nu_{R}\right)$ acts freely on R.

Proof. A more general version of this proposition is proved in [19; Proposition 1]. But under our special assumptions we can give a simple proof which we present for the convenience of the reader.

We shall show that there is a natural number d such that for any indecomposable R-module M there are at most d pairwise nonisomorphic indecomposable projective R-modules P_{1}, \ldots, P_{d} with $\operatorname{Hom}_{R}\left(P_{i}, M\right) \neq 0$, $i=1, \ldots, d$. Let d denote the number of nonisomorphic indecomposable projective R-modules P such that $P / \operatorname{soc}(P) \in \bigsqcup_{q \in[r, r+3] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$. If M is an indecomposable nonprojective R-module then $M \in \mathcal{T}_{q_{0}}^{\prime}$. For every indecomposable projective P with $\operatorname{Hom}_{R}(P, M) \neq 0$ we have $\operatorname{Hom}_{R}(P / \operatorname{soc}(P), M) \neq 0$. If we consider $0 \neq f: P / \operatorname{soc}(P) \rightarrow M$ then $f=f_{2} f_{1}$ with $f_{1}: P / \operatorname{soc}(P) \rightarrow$ $\operatorname{im}(f)$ an epimorphism and $f_{2}: \operatorname{im}(f) \rightarrow M$ a monomorphism. Thus $f_{1} \neq$ $0 \neq \underline{f_{2}}$ and we infer by Lemma $4.4(\mathrm{c})$ that $P / \operatorname{soc}(P) \in \bigsqcup_{q \in\left[q_{0}-3, q_{0}\right] \cap \mathbb{Q}} \mathcal{T}_{q}^{\prime}$. Since d is finite by Corollary 4.6, it satisfies the above condition. The group $\left(\nu_{R}\right)$ acts freely on R by Lemma 3.2 since $\tau_{\hat{A}}^{-1}(M) \not \not \Omega_{\hat{A}}^{-2}(M)$ for every indecomposable nonprojective \widehat{A}-module M by Lemma 4.4. Consequently, the proposition follows, because the selfinjectivity of R is clear.

5. Proof of the theorem

5.1. We start this section with the following simple fact.

Lemma. Let A be a canonical tubular algebra. If Λ is a locally bounded K-category which is stably equivalent to the repetitive algebra \widehat{A} then Λ is triangular.

Proof. It is sufficient to show that there is no oriented cycle of nonisomorphisms in Γ_{Λ} between projective vertices. Suppose to the contrary that there is a cycle of nonzero nonisomorphisms $P_{1} \xrightarrow{f_{1}} P_{2} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{t-1}} P_{t} \xrightarrow{f_{t}} P_{1}$ between indecomposable projective Λ-modules. Then by 4.5 , Corollary 4.6 and Proposition 4.3, all P_{1}, \ldots, P_{t} are contained in the same component \mathcal{C} of Γ_{Λ} and $f_{i}, i=1, \ldots, t$, do not factorize through a module from $\operatorname{add}\left(\Gamma_{\Lambda} \backslash \mathcal{C}\right)$. But we deduce from Propositions 4.7 and 3.7 that $\widehat{A} /\left(\nu_{\hat{A}}\right)$ is stably equivalent to $\Lambda /\left(\nu_{\Lambda}\right)$. Thus there is a cycle of nonzero nonisomorphisms $Q_{1} \xrightarrow{r_{7}} Q_{2} \xrightarrow{r_{2}} \ldots \xrightarrow{r_{t}} Q_{1}$ in a component \mathcal{C}_{1} of $\Gamma_{\Lambda /\left(\nu_{\Lambda}\right)}$ between projective $\Lambda /\left(\nu_{\Lambda}\right)$-modules such that $r_{i}, i=1, \ldots, t$, do not factorize through a module from $\operatorname{add}\left(\Gamma_{\Lambda /\left(\nu_{\Lambda}\right)} \backslash \mathcal{C}_{1}\right)$. Furthermore, we know from [15; Theorem] that $\Lambda /\left(\nu_{\Lambda}\right) \cong T(B)$ for a tubular algebra B. But in $\Gamma_{T(B)}$ there is no such cycle, hence Λ is triangular.
5.2. Proof of Theorem. The "only if" part is due to Wakamatsu [21]. Since a tubular algebra is tilting-cotilting equivalent to a canonical tubular algebra, we may assume that A is canonical. Assume that Λ is a locally bounded K-category which is stably equivalent to the repetitive
algebra \widehat{A} ．Then Λ is selfinjective locally support－finite by Proposition 4．7． Moreover，Λ is triangular by Lemma 5．1．Thus we infer by Proposition 3.7 that $\widehat{A} /\left(\nu_{A}\right) \cong T(A)$ is stably equivalent to $\Lambda /\left(\nu_{\Lambda}\right)$ ．Then we deduce from ［15；Theorem］that there is a tubular algebra B which is tilting－cotilting equivalent to A such that $\Lambda /\left(\nu_{\Lambda}\right) \cong T(B) \cong \widehat{B} /\left(\nu_{B}\right)$ ．Since \widehat{B} is triangular， we conclude by Proposition 3.8 that $\Lambda \cong \widehat{B}$ and the theorem follows．

REFERENCES

［1］I．Assem and A．Skowroński，On tame repetitive algebras，Fund．Math． 142 （1993），59－84．
［2］—，一，Algebras with cycle－finite derived categories，Math．Ann． 280 （1988），441－463．
［3］M．Auslander and I．Reiten，Representation theory of artin algebras III，Comm． Algebra 3 （1975），239－294．
［4］—，一，Representation theory of artin algebras VI，ibid． 6 （1978），257－300．
［5］K．Bongartz，Tilted algebras，in：Representations of Algebras，Lecture Notes in Math．903，Springer，Berlin，1981，26－38．
［6］P．Dowbor and A．Skowroński，Galois coverings of representation－infinite alge－ bras，Comment．Math．Helv． 62 （1987），311－337．
［7］G．d＇Este and C．M．Ringel，Coherent tubes，J．Algebra 87 （1984），150－201．
［8］P．Gabriel，Auslander－Reiten sequences and representation－finite algebras，in：Lec－ ture Notes in Math．831，Springer，Berlin，1980，1－71．
［9］－，The universal cover of a representation－finite algebra，in：Representations of Algebras，Lecture Notes in Math．903，Springer，Berlin，1981，68－105．
［10］D．Happel and C．M．Ringel，The derived category of a tubular algebra，in：Lecture Notes in Math．1177，Springer，Berlin，1986，156－180．
［11］－，一，Tilted algebras，Trans．Amer．Math．Soc． 274 （1982），399－443．
［12］D．Hughes and J．Waschbüsch，Trivial extensions of tilted algebras，Proc．Lon－ don Math．Soc． 46 （1983），347－364．
［13］J．Nehring and A．Skowroński，Polynomial growth trivial extensions of simply connected algebras，Fund．Math． 132 （1989），117－134．
［14］L．Peng and J．Xiao，Invariability of repetitive algebras of tilted algebras under stable equivalence，J．Algebra 170 （1994），54－68．
［15］Z．Pogorzały，Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras，preprint，Toruń， 1994.
［16］Z．Pogorzały and A．Skowroński，Symmetric algebras stably equivalent to the trivial extensions of tubular algebras，J．Algebra 181 （1996），95－111．
［17］C．M．Ringel，Representation theory of finite－dimensional algebras，in：Represen－ tations of Algebras，Proc．Durham Symposium 1985，London Math．Soc．Lecture Note Ser．116，Cambridge Univ．Press，1986，7－79．
［18］－，Tame Algebras and Integral Quadratic Forms，Lecture Notes in Math．1099， Springer，Berlin， 1984.
［19］A．Skowroński，Generalization of Yamagata＇s theorem on trivial extensions，Arch． Math．（Basel） 48 （1987），68－76．
［20］H．Tachikawa and T．Wakamatsu，Tilting functors and stable equivalences for selfinjective algebras，J．Algebra 109 （1987），138－165．
[21] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: zypo@mat.uni.torun.pl

[^0]: 1991 Mathematics Subject Classification: Primary 16G20.
 Supported by Polish Scientific Grant KBN 590/PO3/95/08.

