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ON LOCALLY BOUNDED CATEGORIES STABLY
EQUIVALENT TO THE REPETITIVE ALGEBRAS OF

TUBULAR ALGEBRAS

BY

ZYGMUNT P O G O R Z A  L Y (TORUŃ)

1. Introduction. Throughout the paper K is a fixed algebraically
closed field. By an algebra we mean a finite-dimensional K-algebra, which
we shall assume, without loss of generality, to be basic and connected. For
an algebra A, we shall denote by mod(A) the category of finitely generated
right A-modules, and by mod(A) the stable category of mod(A). Recall that
the objects of mod(A) are the objects of mod(A) without projective direct
summands, and for any two objects X,Y in mod(A) the space of morphisms
from X to Y in mod(A) is HomA(X,Y ) = HomA(X,Y )/P(X,Y ), where
P(X,Y ) is the subspace of HomA(X,Y ) consisting of the A-homomorphisms
which factorize through projective A-modules. For every f ∈ HomA(X,Y )
we shall denote by f its coset modulo P(X,Y ). Two algebras A and B are
said to be stably equivalent if their stable module categories mod(A) and
mod(B) are equivalent.

Following [5, 11] we shall say that a module T in mod(A) is a tilting
(respectively, cotilting) module if it satisfies the following conditions:

(1) Ext2A(T,−) = 0 (respectively, Ext2A(−, T ) = 0);

(2) Ext1A(T, T ) = 0;

(3) the number of nonisomorphic indecomposable summands of T equals
the rank of the Grothendieck group K0(A).

Two algebras A and B are said to be tilting-cotilting equivalent if there
exist a sequence of algebras A = A0, A1, . . . , Am, Am+1 = B and a sequence
of modules T iAi , 0 ≤ i ≤ m, such that Ai+1 = EndAi(T

i) and T i is either a
tilting or a cotilting module.

Following Gabriel [9], a K-category R is called locally bounded if the
following conditions are satisfied:
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(a) different objects are not isomorphic;

(b) the algebra R(x, x) of endomorphisms of x is local for every object
x in R;

(c)
∑
y∈R dimKR(x, y) < ∞ and

∑
y∈R dimK R(y, x) < ∞ for every

object x in R.

Interesting examples of locally bounded K-categories are the repetitive
algebras introduced by Hughes and Waschbüsch in [12]. For an algebra A
denote by D = HomK(−,K) the standard duality on mod(A). Recall that

the repetitive algebra Â of A is the selfinjective, locally finite-dimensional
matrix algebra without identity defined by

Â =



· 0
· ·
· ·
· Ai−1
Ei−1 Ai

Ei Ai+1

· ·
· ·

0 · ·


where matrices have only finitely many nonzero entries, Ai = A, Ei =

ADAA for all integers i, all the remaining coefficients are zero, and the
multiplication is induced from the canonical bimodule structure of DA and
the zero morphism DA⊗A DA→ 0.

One of the interesting problems concerning repetitive algebras is a clas-
sification of locally bounded K-categories which are stably equivalent to a
given repetitive algebra. The problem was studied by several authors (see
[1, 2, 14, 20, 21]). Wakamatsu proved in [21] that if A is tilting-cotilting

equivalent to B then Â is stably equivalent to B̂. Peng and Xiao proved in
[14] that if H is a hereditary algebra and Λ is a locally bounded K-category

which is stably equivalent to Ĥ, then there is an algebra B tilting-cotilting
equivalent to H such that B̂ ∼= Λ. We shall prove the following theorem on
locally bounded K-categories stably equivalent to the repetitive algebras of
tubular algebras in the sense of Ringel [18].

Theorem. Let A be a tubular algebra. A locally bounded K-category
Λ is stably equivalent to Â if and only if Λ is isomorphic to the repetitive
algebra B̂ of a tubular algebra B which is tilting-cotilting equivalent to A.

Our proof of the above result rests heavily on the main results obtained
in [15, 16] for trivial extension algebras. In the case when Λ is a repetitive
algebra the above theorem has been proved in [2].



STABLY EQUIVALENT CATEGORIES 125

We shall use freely results about Auslander–Reiten sequences which can
be found in [3].

2. Preliminaries

2.1. Following Ringel [18], the canonical tubular algebras of type
(2, 2, 2, 2) are defined by the quiver
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with the relations α1α2+β1β2+γ1γ2 = 0 and α1α2+kβ1β2+δ1δ2 = 0, where
k is some fixed element from K \ {0, 1}. The canonical tubular algebras of
type (p,q, r) = (3,3,3), (2,4,4) or (2,3,6) are given by the quiver
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with α1α2 . . . αp + β1β2 . . . βq + γ1γ2 . . . γr = 0.

2.2. For the repetitive algebra Â the identity morphisms Ai → Ai−1,

Ei → Ei−1 induce an automorphism νA of Â which is called the Nakayama

automorphism. Moreover, the orbit space Â/(νA) has the structure of a
finite-dimensional K-algebra which is isomorphic to the trivial extension
T (A) of A by its minimal injective cogenerator bimodule ADAA. This is the
algebra whose additive structure coincides with that of the group A⊕DA,
and whose multiplication is defined by the formula (a, f)(b, g) = (ab, ag+fb)

for a, b ∈ A, f, g ∈ ADAA. Thus Â is a Galois cover in the sense of [9] of
the selfinjective algebra T (A) with the infinite cyclic group (νA) generated
by νA.

2.3. A locally bounded K-category R is said to be locally support-finite
[6] if for every indecomposable projective R-module P , the set of isomor-
phism classes of indecomposable projective R-modules P ′ such that there ex-
ists an indecomposable finite-dimensional R-module M with HomR(P,M) 6=
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0 6= HomR(P ′,M) is finite. Of particular interest is the fact that the repet-

itive algebra Â of a tubular algebra A is locally support-finite (see [13]). A
locally bounded K-category is said to be triangular if its ordinary quiver
has no oriented cycles.

2.4. Following Gabriel (see [9]), for a locally bounded K-category R
and a torsion-free group G of K-automorphisms of R acting freely on the
objects of R, R/G is the quotient category whose objects are the G-orbits
of the objects of R. Moreover, there is a covering functor F : R → R/G
which maps any object x of R to its G-orbit G · x. F induces the push-
down functor Fλ : mod(R) → mod(R/G), which preserves indecompos-
ables and Auslander–Reiten sequences, maps projective R-modules to pro-
jective R/G-modules and preserves projective resolutions. Furthermore, if
R is locally support-finite then Fλ is dense and induces a bijection between
the set (ind(R)/∼=)/G of the G-orbits of the isomorphism classes of finite-
dimensional indecomposable R-modules and the set ind(R/G)/∼= of the iso-
morphism classes of finite-dimensional indecomposable R/G-modules [6].

2.5. Let ΩR : mod(R) → mod(R) be Heller’s loop-space functor for a
selfinjective locally bounded K-category R. Then ΩRτ

−1
R ΩR(S) is simple

for every simple R-module S, where τ−1R stands for the Auslander–Reiten
translate TrD on mod(R). Thus we obtain a permutation of the isomor-
phism classes of the simple R-modules. This permutation induces a K-
automorphism νR of R in an obvious way. We denote by (νR) the infinite
cyclic group of K-automorphisms of R generated by νR.

3. Preparatory results

3.1. Throughout this section we shall assume that R1 and R2 are self-
injective locally bounded K-categories which are locally support-finite and
have no indecomposable projective modules of length 2. Moreover, there is
a fixed equivalence functor Φ : mod(R1)→ mod(R2).

3.2. Proposition. If M is an indecomposable nonprojective finite-di-
mensional R1-module then Φ(τR1(M)) ∼= τR2(Φ(M)) and Φ(ΩR1(M)) ∼=
ΩR2

(Φ(M)).

P r o o f. A direct adaptation of the arguments from the proofs of Propo-
sition 2.4 and Theorem 4.4 of [4].

3.3. Lemma. If τ−1R1
(M) 6∼= Ω−2R1

(M) for every indecomposable nonpro-
jective finite-dimensional R1-module M then (νR2) acts freely on the objects
of R2.

P r o o f. We have to show that ΩR2τ
−1
R2
ΩR2(S) 6∼= S for every simple R2-

module S. Suppose to the contrary that there exists a simple R2-module S
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with ΩR2
τ−1R2

ΩR2
(S) ∼= S. Then there exists a nonprojective indecompos-

able finite-dimensional R1-module M such that Φ(M) ∼= S, and we infer by
Proposition 3.2 that ΩR1

τ−1R1
ΩR1

(M) ∼= M , which contradicts our assump-

tion, because this isomorphism implies τ−1R1
(M) ∼= Ω−2R1

(M).

3.4. Lemma. Let F1 : mod(R1) → mod(R1) and F2 : mod(R2) →
mod(R2) be exact equivalences satisfying the following conditions:

(a) If F si : mod(Ri)→ mod(Ri), i = 1, 2, are defined by F si (X) = Fi(X)
for X ∈ mod(Ri), F

s
i (f) = Fi(f) for f : X → Y in mod(Ri), then F si are

well-defined functors which are equivalences.
(b) For every object X ∈ mod(R1), F s1 (X) ∼= Φ−1F s2Φ(X), where Φ−1 is

a fixed quasi-inverse of Φ.

Then F s1 and Φ−1F s2Φ are isomorphic functors.

P r o o f. In the first step of the proof we show that for every short exact
sequence

0→ U
w→ X

p→ V → 0

in mod(R1) with all terms without projective direct summands there are
w′ : Φ−1F s2Φ(U) → Φ−1F s2Φ(X) and p′ : Φ−1F s2Φ(X) → Φ−1F s2Φ(V ) such
that the following sequences are exact in mod(R1):

0→ F s1 (U)
F1(w)−→ F s1 (X)

F1(p)−→ F s1 (V )→ 0,

0→ Φ−1F s2Φ(U)
w′→ Φ−1F s2Φ(X)

p′→ Φ−1F s2Φ(V )→ 0,

where w′ = Φ−1F s2Φ(w) and p′ = Φ−1F s2Φ(p). The exactness of the first
sequence is obvious by the definition of F s1 , because F1 is exact.

In order to show the exactness of the second, we first show that w′ is
a monomorphism, where w′ is any representative of the coset Φ−1F s2Φ(w).
Suppose to the contrary that w′ is not a monomorphism. Then w′ = w′2w

′
1

with w′1 : Φ−1F s2Φ(U) → im(w′) an epimorphism and w′2 : im(w′) →
Φ−1F s2Φ(X) a monomorphism. Since w is a monomorphism, we infer by [17;
Lecture 3] that w 6= 0. Thus w′ = w′2w

′
1 6= 0 and there are W ∈ mod(R1)

and w1 : U → W , w2 : W → X such that Φ−1F s2Φ(wi) = w′i, i = 1, 2,
because Φ−1F s2Φ is an equivalence. Since w′1 is a proper epimorphism, we
have the following inequality for lengths: l(im(w′)) < l(Φ−1F s2Φ(U)). But
F1 is an additive exact equivalence, hence F1 preserves the lengths of R1-
modules. Therefore F s1 preserves the lengths of R1-modules without projec-
tive direct summands and so does Φ−1F s2Φ, because F s1 (M) ∼= Φ−1F s2Φ(M)
for any M ∈ mod(R1) by the assumption of our lemma. Consequently,
l(W ) = l(im(w′)) < l(U). But w − w2w1 factorizes through a projective
R1-module, say P . Thus there are q1 : U → P and q2 : P → X such that
w − w2w1 = q2q1. Since w is a monomorphism, there is q′1 : X → P such
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that q1 = q′1w. Then w − w2w1 = q2q1 = q2q
′
1w and w − q2q′1w = w2w1.

Hence (idX − q2q′1)w = w2w1. But (idX − q2q′1)w is a monomorphism, be-
cause idX − q2q′1 is an isomorphism. Therefore we obtain a contradiction,
because the monomorphism (idX−q2q′1)w factorizes through the module W
of length smaller than U . Consequently, w′ is a monomorphism.

Dually one proves that p′ is an epimorphism, where p′ is any represen-
tative of the coset Φ−1F s2Φ(p).

Since Φ−1F s2Φ preserves the lengths of R1-modules without projective
direct summands, showing that p′w′ = 0 is sufficient to show that the consid-
ered sequence is exact. Since pw = 0, we have pw = 0. Thus p′w′ = 0. Hence

there are a projective R1-module P and morphisms q1 : Φ−1F sΦ(U) → P
and q2 : P → Φ−1F s2Φ(V ) such that p′w′ = q2q1. Since w′ is a monomor-
phism and p′ is an epimorphism, there are morphisms q′2 : P → Φ−1F s2Φ(X)
and q′1 : Φ−1F s2Φ(X) → P such that p′w′ = q2q1 = p′q′2q

′
1w
′. Then putting

w′′ = (idX − q′2q′1)w′ we obtain p′w′′ = 0 and w′′ = w′.

In the second step of the proof we show that there is an isomorphism
f : F s1 → Φ−1F s2Φ given by a family (f(X))X∈mod(R1) of isomorphisms in
mod(R1) such that for every morphism u : X → Y in mod(R1) the diagram

F s1 (X)
f(X)−→ Φ−1F s2Φ(X)

F s1 (u) ↓ ↓Φ−1F s2Φ(u)

F s1 (Y )
f(Y )−→ Φ−1F s2Φ(Y )

commutes. We construct a family (f(X))X∈mod(R1) such that for every
X ∈ mod(R1) there is an isomorphism fX in mod(R1) with fX = f(X) and
such that for every short exact sequence

0→ U
w→ X

p→ V → 0

in mod(R1) the diagram with exact rows

0 → F s1 (U)
F1(w)→ F s1 (X)

F1(p)→ F s1 (V ) → 0

↓fU ↓fX ↓fV

0 → Φ−1F s2Φ(U)
w′→ Φ−1F s2Φ(X)

p′→ Φ−1F s2Φ(V ) → 0

commutes, where w′, p′ are as in the first step of the proof. This condition
is called the commutativity condition for fX .

Our construction will run inductively on the length of X in mod(R1). If
l(X) = 1 then X is a simple R1-module. Fix an isomorphism fX = f(X) :

F s1 (X) → Φ−1F s2Φ(X). Let u : X → X be a nonzero morphism. Since
X is simple, u is an automorphism. Thus Φ−1F s2Φ(u) = v, where v is an
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automorphism. But u is multiplication by ku ∈ K∗ = K \ {0}. Since

F s1 (idX) = idF s1 (X) and Φ−1F s2Φ(idX) = idΦ−1F s2Φ(X),

it follows that for u = idX · ku we have

F s1 (u) = idF s1 (X) · ku and Φ−1F s2Φ(idX · ku) = idΦ−1F s2Φ(X) · ku.

Thus for any f(X) we have f(X)F s1 (u) = Φ−1F s2Φ(u)f(X).
Now consider two isomorphic simple modules X,Y such that X 6= Y . For

every isomorphism class [X] of a simple R1-module X fix a representative,
say X. For every Y isomorphic to X fix an isomorphism uY : X → Y . Then
fix an isomorphism fX : F s1 (X)→ Φ−1F s2Φ(X), and for every Y ∈ [X] define
fY : F s1 (Y )→ Φ−1F s2Φ(Y ) by the formula

fY = f(Y ) = Φ−1F s2Φ(uY )f(X)F s1 (u−1Y ),

where fY is an arbitrary fixed representative of the coset f(Y ). If u : Z → Y
is an isomorphism with Y,Z ∈ [X] then for Z = X we have u = uY · ku for
some ku ∈ K∗. Thus F s1 (u) = F s1 (uY ) · ku and Φ−1F s2Φ(u) = Φ−1F s2Φ(uY ) ·
ku. Therefore f(Y ) = Φ−1F s2Φ(uY )f(X)F s1 (u−1Y ), which implies that

f(Y ) = (Φ−1F s2Φ(uY ) ·ku)f(X)(F s1 (u−1Y ) ·k−1u ) = Φ−1F s2Φ(u)f(X)F s1 (u−1Y ).

Thus f(Y )F s1 (u) = Φ−1F s2Φ(u)f(X).
Now consider the case Y = X. Then u = u−1Z · k−1u for some ku ∈ K∗.

Thus F s1 (u) = F s1 (u−1Z ) · k−1u and Φ−1F s2Φ(u) = Φ−1F s2Φ(u−1Z ) · k−1u . There-

fore f(Z) = Φ−1F s2Φ(uZ)f(X)F s1 (u−1Z ), which implies

f(Z)−1 = F s1 (uZ)f(X)−1Φ−1F s2Φ(u−1Z )

= (F s1 (uZ) · ku)f(X)−1(Φ−1F s2Φ(u−1Z ) · k−1u )

= F s1 (u)−1f(X)−1Φ−1F s2Φ(u).

Then

f(Z) = (Φ−1F s2Φ(u))−1f(X)F s1 (u)

and

Φ−1F s2Φ(u)f(Z) = f(X)Φ−1F s2Φ(u).

Finally, consider the case Z 6= X 6= Y . Then uY ·ku = uZ for some ku ∈
K∗. Moreover, we infer by the above considerations that f(Z)F s1 (uZ) =
Φ−1F s2Φ(uZ)f(X) and f(Y )F s1 (uuZ) = Φ−1F s2Φ(uuZ)f(X). But F s1 (uuZ)
= F s1 (u)F s1 (uZ) and Φ−1F s2Φ(uuZ) = Φ−1F s2Φ(u)Φ−1F s2Φ(uZ). Then we
get

f(Y )F s1 (u)f(Z)−1f(Z)F s1 (uZ) = Φ−1F s2Φ(u)Φ−1F s2Φ(uZ)f(X)

and f(Y )F s1 (u)f(Z)−1 = Φ−1F s2Φ(u). Consequently,
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f(Y )F s1 (u) = Φ−1F s2Φ(u)f(Z),

and for simple R1-modules X the family (f(X)) is constructed.
Assume now that a family (f(X)) is constructed for every X ∈ mod(R1)

with l(X) ≤ n. Consider Y ∈ mod(R1) with l(Y ) = n + 1. Let S be a
simple submodule of Y . For the nonsplittable short exact sequence

0→ S
w→ Y

p→ Y/S → 0,

where w is the inclusion monomorphism and p is the canonical epimorphism,
we have the short exact sequences

0→ F s1 (S)
F1(w)−→ F s1 (Y )

F1(p)−→ F s1 (Y/S)→ 0,

0→ Φ−1F s2Φ(S)
w′→ Φ−1F s2Φ(Y )

p′→ Φ−1F s2Φ(Y/S)→ 0

as in the first step of our proof. Let fS be an isomorphism such that
fS = f(S). Let fY/S be an isomorphism such that fY/S = f(Y/S). Let

P be the projective cover of F s1 (Y/S). Then there is an epimorphism
π : P → F s1 (Y/S). Furthermore, fY/Sπ : P → Φ−1F s2Φ(Y/S) is an
epimorphism too, because fY/S is an isomorphism. Thus there are mor-
phisms π1 : P → F s1 (Y ) and π2 : P → Φ−1F s2Φ(Y ) such that F1(p)π1 =
π and p′π2 = fY/Sπ. The morphisms π1, π2 are epimorphisms, because
top(F s1 (Y )) ∼= top(F s1 (Y/S)) and top(Φ−1F s2Φ(Y )) ∼= top(Φ−1F s2Φ(Y/S)).
Moreover, there is a submodule L of P such that there is an epimorphism
κ : L→ F s1 (S) and F1(w)κ = π1|L. Observe that p′π2(t) = 0 for every t ∈ L,
because p′π2(t) = fY/Sπ(t) = fY/SF1(p)π1(t) = fY/SF1(p)F1(w)κ(t) = 0.
Thus im(π2|L) ⊂ im(w′). Then π2|L= w′fSκ · k for some k ∈ K∗. Changing
w′ if necessary, we may assume that π2|L= w′fSκ, because if p′w′ = 0 then
p′w′ · k−1 = 0.

We define an isomorphism fY : F s1 (Y ) → Φ−1F s2Φ(Y ) in the following
way. For y ∈ F s1 (Y ) we can find t ∈ P such that π1(t) = y. Then we put
fY (y) = π2(t). Since ker(π1) ⊂ L and ker(π2) ⊂ L, we have ker(π1) =
ker(π2) = ker(κ) because π2 |L= w′fSκ and π1 |L= F1(w)κ. Therefore fY
is a well-defined R1-homomorphism. Since ker(π1) = ker(π2), fY is an
isomorphism. It is easy to see that the diagram

0 → F s1 (S)
F1(w)−→ F s1 (Y )

F1(p)−→ F s1 (Y/S) → 0

↓fS ↓fY ↓fY/S

0 → Φ−1F s2Φ(S)
w′→ Φ−1F s2Φ(Y )

p′→ Φ−1F s2Φ(Y/S) → 0

commutes.
Suppose now that we have a short exact sequence 0→ U

a→ Y
b→ V → 0.

If im(w) is contained in im(a) then there are R1-morphisms i : S → U and
r : Y/S → V such that the diagram
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0 → S
w→ Y

p→ Y/S → 0

↓i || ↓r

0 → U
a→ Y

b→ V → 0

commutes. Moreover, we deduce from the first step of the proof that there
are short exact sequences

0→ F s1 (U)
F1(a)−→ F s1 (Y )

F1(b)−→ F s1 (V )→ 0,

0→ Φ−1F s2Φ(U)
a′→ Φ−1F s2Φ(Y )

b′→ Φ−1F s2Φ(V )→ 0.

By the inductive assumption for some r′ : Φ−1F s2Φ(Y/S) → Φ−1F s2Φ(V )
such that r′ = Φ−1F s2Φ(r) we have r′fY/S = fV F1(r). Then r′fY/SF1(p) =
fV F1(r)F1(p). Since F1(r)F1(p) = F1(b), we have fV F1(b) = r′fY/SF1(p) =
r′p′fY , because it was shown above that fY/SF1(p) = p′fY . Observe that
b′ can be chosen in such a way that r′p′ = b′. Indeed, since b = rp, we
have b′ = Φ−1F s2Φ(b) = Φ−1F s2Φ(rp) = r′p′. Suppose that b′ − r′p′ 6= 0.
Then b′ − r′p′ factorizes through a projective R1-module Q. Since b′ is
an epimorphism by the first step of our proof and b′ − r′p′ = q2q1 with
q1 : Φ−1F s2Φ(Y )→ Q, q2 : Q→ Φ−1F s2Φ(V ), there is q′2 : Q→ Φ−1F s2Φ(Y )
such that q2q1 = b′q′2q1. Therefore r′p′ = b′ − b′q′2q1. Thus put b′′ =
b′(idΦ−1F s2Φ(Y )−q′2q1). Then b′′ = b′ and b′′ is an epimorphism. Moreover, if

we put a′′ = (idΦ−1F s2Φ(Y )−q′2q1)−1 then a′′ = a′ and a′′ is a monomorphism
with b′′a′′ = 0. Since b′′ = r′p′, we get fV F1(b) = b′′fY .

We deduce from the last commutative diagram by the snake lemma that
there is a commutative diagram with exact rows

0 → S
i→ U

c→ U/S → 0

|| ↓a ↓v

0 → S
w→ Y

p→ Y/S → 0.

By the inductive assumption v′fU/S = fY/SF1(v) for some v′. Thus

v′fU/SF1(c) = fY/SF1(v)F1(c).

Therefore v′fU/SF1(c) = fY/SF1(p)F1(a) and fY/SF1(p)F1(a) = p′fY F1(a),
since we proved that fY/SF1(p) = p′fY . Now observe that for a suitable c′

we have fU/SF1(c) = c′fU by the inductive assumption. But we may assume
that v′c′ = p′a′′. Indeed, suppose to the contrary that p′a′′ − v′c′ 6= 0 but
p′a′′ − v′c′ = 0. Thus this difference factorizes through a projective R1-

module, say Q1. Then there are z1 : Φ−1F s2Φ(U) → Q1 and z2 : Q1 →
Φ−1F s2Φ(Y/S) such that p′a′′ − v′c′ = z2z1. Since p′ is an epimorphism
by the first step of our proof, there is z′2 : Q1 → Φ−1F s2Φ(Y ) such that
p′z′2 = z2. Then replacing a′′ by a′1 = a′′ − z′2z1 we obtain p′a′1 = v′c′.
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Moreover, observe that a′1 is well-defined, because it is a monomorphism by
the first step of the proof and b′′a′1 = r′p′a′1 = r′v′c′ = 0 since r′v′ = 0.

Hence we may assume that p′a′′−v′c′ = 0. Therefore we obtain v′c′fU =
p′a′′fU . Furthermore,

p′a′′fU = v′c′fU = v′fU/SF1(c) = fY/SF1(v)F1(c)

= fY/SF1(p)F1(a) = p′fY F1(a).

Thus p′(a′′fU−fY F1(a)) = 0. Then d = (a′′fU−fY F1(a)) : U→Φ−1F s2Φ(Y )
and im(d)⊂ker(p′) = im(w′). Thus dF1(i) = 0, because dF1(i) = a′′fUF1(i)
− fY F1(a)F1(i) = a′′i′fS − fY F1(w). But a′′i′ = w′. Indeed, if a′′i′ − w′
6= 0 then it is a monomorphism by simplicity of Φ−1F s2Φ(S). On the other
hand, we know that a′′i′ − w′ = 0. Therefore we find that a monomorphism
factorizes through a projective module, which is impossible by [17; Lecture
3]. Then a′′i′fS − fY F1(w) = w′fS − fY F1(w) = 0.

Now we can consider the decompositions ofK-spaces F s1 (Y ) = im(F1(w))
⊕Y ′ and Φ−1F s2Φ(Y ) = im(w′)⊕Y ′′. Since fY is an R1-isomorphism, fY is
a K-linear isomorphism. Since w′fS = fY F1(w) and p′fY = fY/SF1(p), fY
restricted to Y ′ is a K-linear isomorphism of Y ′ to Y ′′. But if z ∈ im(F1(a))
∩ Y ′ then fY (z) ∈ Y ′′. Furthermore, we can consider the decomposition of
the K-space F s1 (U) = im(F1(w)) ⊕ U ′. Then by the inductive assumption
for the decomposition Φ−1F s2Φ(U) = im(i′) ⊕ U ′′ the restriction of fU to
U ′ is a K-linear isomorphism between U ′ and U ′′. Since a′′i′ = w′, we get
a′′fU (z) ∈ Y ′′, where z ∈ im(F1(w))∩ Y ′. Thus im(a′′fU − fY F1(a)) ⊂ Y ′′,
and so a′′fU − fY F1(a) = 0.

Now consider the case when im(a) does not contain im(w). First assume
that U is simple. Then we have the following commutative diagram with
exact rows and columns:

0 0
↓ ↓
U = U
↓a ↓a1

0 → S
w→ Y

p→ Y/S → 0

|| ↓b ↓b1
0 → S

w1→ V
p1→ V/S → 0

↓ ↓
0 0

By the inductive assumption,

a′1fU = fY/SF1(a1) = fY/SF1(p)F1(a) = p′fY F1(a),

where a′1 = Φ−1F s2Φ(a1) satisfies the required condition by the inductive
assumption. We may assume that p′1b

′ = b′1p
′, where a′, b′ are so chosen
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that the considered column of our diagram is exact after Φ−1F s2Φ has been
applied. Indeed, we know that p′1b

′ − b′1p′ = 0. Then if p′1b
′ − b′1p′ 6= 0 then

there are a projective R1-module Q and morphisms q1 : Φ−1F s2Φ(Y ) → Q
and q2 : Q→ Φ−1F s2Φ(Y ) such that p′1b

′−b′1p′ = p′1b
′q2q1, because p′1, b

′ are
epimorphisms by the first step of the proof. Denote by t the automorphism
idΦ−1F s2Φ(Y ) − q2q1. Then putting b′′ = b′t we get p′1b

′′ = b′1p
′. If we put

a′′ = t−1a′ then b′′a′′ = 0 and the sequence

0→ Φ−1F s2Φ(U)
a′′→ Φ−1F s2Φ(Y )

b′′→ Φ−1F s2Φ(V )→ 0

is exact again. Moreover, p′a′′ = a′1. Indeed, if p′a′′ − a′1 6= 0 then it factor-
izes through a projective R1-module, since p′a′′ − a′1 = 0. But U is simple
and hence the considered difference is a monomorphism which cannot fac-
torize through a projective module by [17; Lecture 3]. Thus p′a′′ = a′1.
Therefore p′a′′fU = p′fY F1(a). Then p′(a′′fU − fY F1(a)) = 0 and for
d = a′′fU − fY F1(a) we have im(d) ⊂ ker(p′) = im(w′). If we consider the
decompositions of the K-spaces F s1 (Y ) = im(F1(w))⊕Y ′ and Φ−1F s2Φ(Y ) =
im(w′)⊕ Y ′′ then fY , being a K-linear isomorphism, when restricted to Y ′

is a K-linear isomorphism between Y ′ and Y ′′. Moreover, F1(p), being a
K-linear morphism, when restricted to Y ′ is a K-linear isomorphism be-
tween Y ′ and F s1 (Y/S). Furthermore, p′, being a K-linear morphism, when
restricted to Y ′′ is a K-linear isomorphism between Y ′′ and Φ−1F s2Φ(Y/S).
Then im(a′′) ⊂ Y ′′ by the equality p′a′′ = a′1. Thus im(a′′fU ) ⊂ Y ′′. Since
im(F1(a)) ⊂ Y ′, we have im(fY F1(a)) ⊂ Y ′′, because we already proved
that p′fY = fY/SF1(p). Therefore im(a′′fU − fY F1(a)) ⊂ Y ′′, and so it is
zero. Consequently, a′′fU = fY F1(a).

Now we infer by the inductive assumption that p′1fV =fV/SF1(p1). Then

p′1fV F1(b) = fV/SF1(p1)F1(b) = fV/SF1(b1)F1(p) = b′1fY/SF1(p), where
p′1 and b′1 are well-defined morphisms in the inductive step. Furthermore,
b′1fY/SF1(p) = b′1p

′fY . Since b′1p
′ = p′1b

′′, we have p′1fV F1(b) = p′1b
′′fY .

Then p′1(fV F1(b)−b′′fY )= 0. Then im(fV F1(b)−b′′fY )⊂ ker(p′1)= im(w′1).

Consider the decompositions of K-linear spaces F s1 (Y ) = im(F1(w))⊕Y ′,
Φ−1F s2Φ(Y ) = im(w′) ⊕ Y ′′. Since a′′fU = fY F1(a), we have p′a′′fU =
p′fY F1(a) = fY/SF1(p)F1(a) = fY/SF1(a1). Therefore p′a′′fU is a mono-
morphism, and so im(a′′fU ) ⊂ Y ′′. Then we consider the decompositions
of K-linear spaces Y ′ = im(F1(a)) ⊕ Y ′1 and Y ′′ = im(a′′fU ) ⊕ Y ′′1 . Clear-
ly F s1 (V ) ∼= im(F1(w)) ⊕ Y ′1 and Φ−1F s2Φ(V ) ∼= im(w′) ⊕ Y ′′1 as K-spaces,
because p′1b

′′a′′fU = b′1p
′a′′fU = b′1a

′
1fU = 0. Since w′fS = fY F1(w) and

a′′fU = fY F1(a), the K-linear morphism fY restricted to im(F1(w)) yields
an isomorphism between im(F1(w)) and im(w′). Moreover, the K-linear
morphism fY restricted to Y ′1 yields an isomorphism between Y ′1 and Y ′′1 .
Moreover, F1(b) and b′′ are K-linear isomorphisms between im(F1(w))⊕Y ′1



134 Z. POGORZA lY

and F s1 (V ), im(w′) ⊕ Y ′′1 and Φ−1F s2Φ(V ), respectively. They have the
property that F1(b)|Y ′1 : Y ′1 → V ′, b′′|Y ′′1 : Y ′′1 → V ′′ are isomorphisms, where

F s1 (V ) = im(F1(w1)) ⊕ V ′ and Φ−1F s2Φ(V ) = im(w′1) ⊕ V ′′ are decompo-
sitions of K-spaces. Therefore fV F1(b)(z) ∈ V ′′ for every z ∈ Y ′1 , because
p′1fV = fV/SF1(p1) by the inductive assumption and F1(p1) is a K-linear
isomorphism between V ′ and F s1 (V/S). Furthermore, b′′fY (z) ∈ V ′′ for ev-
ery z ∈ Y ′1 . Then im((fV F1(b) − b′′fY )|Y ′1 ) = 0, because we have already
proved that im(fV F1(b) − b′′fY ) ⊂ im(w′1). But if z ∈ im(F1(w)) then
b′′fY (z) = b′′fY F1(w)(z1), z1 ∈ F s1 (S), and

b′′fY F1(w)(z1) = b′′w′fS(z1) = w′1fS(z1) = fV F1(w1)(z1)

= fV F1(b)F1(w)(z1) = fV F1(b)(z).

Consequently, fV F1(b) = b′′fY . If U is not simple then take a simple sub-
module T of U . Since we proved the required condition for simple T , we may
repeat the arguments from the case im(a) ⊃ im(w) for U , with T instead of
S. Thus we have finished the proof of the commutativity condition for fY .

Now we show that the required squares are commutative. First consider
the case when F s1 (u) : F s1 (Y ) → F s1 (Z) is an isomorphism. Then clearly so
is u : Y → Z. Let S be a simple direct summand in the socle of Y . We have
the short exact sequence

0→ S
w→ Y

p→ Y/S → 0.

Denote by S1 the simple submodule uw(S) of Z. Then the following diagram
is commutative:

0 → S
w→ Y

p→ Y/S → 0

↓u1 ↓u ↓u2

0 → S1
v→ Z

q→ Z/S1 → 0,

where u1 = uw, v is inclusion, q is the canonical epimorphism and u2 is
some isomorphism. By the inductive assumption, u′1fS = fS1

F1(u1) and
u′2fY/S = fZ/S1

F1(u2). We show that u′fY = fZF1(u) for u′ = Φ−1F s2Φ(u).
As above, we can show that there are v′ and q′ such that the following
diagrams are commutative:

0 → F s1 (S)
F1(w)−→ F s1 (Y )

F1(p)−→ F s1 (Y/S) → 0
F1(u1) ↓ F1(u) ↓ F1(u2) ↓

0 → F s1 (T )
F1(v)−→ F s1 (Z)

F1(q)−→ F s1 (Z/T ) → 0

0 → Φ−1F s2Φ(S)
w′→ Φ−1F s2Φ(Y )

p′→ Φ−1F s2Φ(Y/S) → 0
u′1 ↓ u′ ↓ u′2 ↓

0 → Φ−1F s2Φ(T )
v′→ Φ−1F s2Φ(Z)

q′→ Φ−1F s2Φ(Z/T ) → 0
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Now consider the decompositions of K-spaces F s1 (Y ) = im(F1(w))⊕ Y ′,
F s1 (Z) = im(F1(v))⊕Z ′, Φ−1F s2Φ(Y ) = im(w′)⊕ Y ′′, Φ−1F s2Φ(Z) = im(v′)
⊕ Z ′′. Take y ∈ im(F1(w)). Then u′fY (y) = u′fY F1(w)(y1), y1 ∈ F s1 (S).
Furthermore,

u′fY F1(w)(y1) = u′w′fS(y1) = v′u′1fS(y1) = v′fTF1(u1)(y1)

= fZF1(v)F1(u1)(y1) = fZF1(u)F1(w)(y1) = fZF1(u)(y).

If y ∈ Y ′ then u′fY (y) = u′fY F1(p)−1(y1), where y1 ∈ F s1 (Y/S) and F1(p)−1

is the linear inverse of F1(p) restricted to Y ′. Then u′fY F1(p)−1(y1) =
u′(p′)−1fY/S(y1), where (p′)−1 is the linear inverse of p′ restricted to Y ′′.
But u′(p′)−1 = (q′)−1u′2, where (q′)−1 is the linear inverse of q′ restricted
to Z ′′. Thus

u′(p′)−1fY/S(y1) = (q′)−1u′2fY/S(y1) = (q′)−1fZ/TF1(u2)F1(p)(y)

= (q′)−1fZ/TF1(q)F1(u)(y) = (q′)−1q′fZF1(u)(y)

= fZF1(u)(y).

Consequently, u′fY = fZF1(u), and so Φ−1F s2Φ(u)f(Y ) = f(Z)F s1 (u).
Now suppose that there is 0 6= u : Y → Z which is not an isomorphism

and l(Z) ≤ l(Y ). Since we have a decomposition u = a2a1 with an epimor-
phism a1 : Y → im(u) and a monomorphism a2 : im(u) → Z, it is enough
to assume that u is either an epimorphism or a monomorphism. But if u is
an epimorphism then there is a short exact sequence

0→ V
v→ Y

u→ Z → 0

with V = ker(u). Then by the commutativity condition for fY there is u′

such that u′fY = fZF1(u). Thus Φ−1F s2Φ(u)f(Y ) = f(Z)F s1 (u). The same
arguments can be applied for a monomorphism u. Consequently, our lemma
is proved by induction.

3.5. Lemma. Let F1 : mod(R1) → mod(R1) and F2 : mod(R2)
→ mod(R2) be exact equivalences satisfying the conditions (a) and (b) of
Lemma 3.4. Then there is a quasi-inverse Φ−11 of Φ such that F s1 (X) =
Φ−11 F s2Φ(X) for every object X ∈ mod(R1).

P r o o f. First we construct a functor ∆ : mod(R1)→ mod(R1) such that
F s1 (X) = ∆Φ−1F s2 (X) for every X ∈ mod(R1). We know from Lemma 3.4
that F s1

∼= Φ−1F s2Φ. Fix an isomorphism f : F s1 → Φ−1F s2Φ. For every X ∈
mod(R1) either there is Y ∈ mod(R1) such that X = Φ−1F s2Φ(Y ) or X does
not lie in the image of Φ−1F s2Φ. If X = Φ−1F s2Φ(Y ) then we put ∆(X) =
F s1 (Y ). If X is not contained in the image of Φ−1F s2Φ then we put ∆(X) =
X. If h : X1 → X2 is a morphism in mod(R1) and Xi = Φ−1F s2Φ(Yi),
i = 1, 2, then we put ∆(h) = t, where t = f(X2)−1Φ−1F s2Φ(h)f(X1). If
h : X1 → X2 is a morphism in mod(R1) and X1 does not lie in the image
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of Φ−1F s2Φ and X2 = Φ−1F s2Φ(Y2) then ∆(h) = f(X2)−1h. If h : X1 → X2,
X1 = Φ−1F s2Φ(Y1) and X2 is not contained in the image of Φ−1F s2Φ then
∆(h) = hf(X1). If h : X1 → X2 is a morphism in mod(R1) and X1, X2 do
not lie in the image of Φ−1F s2Φ then we put ∆(h) = h.

A simple verification shows that ∆ is a well-defined functor. Moreover,
∆ is dense since F s1 is dense. Furthermore, ∆ is fully faithful since F s1 and
Φ−1F s2Φ are. Thus ∆ is an equivalence. Consequently, ∆Φ−1 = Φ−11 is a
quasi-inverse of Φ. Indeed, Φ−11 Φ(X) ∼= Φ−1Φ(X) for every X ∈ mod(R1)
by the definition of ∆. Hence Φ−11 Φ(X) ∼= X. If φ : 1mod(R1) → Φ−1Φ is
an isomorphism of functors then fix an isomorphism α(X) : Φ−1Φ(X) →
Φ−11 Φ(X) for every X ∈ mod(R1) and define φ1 : 1mod(R1) → Φ−11 Φ by
φ1(X) = α(X)φ(X) for every X ∈ mod(R1). Thus for every morphism
u : X → Z we have to check whether the diagram

X
φ1(X)−→ Φ−11 Φ(X)

u ↓ ↓Φ
−1
1 Φ(u)

Z
φ1(Z)−→ Φ−11 Φ(Z)

commutes. Clearly it is sufficient to prove that the diagram

Φ−1Φ(X)
α(X)−→ Φ−11 Φ(X)

Φ−1Φ(u) ↓ ↓Φ
−1
1 Φ(u)

Φ−1Φ(Z)
α(Z)−→ Φ−11 Φ(Z)

commutes. If Φ−1Φ(X) = Φ−1F s2Φ(Y ) and Φ−1Φ(Z) = Φ−1F s2Φ(W ) then
for α(X) = f(X)−1 and α(Z) = f(Z)−1 the above diagram commutes.
If Φ−1Φ(X) = Φ−1F s2Φ(Y ) and Φ−1Φ(Z) is not contained in the image
of Φ−1F s2Φ then for α(X) = f(X)−1 and α(Z) = 1Φ−1Φ(Z) the diagram
commutes. If Φ−1Φ(X) is not contained in the image of Φ−1F s2Φ and
Φ−1Φ(Z) = Φ−1F s2Φ(W ) then for α(X) = 1Φ−1Φ(X) and α(Z) = f(Z)−1

the above diagram commutes. If neither Φ−1Φ(X) nor Φ−1Φ(Z) lies in the
image of Φ−1F s2Φ then for α(X) = 1Φ−1Φ(X) and α(Z) = 1Φ−1Φ(Z) the re-

quired commutativity holds. Thus for the isomorphism α : Φ−1Φ → Φ−11 Φ
chosen above φ1 is an isomorphism of functors. Similarly we show that there
is an isomorphism ψ1 : 1mod(R2) → ΦΦ−11 . This finishes our proof.

3.6. Proposition. Let F1 : mod(R1)→ mod(R1) and F2 : mod(R2)→
mod(R2) be exact equivalences satisfying the following conditions:

(a) If F si : mod(Ri)→ mod(Ri), i = 1, 2, is defined by F si (X) = Fi(X),
X ∈ mod(Ri), F

s
i (f) = Fi(f), f : X → Y a morphism in mod(Ri), then

F si is an equivalence.



STABLY EQUIVALENT CATEGORIES 137

(b) For every object X ∈ mod(R1), F s1 (X) ∼= Φ−1F s2Φ(X), where Φ−1 is
a quasi-inverse of Φ.

Then there is an equivalence Φ′ : mod(R1)→ mod(R2) such that Φ′F s1 =
F s2Φ

′.

P r o o f. By Lemma 3.5 there is a quasi-inverse Φ−11 of Φ such that
F s1 (X) = Φ−11 F s2Φ(X) for every X ∈ mod(R1). We deduce from Lemma 3.4
that F s1 and Φ−11 F s2Φ are isomorphic functors. Then there is an isomorphism
f : F s1 → Φ−1F s2Φ. We define Φ′ : mod(R1) → mod(R2) by the formula
Φ′ = (F s2 )−1ΦF s2 . It is easy to verify that Φ−1 is a quasi-inverse of Φ′.
Then f : F s1 → Φ−1F s2Φ

′ yields the equality of functors and the proposition
follows.

3.7. Proposition. If νR1 and νR2 act freely on the objects of R1 and
R2, respectively , then R1/(νR1

) and R2/(νR2
) are stably equivalent.

P r o o f. Observe that, under our assumptions, the action of (νRi) on
Ri induces the Nakayama functor NRi : mod(Ri) → mod(Ri) given by
the formula NRi = DHomRi(−, Ri) (see [8; 2.1]). Furthermore, NRi is an
exact equivalence such that N s

Ri
: mod(Ri) → mod(Ri) is an equivalence.

Then N s
Ri
∼= Ω−2Ri τRi by [8; 2.5]. Thus we deduce from Proposition 3.2 that

for every object X ∈ mod(Ri) we have N s
R1

(X) ∼= Φ−11 N s
R2
Φ(X) for some

quasi-inverse Φ−11 of Φ. Therefore, by Proposition 3.6, ΦN s
R1

= N s
R2
Φ. Thus

ΦN s
R1

(X) = N s
R2
Φ(X) for every X ∈ mod(R1). But the push-down functor

Fλ,i : mod(Ri) → mod(Ri/(νRi)) is induced by NRi . Hence Fλ,i maps
every NRi -orbit of an Ri-module M onto one Ri/(νRi)-module Fλ,i(M).
Consequently, Φ maps the NR1

-orbits of nonprojective R1-modules onto
NR2

-orbits of nonprojective R2-modules, because ΦN s
R1

(X) = N s
R2
Φ(X)

for every X ∈ mod(R1). Furthermore, Φ maps the N s
R1

-orbits of morphisms
in mod(R1) onto the N s

R2
-orbits of morphisms in mod(R2), because by the

definition of NRi a morphism f : X → Y in mod(Ri) factorizes through a
projective Ri-module iff Fλ,i(f) : Fλ,i(X) → Fλ,i(Y ) factorizes through a
projective Ri/(νRi)-module.

Now we can define a functor Ψ : mod(R1/(νR1
)) → mod(R2/(νR2

)) as
follows. For every indecomposableM in mod(R1/(νR1

)) there is an indecom-

posable R1-module M̃ which is nonprojective and satisfies Fλ,1(M̃) = M .

Then we put Ψ(M) = Fλ,2Φ(M̃). If M = M1 ⊕ . . .⊕Mn ∈ mod(R1/(νR1))
with Mj indecomposable, j = 1, . . . , n, then we put Ψ(M) = Ψ(M1)⊕ . . .⊕
Ψ(Mn). If f : M → N is a morphism in mod(R1/(νR1

)) then there is a

morphism f̃ : M̃ → Ñ in mod(R1) such that f = Fλ,1(f̃). Then there is

h = Φ(f̃) and we put Ψ(f) = Fλ,2(h). Since Φ maps the NR1
-orbits of inde-

composable nonprojective R1-modules onto NR2-orbits of indecomposable
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nonprojective R2-modules and the N s
R1

-orbits of morphisms in mod(R1)
onto the N s

R2
-orbits of morphisms in mod(R2), the above definition does

not depend on the choice of M̃ and f̃ .

Observe that Ψ : mod(R1/(νR1))→ mod(R2/(νR2)) is a functor. Indeed,

Ψ(idM ) = idΨ(M) since for Fλ,1(M̃) = M we have Fλ,1(id
M̃

) = idM . Then

Φ(id
M̃

) = id
Φ(M̃)

since Φ is a functor. Thus Fλ,2(id
Φ(M̃)

) = id
Fλ,2Φ(M̃)

.

If f1 : M → N and f2 : N → L are morphisms in mod(R1/(νR1
)) then

Fλ,1(f̃2f1) = f2f1 with f̃2f1 = f̃2f̃1. Thus Φ(f̃2f̃1) = Φ(f̃2f1) = h = h2h1

with Φ(f̃i) = hi, i = 1, 2. Therefore

Ψ(f2f1) = Fλ,2(h2h1) = Fλ,2(h2)Fλ,2(h1) = Ψ(f2)Ψ(f1).

Since R1 and R2 are locally support-finite, Ψ is dense.

Observe that if 0 6= f : M → N in mod(R1/(νR1
)) then f̃ 6= 0 for every

f̃ such that Fλ,1(f̃) = f . Hence Φ(f̃) 6= 0 since Φ is an equivalence. Thus

Φ(f̃) = h 6= 0 and clearly Fλ,2(h) 6= 0. Therefore Ψ(f) 6= 0, which shows

that Ψ is faithful. If 0 6= t : Ψ(M)→ Ψ(N) for some M,N ∈ mod(R1/(νR1))

then there are M̃, Ñ ∈ mod(R1) with Fλ,2Φ(M̃) = Ψ(M) and Fλ,2Φ(Ñ) =

Ψ(N). But there is t̃ : Φ(M̃) → Φ(Ñ) such that t = Fλ,2(t̃). Since Φ is

an equivalence, there is 0 6= f̃ : M̃ → Ñ such that Φ(f̃) = t̃. If we put

f = Fλ,1(f̃) then Ψ(f) = t. Consequently, Ψ is full and the proposition
follows.

3.8. Proposition. If R1 and R2 are triangular selfinjective locally
support-finite K-categories with free actions of (νR1) and (νR2), respec-
tively , and R1/(νR1

) ∼= R2/(νR2
) then R1

∼= R2.

P r o o f. Fix some representatives {Pi}i∈I of the isomorphism classes of
indecomposable projective R1-modules and some representatives {Qj}j∈J
of the isomorphism classes of the indecomposable projective R2-modules.
Then R1

∼= EndR1
(
⊕

i∈I Pi)
op and R2

∼= EndR2
(
⊕

j∈J Qj)
op. Let Fλ,t :

mod(Rt)→ mod(Rt/(νRt)), t = 1, 2, be the push-down functors induced by
the actions of (νRt) on Rt. Fix some i0 ∈ I. Let LFλ,1(Pi0) = Fλ,2(Qj0) for a
fixed j0 ∈ J , where L : mod(R1/(νR1

))→ mod(R2/(νR2
)) is the equivalence

induced by a fixed isomorphism from R1/(νR1
) onto R2/(νR2

). Let R1,1 be
the subcategory of R1 formed by Pi0 and the Pi, Pi′ such that the following
conditions are satisfied:

(a) there is a nonzero morphism fi : Pi → Pi0 of the form fi = f∗f ′i ,
where f ′i : Pi → rad(Pi0) satisfies πi0f

′
i 6= 0 for the canonical epimorphism

πi0 : rad(Pi0) → top(rad(Pi0)), and f∗ : rad(Pi0) → Pi0 is the identity
monomorphism;
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(b) there is a nonzero morphism hi′ : Pi0 → Pi′ of the form h′′i′h
′
i′ ,

where h′i′ : Pi0 → rad(Pi′) satisfies πi′h
′
i′ 6= 0 for the canonical epimorphism

πi′ : rad(Pi′) → top(rad(Pi′)), and h′′i′ : rad(Pi′) → Pi′ is the identity
monomorphism.

If P, P ′ are objects of R1,1 then HomR1,1
(P, P ′) is the subspace of

HomR1
(P, P ′) generated by the isomorphisms between P and P ′ and the

morphisms of the form t = t1t2, where t1 = hi′ for some i′ and t2 is an
automorphism of Pi0 , or t2 = fi for some i and t1 is an automorphism of
Pi0 , or else t1 = hi′ for some i′ and t2 = fi for some i. Since R1 is locally
support-finite, R1,1 is finite.

Let R2,1 be the subcategory of R2 formed by Qj0 and the Qj , Qj′ such
that the following conditions are satisfied:

(a) there is a nonzero morphism rj : Qj → Qj0 of the form rj = r∗r′j ,
where r′j : Qj → rad(Qj0) satisfies κj0r

′
j 6= 0 for the canonical epimorphism

κj0 : rad(Qj0) → top(rad(Qj0)), and r∗ : rad(Qj0) → Qj0 is the identity
monomorphism;

(b) there is a nonzero morphism sj′ : Qj0 → Qj′ of the form s′′j′s
′
j′ , where

s′j′ : Qj0 → rad(Qj′) satisfies κj′s
′
j′ 6= 0 for the canonical epimorphism

κj′ : rad(Qj′) → top(rad(Qj′)), and s′′j′ : rad(Qj′) → Qj′ is the identity
monomorphism.

If Q,Q′ are objects of R2,1 then HomR2,1(Q,Q′) is the subspace of
HomR2(Q,Q′) generated by the isomorphisms between Q and Q′ and the
morphisms of the form w = w1w2, where w1 = sj′ for some j′ and w2 is an
automorphism of Qj0 , or w2 = rj for some j and w1 is an automorphism of
Qj0 , or else w1 = sj′ for some j′ and w2 = rj for some j. Since R2 is locally
support-finite, R2,1 is finite.

Observe that if Pi1 ∈ R1,1 and HomR1,1
(Pi1 , Pi0) 6= 0 then there is a

unique Qj1 ∈ R2,1 with HomR2,1
(Qj1 , Qj0) 6= 0 and LFλ,1(Pi1) ∼= Fλ,2(Qj1).

Indeed, if there are Qj1 , Qj2 ∈ R2,1 with HomR2,1
(Qjl , Qj0) 6= 0 and

LFλ,1(Pi1) ∼= Fλ,2(Qjl), l = 1, 2, then there is z ∈ Z such that νzR2 (Qj1) =
Qj2 . Furthermore, there are 0 6= rjl : Qjl → Qj0 , l = 1, 2, such that rjl fac-
torize through rad(Qj0) by the definition of R2,1. Hence top(Qjl) are direct
summands in top(rad(Qj0)). Then for z > 0 we get a sequence Q′1, . . . , Q

′
z

of indecomposable projective R2-modules such that soc(Q′m) ∼= top(Q′m−1),
m = 2, . . . , z, top(Qj1) ∼= soc(Q′1), top(Q′z)

∼= soc(Qj2). But top(Qj0) ∈
supp(Q′1), R2 is not triangular, which contradicts our assumption. Simi-
larly we obtain a contradiction if z < 0. Thus z = 0 and Qj1 = Qj2 .

Dually one proves that if Pi′1 ∈ R1,1 and HomR1,1
(Pi0 , Pi′1) 6= 0 then

there is a unique Qj′1 ∈ R2,1 with HomR2,1
(Qj0 , Qj′1) 6= 0 and LFλ,1(Pi′1) ∼=

Fλ,2(Qj′1).



140 Z. POGORZA lY

Now we define a functor F1 : R1,1 → R2,1 putting F1(Pi0) = Qj0 ,
F1(Pi1) = Qj1 , F1(Pi′1) = Qj′1 for the objects of R1,1. If P, P ′ ∈ R1,1 then
HomR1,1

(P, P ′) either consists of isomorphisms (if P = P ′) or is generated
by the above t. If P = P ′ then HomR1,1

(P, P ) ∼= K ·idP ∼= K ·idFλ,1(P ) as K-
spaces. Then K · idFλ,1(P )

∼= K · idLFλ,1(P )
∼= K · idF1(P ) as K-spaces. Hence

for every f ∈ HomR1,1(P, P ) there is exactly one r ∈ HomR2,1(F1(P ), F1(P ))
such that LFλ,1(f) = Fλ,2(r). Thus we put F1(f) = r. If P 6= P ′ then we
construct F1 for the morphisms of the form t = t′′t′, where t′ : P → rad(P ′)
satisfies πt′ 6= 0 for the canonical epimorphism π : rad(P ′) → top(rad(P ′))
and t′′ : rad(P ′) → P ′ is inclusion. For such a t, there is a unique r :
F1(P ) → F1(P ′) in HomR2,1(F1(P ), F1(P ′)) such that LFλ,1(t) = Fλ,2(r).
Indeed, if r1, r2 satisfy LFλ,1(t) = Fλ,2(r1) = Fλ,2(r2) then there are r′1, r

′
2 :

F1(P ) → rad(F1(P ′)) such that π′r′1, π
′r′2 6= 0 for the canonical projec-

tion π′ : rad(F1(P ′)) → top(rad(F1(P ′))). Furthermore, for the inclusion
r′′ : rad(F1(P ′))→ F1(P ′) we have r1 = r′′r′1 and r2 = r′′r′2. But if r′1 6= r′2
then Fλ,2(r′1) 6= Fλ,2(r′2), because R2 is triangular and Fλ,2 is induced by
the action of (νR2). Thus Fλ,2(r1) 6= Fλ,2(r2) for r1 6= r2. Consequently,
r1 = r2 if Fλ,2(r1) = Fλ,2(r2). Then we put F1(t) = r. If t = t1t2 is a
composition of either an isomorphism and a morphism of the above form or
two morphisms of the above form then we put F1(t) = F1(t1)F1(t2). Finally,
we extend F1 linearly to a K-functor. It is clear by the above considerations
that we have obtained a functor F1 : R1,1 → R2,1 which is dense and fully
faithful. Thus F1 yields an equivalence of categories.

Assume now that we defined a subcategory R1,n in R1 such that for
every pair P, P ′ of objects from R1,n either P = P ′ and HomR1,n

(P, P ′)
consists only of automorphisms, or P 6= P ′ and HomR1,n(P, P ′) is generated
by the morphisms of the form t = ts . . . t2t1 such that:

(i) tl : Pl → Pl+1 for some objects P1, . . . , Ps+1 of R1,n, where P1 = P ,
Ps+1 = P ′;

(ii) tl = t′′l t
′
l, l = 1, . . . , s, and t′l : Pl → rad(Pl+1) satisfies πl+1t

′
l 6= 0 for

the canonical epimorphism πl+1 : rad(Pl+1)→ top(rad(Pl+1));

(iii) t′′l : rad(Pl+1)→ Pl+1 is inclusion for l = 1, . . . , s.

Moreover, assume that we have defined a subcategory R2,n of R2 satis-
fying the above conditions for morphisms, and a functor Fn : R1,n → R2,n

which is a K-linear equivalence and maps the generators of HomR1,n
(P, P ′)

to the generators of HomR2,n(Fn(P ), Fn(P ′)).

Define a subcategory R1,n+1 of R1 in the following way. The objects
of R1,n+1 are those of R1,n and additionally the objects P of R1 such that
either there is a nonzero morphism t : P → P ′ with P ′ in R1,n and t =
t′′t′, where t′ : P → rad(P ′) satisfies π′t′ 6= 0 for the canonical projection
π′ : rad(P ′) → top(rad(P ′)) and t′′ : rad(P ′) → P ′ is inclusion, or there is
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a nonzero morphism h : P ′ → P with P ′ ∈ R1,n and h = h′′h′, where
h′ : P ′ → rad(P ) satisfies πh′ 6= 0 for the canonical epimorphism π :
rad(P ) → top(rad(P )) and h′′ : rad(P ) → P is inclusion. For every P, P ′′

from R1,n+1, HomR1,n+1(P, P ′′) is generated by the isomorphisms between P
and P ′′ and the compositions h = hs . . . h1 which satisfy conditions (i)–(iii)
above.

In the same way we define a subcategory R2,n+1 of R2. Then repeating
the arguments used for R1,1 and R2,1 we find that for every P ∈ R1,n+1 such
that there is a nonzero morphism t : P → P ′ with P ′ ∈ R1,n there is a unique
Q ∈ R2,n+1 such that there is a nonzero morphism r : Q→ Fn(P ′) in R2,n+1

and LFλ,1(P ) ∼= Fλ,2(Q). Furthermore, for every P ∈ R1,n+1 such that there
is a nonzero morphism h : P ′ → P in R1,n+1 with P ′ ∈ R1,n there is a unique
Q ∈ R2,n+1 such that there is a nonzero morphism r : Fn(P ′)→ Q in R2,n+1

and LFλ,1(P ) ∼= Fλ,2(Q). Moreover, we also have the same uniqueness for
generating morphisms t : P → P ′ and h : P ′ → P with P ′ ∈ R1,n and
P ∈ R1,n+1 \R1,n.

Thus we define Fn+1 : R1,n+1 → R2,n+1 in the following way. For
every P ∈ R1,n+1 \ R1,n we put Fn+1(P ) = Q, where Q is as above.
For every P ′ ∈ R1,n we put Fn+1(P ′) = Fn(P ′). For P, P ′ ∈ R1,n+1

with P ∈ R1,n+1 \ R1,n and P ′ ∈ R1,n, if t : P → P ′ is a generator of
HomR1,n+1

(P, P ′) then we put Fn+1(t) = r, where r is the uniquely de-
termined generator of HomR2,n+1

(Fn+1(P ), Fn+1(P ′)). If h : P ′ → P is
a generator of HomR1,n+1(P ′, P ) then we put Fn+1(h) = r, where r is
the uniquely determined generator of HomR2,n+1(Fn+1(P ′), Fn+1(P )). If
t : P → P ′ is a generator of HomR1,n+1

(P, P ′) with P, P ′ ∈ R1,n then we put
Fn+1(t) = Fn(t). If t : P → P ′′ is an isomorphism with P, P ′′ ∈ R1,n+1\R1,n

then we put Fn+1(t) = r, where LFλ,1(t) = Fλ,2(r). Finally, we extend Fn+1

to a K-linear functor Fn+1 : R1,n+1 → R2,n+1 which is dense and fully faith-
ful. Thus Fn+1 yields an equivalence of categories.

Consequently, we construct inductively a functor F : R1 → R2 which is
dense and fully faithful since R1 and R2 are connected and locally support-
finite. The proposition follows.

4. The repetitive algebras of canonical tubular algebras

4.1. For a locally bounded K-category R, we shall not distinguish be-
tween an indecomposable R-module, its isomorphism class and the vertex of
ΓR corresponding to it. Moreover, we denote by Γ s

R the stable quiver of ΓR
obtained from ΓR by removing the τR-orbits of all projective modules, all
injective modules and the arrows attached to them. Following [7], a compo-
nent T of ΓR (respectively, of Γ s

R) is said to be a tube if T contains a cyclic
path and its geometrical realization |T| is homeomorphic to S1×R+

0 , where
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S1 is the unit circle and R+
0 is the set of nonnegative real numbers. A stable

tube of rank n ≥ 1 is a translation quiver of the form ZA∞/(τn). The stable
tubes of rank one are said to be homogeneous. A family T = (Ti)i∈I of tubes
in ΓR (respectively, in Γ s

R) is said to be standard if the full subcategory of
mod(R) (respectively, of mod(R)) is equivalent to the mesh-category K(T )
of T . Finally, we say that a family of tubes T = (Ti)i∈I in ΓR (respectively,
in Γ s

R) separates a family of components X from a family of components
Y if for any X ∈ X , Y ∈ Y and i ∈ I, every morphism from X to Y in
mod(R) (respectively, in mod(R)) can be factorized through a module Z in
the additive category add(Ti) and there is no nonzero morphism from Y to
X in mod(R) (respectively, in mod(R)).

4.2. Let A be a canonical tubular algebra of type T = (n1, . . . , nt) =

(2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). To describe the structure of mod(Â)
we need the following types of tubular families. A family T = (Tµ)µ∈P1(K),
P1(K) = K ∪ {∞}, of tubes in ΓÂ is said to be a tubular P1(K)-family of
type T if the following conditions are satisfied:

(1) The stable part T s of T is a disjoint union of stable tubes T s
µ , µ ∈

P1(K), such that t of these tubes have ranks n1, . . . , nt, and the remaining
ones are homogeneous.

(2) One of the following conditions holds:

(a) All tubes Tµ, µ ∈ P1(K), are stable.
(b) The tubes Tµ, µ ∈ K, are stable and T∞ admits a projective-

injective vertex.
(c) There are µ1, . . . , µt ∈ P1(K) such that the tubes Tµ with µ 6=

µ1, . . . , µt are stable and for each 1 ≤ i ≤ t, the tube Tµi admits
ni − 1 projective-injective vertices.

4.3. Proposition. Let A be a canonical tubular algebra of type T. Then

(a) ΓÂ =
⊔
q∈Q Tq where, for each q ∈ Q, Tq is a tubular P1(K)-family

Tq(µ), µ ∈ P1(K).
(b) For every q ∈ Q, Tq separates

⊔
q<i Tq from

⊔
i<q Tq.

(c) For each q ∈ Q \ Z, Tq is a standard family of stable tubes.

(d) For each q ∈ Z, Tq contains finitely many projective Â-modules.

P r o o f. This result was obtained in [10].

4.4. In [10] the following increasing map σ : Q→ Q was defined:

σ

(
m+

r

s

)
=


m+ 1 +

s− r
2s− 3r

if 0 ≤ 2r ≤ s,

m+ 2 +
2r − s
3r − s

if 1 ≤ r < s ≤ 2r.

We have the following lemma.
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Lemma. Let A be a canonical tubular algebra of type T. Then

(a) For every indecomposable nonprojective Â-module M in Tq the mod-
ule ΩÂ(M) belongs to Tσ(q).

(b) For every q ∈ Z, Tq+1/2 contains simple Â-modules.

(c) If 0 6= f : X → Y for two indecomposable nonprojective Â-modules

X,Y with X ∈ Tq1 , Y ∈ Tq2 then q2 − q1 ≤ 1 1
2 .

P r o o f. (a) is a consequence of [10; 4.9]. (b) is a consequence of Propo-
sition 4.3 and (a). In order to check (c) observe that if 0 6= f : X → Y

then there is a nonzero morphism h : τ−1
Â
ΩÂ(Y ) → X with fh = 0 by

[4; Proposition 4.1]. Thus (c) follows from (a).

4.5. If R is a locally bounded K-category which is stably equivalent to
the repetitive algebra Â of a canonical tubular algebra A then the stable
Auslander–Reiten quiver Γ s

R of R is isomorphic to Γ s
Â

. Thus Γ s
R =

⊔
q∈Q T ′q ,

and we have the following.

Lemma. For every r ∈ Q there are only finitely many isomorphism
classes of simple R-modules in

⊔
q∈[r,r+3]∩Q T ′q .

P r o o f. Suppose to the contrary that there are infinitely many noni-
somorphic simple R-modules in

⊔
q∈[r0,r0+3]∩Q T ′q for some r0 ∈ Q. Fix an

equivalence Φ : mod(Â)→ mod(R). It is easily seen that there is some s0 ∈
Q such that for every indecomposable nonprojective X ∈

⊔
q∈[s0,s0+3]∩Q Tq

we have Φ(X) ∈
⊔
q∈[r0,r0+3]∩Q T ′q . Moreover, if S1, . . . , Sn are all pair-

wise nonisomorphic simple Â-modules such that the top of every X ∈⊔
q∈[s0,s0+3]∩Q Tq belongs to add(S1, . . . , Sn) then there is an epimorphism

f : X → S with S ∼= Si, for some i = 1, . . . , n. Clearly f 6= 0 by [17;
Lecture 3], and so 0 6= Φ(f) : Φ(X) → Φ(S). Therefore for every simple
R-module T contained in

⊔
q∈[r0,r0+3]∩Q T ′q there is an injection of T into

some of the Φ(S1), . . . , Φ(Sn). Moreover, for every such T there is an injec-
tion into Φ(S1)⊕ . . .⊕Φ(Sn), which contradicts the finite-dimensionality of
Φ(S1)⊕ . . .⊕ Φ(Sn). Consequently, the lemma follows.

4.6. Corollary. For every r ∈ Q there are only finitely many isomor-
phism classes of R-modules of the form P/soc(P ) in

⊔
q∈[r,r+3]∩Q T ′q , where

P ranges over pairwise nonisomorphic indecomposable projective R-modules.

P r o o f. Obvious by Lemma 4.5, because P/soc(P ) ∼= τ−1R ΩR(top(P )).

4.7. Proposition. Let A be a canonical tubular algebra. If R is a locally
bounded K-category which is stably equivalent to the repetitive algebra Â of
A, then R is locally support-finite and selfinjective. Moreover , (νR) acts
freely on R.
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P r o o f. A more general version of this proposition is proved in [19;
Proposition 1]. But under our special assumptions we can give a simple
proof which we present for the convenience of the reader.

We shall show that there is a natural number d such that for any in-
decomposable R-module M there are at most d pairwise nonisomorphic
indecomposable projective R-modules P1, . . . , Pd with HomR(Pi,M) 6= 0,
i = 1, . . . , d. Let d denote the number of nonisomorphic indecomposable pro-
jective R-modules P such that P/soc(P ) ∈

⊔
q∈[r,r+3]∩Q T ′q . If M is an inde-

composable nonprojective R-module then M ∈ T ′q0 . For every indecompos-
able projective P with HomR(P,M) 6= 0 we have HomR(P/soc(P ),M) 6= 0.
If we consider 0 6= f : P/soc(P )→M then f = f2f1 with f1 : P/soc(P )→
im(f) an epimorphism and f2 : im(f) → M a monomorphism. Thus f1 6=
0 6= f2 and we infer by Lemma 4.4(c) that P/soc(P ) ∈

⊔
q∈[q0−3,q0]∩Q T

′
q .

Since d is finite by Corollary 4.6, it satisfies the above condition. The group
(νR) acts freely on R by Lemma 3.2 since τ−1

Â
(M) 6∼= Ω−2

Â
(M) for every

indecomposable nonprojective Â-module M by Lemma 4.4. Consequently,
the proposition follows, because the selfinjectivity of R is clear.

5. Proof of the theorem

5.1. We start this section with the following simple fact.

Lemma. Let A be a canonical tubular algebra. If Λ is a locally bounded
K-category which is stably equivalent to the repetitive algebra Â then Λ is
triangular.

P r o o f. It is sufficient to show that there is no oriented cycle of noniso-
morphisms in ΓΛ between projective vertices. Suppose to the contrary that

there is a cycle of nonzero nonisomorphisms P1
f1→ P2

f2→ . . .
ft−1→ Pt

ft→ P1

between indecomposable projective Λ-modules. Then by 4.5, Corollary 4.6
and Proposition 4.3, all P1, . . . , Pt are contained in the same component
C of ΓΛ and fi, i = 1, . . . , t, do not factorize through a module from
add(ΓΛ \ C). But we deduce from Propositions 4.7 and 3.7 that Â/(νÂ)
is stably equivalent to Λ/(νΛ). Thus there is a cycle of nonzero nonisomor-

phisms Q1
r1→ Q2

r2→ . . .
rt→ Q1 in a component C1 of ΓΛ/(νΛ) between pro-

jective Λ/(νΛ)-modules such that ri, i = 1, . . . , t, do not factorize through a
module from add(ΓΛ/(νΛ) \ C1). Furthermore, we know from [15; Theorem]
that Λ/(νΛ) ∼= T (B) for a tubular algebra B. But in ΓT (B) there is no such
cycle, hence Λ is triangular.

5.2. P r o o f o f T h e o r e m. The “only if ” part is due to Wakamatsu
[21]. Since a tubular algebra is tilting-cotilting equivalent to a canonical
tubular algebra, we may assume that A is canonical. Assume that Λ is
a locally bounded K-category which is stably equivalent to the repetitive



STABLY EQUIVALENT CATEGORIES 145

algebra Â. Then Λ is selfinjective locally support-finite by Proposition 4.7.
Moreover, Λ is triangular by Lemma 5.1. Thus we infer by Proposition 3.7
that Â/(νA) ∼= T (A) is stably equivalent to Λ/(νΛ). Then we deduce from
[15; Theorem] that there is a tubular algebra B which is tilting-cotilting

equivalent to A such that Λ/(νΛ) ∼= T (B) ∼= B̂/(νB). Since B̂ is triangular,

we conclude by Proposition 3.8 that Λ ∼= B̂ and the theorem follows.
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