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ASYMPTOTIC PROPERTIES OF

STOCHASTIC SEMILINEAR EQUATIONS

BY THE METHOD OF LOWER MEASURES

BY

B. M A S L O W S K I (PRAHA) AND I. S I M Ã O (LISBOA)

Introduction. The aim of the paper is to establish the convergence of
probability laws of solutions of certain infinite-dimensional stochastic differ-
ential equations in the strong (variational) norm. This type of convergence
has been previously studied in connection with investigation of ergodic and
mixing properties of autonomous stochastic evolution equations. In the sim-
plest case of a reaction-diffusion equation perturbed by a space-time white
noise the strong law of large numbers and the strong mixing have been estab-
lished by Maslowski [28] and Manthey and Maslowski [25] by a method going
back essentially to Khas’minskĭı [19], which consists in proving topological
irreducibility and the strong Feller property for the induced Markov process.
These results have been extended by Da Prato, Elworthy and Zabczyk [4],
Maslowski [26] and, recently, by Chojnowska-Michalik and Go ldys [2] by
means of suitable technical tools like the Elworthy formula and the mild
backward Kolmogorov equation. Analogous results have been obtained by
Da Prato and Ga̧tarek [5] for the stochastic Burgers equation, by Da Prato
and Debussche [3] for the stochastic Cahn–Hilliard equation and by Flandoli
and Maslowski [9] for the two-dimensional stochastic Navier–Stokes equa-
tion.

The ergodicity for stochastic semilinear equations with a multiplicative
noise term was established by Peszat and Zabczyk [30] and further extended
by Ga̧tarek and Go ldys [14]. The case of σ-finite invariant measures and
related recurrence properties have been studied in Maslowski and Seidler
[29] and, in a more general setting, in Seidler [32]. An alternative method
based on a more direct verification of the geometric ergodicity has been
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developed by Jacquot and Royer [16], [17], and applied, for instance, to a
two-dimensional stochastic parabolic equation of the 4th order (stochastic
plate equation).

Most of the ergodic results mentioned above are based on the verification
of the topological irreducibility and the strong Feller property. The method
used in the present paper is different. Its idea comes basically from the
theory of deterministic discrete-time dynamical systems (cf. Lasota [21],
Lasota and Yorke [23], and Lasota and Mackey [22]) and it has been previ-
ously applied by Maslowski [27] to finite-dimensional stochastic differential
equations. It allows us to establish the convergence in the variational norm
of (in general, time-inhomogeneous) Markov evolution systems, and, in the
time-homogeneous case, to prove the existence of an invariant measure. In
comparison with the above quoted ergodicity and mixing results, there are,
in some sense, more restrictive requirements on the nonlinear term of the
equation in our case. On the other hand, the equation is allowed be nonau-
tonomous (i.e., the induced Markov process need not be homogeneous).
Also, in some cases, the speed of convergence can be estimated.

The paper is divided into three sections. Section 1 includes definitions
and general results on lower measures for evolution systems of Markov op-
erators. A general statement on convergence of the evolution system of
Markov operators under the assumption of existence of a system of lower
measures (the so-called l-condition, Theorem 1.4) is quoted in the form
proved in [27]. In Theorem 1.5 a general estimate on the speed of conver-
gence is established. Proposition 1.7 is in fact a corollary of Theorem 1.4
covering the case of some more particular Markov operators that are studied
in Section 2.

In Section 2, the general theory is applied to the Markov process induced
by an infinite-dimensional stochastic equation. The main result is contained
in Theorem 2.6 where the variational convergence of the adjoint Markov evo-
lution system and, in the autonomous case, the existence and uniqueness of
the invariant measure are established. Corollaries 2.7 and 2.8 are further
specializations simplifying the assumptions of Theorem 2.6. Propositions
2.2 and 2.4 provide verification of general assumptions of Proposition 1.7 in
the concrete case of the the equation (2.1). At the end of Section 2 three
examples are given: An equation of the form (2.1) with a more particular
nonlinear term in the drift (Example 2.10), a stochastic nonautonomous
semilinear parabolic equation (Example 2.11) and a stochastic integrodiffer-
ential equation (Example 2.12).

Section 3 contains the proof of the crucial Proposition 2.2. It provides
a lower bound on the density of the transition probability of the Markov
process induced by the equation (2.1) with respect to the corresponding
Gaussian transition probability and could be of independent interest.
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For Banach spaces Y , Z we denote by L(X,Z) the space of bounded
linear operators Y → Z, L(Y ) := L(Y, Y ), and by C(Y,Z) the space of
continuous functions Y → Z. The symbol D(A) stands for the domain of
the operator A. More notation is introduced at the beginning of Sections 1
and 2.

Acknowledgements. The authors are grateful to Gottlieb Leha,
Gunter Ritter and Jan Seidler for their valuable comments on the paper
and to David Elworthy and the University of Warwick for their hospitality.

1. The general method of lower measures. Let (X,F) be a mea-
surable space and denote by M, M+ and P, respectively, the sets of finite
real, finite nonnegative and probability measures on F . We consider the
usual linear structure on M.

1.1. Definition. A linear mapping S : M → M is called a Markov

operator if S(P) ⊂ P.

1.2. Definition. A system Σ = {Ss,t : 0 ≤ s ≤ t < ∞} is called an
evolution system of Markov operators if each Ss,t is a Markov operator, and
Su,tSs,u = Ss,t for every 0 ≤ s ≤ u ≤ t <∞.

For ν ∈ M denote by ‖ν‖, ν+ and ν−, respectively, the total, positive
and negative variations of ν. We put simply ‖ν‖ = ‖ν‖(X). Note that
‖ν+‖ = ν+(X) and ‖ν−‖ = ν−(X).

1.3. Definition. A system {µs : s ∈ R+} ⊂ M+ is called a system of

lower measures (with respect to Σ) if

(1.1) inf
s∈R+

µs(X) > 0

and

(1.2) ‖(Ss,tν − µs)−‖ → 0, t→ ∞,

for every s ≥ 0 and ν ∈ P. If µs ≡ µ does not depend on s, then µ is called
a lower measure (with respect to Σ).

The condition (1.2) is sometimes called the l-condition (cf. [21], [27]).

1.4. Theorem. (a) If there exists a system of lower measures with respect

to Σ then

(1.3) ‖Ss,tν1 − Ss,tν2‖ → 0, t→ ∞,

for every s ≥ 0 and ν1, ν2 ∈ P.

(b) Assume that the system Σ is homogeneous, i.e., Ss,t = Ss+h,t+h does

not depend on h ≥ 0 for 0 ≤ s ≤ t < ∞, and set St := S0,t. Then there

exists a lower measure with respect to Σ iff there exists an invariant measure
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µ∗ ∈ P with respect to Σ (i.e., Stµ
∗ = µ∗ for t ≥ 0) and

(1.4) ‖Stν − µ∗‖ → 0, t→ ∞,

for every ν ∈ P.

The proof of Theorem 1.4 is based on an idea due to Lasota and
Yorke [23], [21], and in the present setting is contained in [27].

1.5. Theorem. Let Σ = {Ss,t : 0 ≤ s ≤ t < ∞} be an evolution system

of Markov operators and let there exist a system {µs : s ∈ R+} ⊆ M+ such

that

λ = inf
s≥0

µs(X) > 0.

Let ν1, ν2 ∈ P, ε ∈ [0, 1/2] and α ∈ (0, 1/2) and assume that there exists a

set B ∈ F such that

(i) Sσ,tν1(X \B) ≤ ε and Sσ,tν2(X \ B) ≤ ε for every 0 ≤ σ ≤ t < ∞,
and

(ii) there exists τ ≥ 0 such that for every µ ∈ P with µ(B) = 1, and

σ ≥ 0, we have

‖(Sσ,σ+τµ− µσ)−‖ < λα.

Then

(1.5) ‖Ss,tν1 −Ss,tν2‖ ≤ qn
α‖ν1 − ν2‖+ 12ε

n∑

i=0

qi
α ≤ qn

α‖ν1 − ν2‖+
12ε

1 − qα

for every s ≥ 0, t ≥ nτ + s and n ∈ N, where qα := 1 − (1 − 2α)λ ∈ (0, 1).

P r o o f. Assume that

(1.6) ‖Ss,s+nτ (ν1 − ν2)‖ ≤ qn
α‖ν1 − ν2‖ + 12ε

n∑

i=1

qi
α + 6ε

for some n ∈ N. Our aim is to show (1.6) with n replaced by n+ 1. Set

µ1(A) = c1Ss,s+nτν1(A ∩B), µ2(A) = c2Ss,s+nτν2(A ∩B), A ∈ F ,

where c1 = (Ss,s+nτν1(B))−1 and c2 = (Ss,s+nτν2(B))−1 are normalizing
constants. Since µ1 and µ2 are probability measures we have

η := ‖µ+‖ = ‖µ−‖ = 1
2‖µ‖

for µ = µ1 −µ2. Without loss of generality we can assume η > 0. Note that

(1.7) ‖Ss,s+nτν1 − µ1‖ + ‖Ss,s+nτν2 − µ2‖ ≤ 2

(
ε+

ε

1 − ε

)
≤ 6ε

by (i). Furthermore, we have
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(1.8) ‖Ss+nτ,s+(n+1)τµ‖ = η‖(Ss+nτ,s+(n+1)τη
−1µ+ − µs+nτ )

−(Ss+nτ,s+(n+1)τη
−1µ− − µs+nτ )‖.

Since η−1µ+ ∈ P, η−1µ− ∈ P and η−1µ+(X \B) = η−1µ−(X \B) = 0,
we obtain

‖(Ss+nτ,s+(n+1)τη
−1µ+ − µnτ+s)−‖ < λα

and

‖(Ss+nτ,s+(n+1)τη
−1µ− − µnτ+s)−‖ < λα.

Therefore,

‖Ss+nτ,s+(n+1)τη
−1µ+ − µnτ+s‖ ≤ Ss+nτ,s+(n+1)τη

−1µ+(X) − µs+nτ (X)

+ 2‖(Ss+nτ,s+(n+1)τη
−1µ+ − µs+nτ )−‖

≤ 1 − λ+ 2αλ = qα,

and similarly, ‖Ss+nτ,s+(n+1)τη
−1µ− − µs+nτ‖ ≤ qα. By (1.8) this yields

‖Ss+nτ,s+(n+1)τµ‖ ≤ 2ηqα = ‖µ‖qα,

and by (1.7) it follows that

‖Ss,s+(n+1)τ (ν1 − ν2)‖ ≤ ‖Ss+nτ,s+(n+1)τ (Ss,s+nτ (ν1 − ν2))‖

≤ ‖Ss+nτ,s+(n+1)τµ‖ + 6ε ≤ qα‖µ‖ + 6ε

≤ qα(‖Ss,s+nτ (ν1 − ν2)‖ + 6ε) + 6ε

≤ qα

(
qn
α‖ν1 − ν2‖ + 12ε

n∑

i=1

qi
α + 6ε+ 6ε

)
+ 6ε

≤ qn+1
α ‖ν1 − ν2‖ + 12ε

n+1∑

i=1

qi
α + 6ε.

Thus we have obtained (1.6) with n replaced by n + 1 and since for n = 0,
(1.6) holds evidently, it is satisfied for all n ∈ N by induction. From the
definition of a Markov operator it easily follows that Ss,r : (M, ‖ · ‖) →
(M, ‖ · ‖) is bounded for any 0 ≤ s ≤ r < ∞, with the operator norm less
than or equal to one. Therefore,

‖Ss,t(ν1 − ν2)‖ = ‖Ss+nτ,tSs,s+nτ (ν1 − ν2)‖ ≤ ‖Ss,s+nτ (ν1 − ν2)‖

for any t ≥ s+ nτ , which concludes the proof.

1.6. R e m a r k. The preceding theorem gives a possibility to estimate
the speed of convergence in (1.3), (1.4) in the case when, given any ε ≥ 0
and ν1, ν2 ∈ P, we are able to find the set B and to estimate the value of τ
from above. Usually, B is a “large” ball in a suitable state space, in which
case the conditions (i) and (ii) of Theorem 1.5 are a kind of boundedness in
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probability and a “locally uniform” l-condition, respectively (see Remark 2.9
below).

If Σ is homogeneous and ε = 0 then Theorem 1.5 tells us that Σ is
geometrically ergodic.

In the rest of the section we consider the case when the family of oper-
ators Σ = {Ss,t} is a two-parameter adjoint Markov evolution system cor-
responding to a Markov process in X. More precisely, let P = P (s, x, t, A),
0 ≤ s ≤ t < ∞, x ∈ X, A ∈ F , be the transition probability function of a
nonhomogeneous X-valued Markov process X = (Xt), i.e.,

(1.9) P (s, x, t, A) = Es,xχA(Xt), 0 ≤ s ≤ t <∞, x ∈ X, A ∈ F ,

and let P ∗
s,t : M → M be defined as

(1.10) P ∗
s,tν(A) =

\
X

P (s, x, t, A) ν(dx), 0 ≤ s ≤ t <∞, ν ∈ M.

It is easy to see that

(1.11) Σ := {P ∗
s,t : 0 ≤ s ≤ t <∞}

is an evolution system of Markov operators in the sense of Definition 1.2.
Below we present a useful sufficient condition for existence of a system of
lower measures with respect to Σ defined by (1.11).

1.7. Proposition. Assume that for every s ≥ 0 there exist β(s) > 0,
µ̂s ∈ M+, and B(s) ∈ F such that

(i) for any x ∈ X there exists t0 = t0(s, x) such that P (s, x, t,B(s))
≥ β(s) for all t ≥ t0,

(ii) inf{P (t, x, t + 1, A) : x ∈ B(s), t ≥ s} ≥ µ̂s(A) for all A ∈ F , and

(iii) infs≥0 β(s)µ̂s(X) > 0.

Then there exists a system of lower measures with respect to Σ = {P ∗
s,t}.

If β,B and µ̂ can be found independent of s ∈ R+ then there exists a lower

measure with respect to Σ.

P r o o f. For t ≥ s ≥ 0, ν ∈ P and A ∈ F , we have

P ∗
s,t+1ν(A) =

\
X

\
X

P (t, y, t + 1, A)P (s, x, t, dy) ν(dx)

≥
\
X

\
B(s)

P (t, y, t + 1, A)P (s, x, t, dy) ν(dx)

≥ µ̂s(A)
\
X

P (s, x, t,B(s)) ν(dx)

by (ii). Since lim inft→∞

T
X
P (s, x, t,B(s)) ν(dx) ≥ β(s) by (i), we obtain

‖(P ∗
s,tν − β(s)µ̂s)−‖ → 0, t→ ∞.
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Hence {µs := β(s)µ̂s : s ∈ R+} is a system of lower measures with respect
to Σ = {P ∗

s,t}.

2. L-condition for semilinear stochastic equations. In this section
the general method developed in the previous part is applied to the case
when the Markov process is induced by a semilinear stochastic equation of
the general form

(2.1) dXt = [AXt + f(t,Xt)]dt+ dWt, t ≥ s ≥ 0, Xs = x ∈ H,

where H is a separable Hilbert space. Throughout the section we assume
that Wt is a cylindrical Wiener process on H with identity covariance, A is
a self-adjoint and negative unbounded linear operator on H with a nuclear
inverse. Hence there exists an orthonormal basis {en} in H consisting of
eigenvectors of A and the corresponding eigenvalues satisfy

(2.2) Aen = −λnen, λn ≥ λ0 > 0, n ∈ N,

and

(2.3)

∞∑

n=0

λ−1
n <∞.

It is well known that under the assumptions (2.2) and (2.3) there exists a
unique mild solution to the linear counterpart of the equation (2.1),

(2.4) dZt = AZtdt+ dWt, Zs = x ∈ H, 0 ≤ s ≤ t <∞.

This solution is an H-valued Ornstein–Uhlenbeck process defined by the
formula

(2.5) Zt = S(t− s)x+

t\
s

S(t− r) dWr, t ≥ s,

where S(·) is the (analytic) semigroup generated on H by the operator A
(see, e.g., [7] for details on the semigroup theory of stochastic equations).
The function f : R × H → H is assumed to be at least measurable and
such that (2.1) has a unique weak solution and induces in a natural way a
Markov process in the space H (cf. [1], [7] for explicit sufficient conditions
on f). However, in this section, more restrictive assumptions on f have to
be selectively used and they are specified below.

Denote by B(H) and P the σ-algebra of Borel sets of H and the set of
probability mesures defined on B(H), respectively, and let

P = P (s, x, t, Γ ) = EχΓ (Xs,x
t ), x ∈ H, Γ ∈ B(H), t ≥ s ≥ 0,

and

Q = Q(t− s, x, Γ ) = EχΓ (Zs,x
t ), x ∈ H, Γ ∈ B(H), t ≥ s ≥ 0,
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be the transition probability kernels corresponding to the processes Xt and
Zt, respectively, whereXs,x

t and Zs,x
t stand for the solutions of the respective

equations (2.1) and (2.4). (This notation is used to emphasize the initial
conditions Xs,x

s = x and Zs,x
s = x.) We shall apply the results of the

previous section to the adjoint Markov evolution system P ∗ defined by

(2.6) P ∗
s,tν(Γ ) =

\
H

P (s, x, t, Γ ) ν(dx), ν ∈ P, Γ ∈ B(H),

with X = H and F = B(H). In order to formulate some assumptions
we recall the concept of the conditioned (or “pinned”) Ornstein–Uhlenbeck
process defined by the equation (2.4), which was studied in the infinite-
dimensional context by Simão [33], [34]. For t ≥ 0 and x, y ∈ H, set
xn = 〈x, en〉, yn = 〈y, en〉, wn(t) = 〈Wt, en〉, and

(2.7) Yn(s) =
1 − e−2λn(t+1−s)

e−λn(t+1−s)

s\
t

e−λn(t+1−u)

1 − e−2λn(t+1−u)
dwn(u)

for t ≤ s ≤ t + 1 and n ∈ N. The Ornstein–Uhlenbeck process given by
(2.4), conditioned to go from x at s = t to y at s = t+ 1, Ẑ(s) = Zt,x

t+1,y(s),
is given by the expansion

(2.8) Ẑ(s) = Zt,x
t+1,y(s) =

∞∑

n=1

Ẑn(s)en,

where

Ẑn(s) = e−λn(s−t) 1 − e−2λn(t+1−s)

1 − e−2λn

xn(2.9)

+ eλn(t+1−s) e
−2λn(t+1−s) − e−2λn

1 − e−2λn

yn + Yn(s)

for s ∈ [t, t+ 1] (cf. [34]). Set

(2.10) δn = sup{|〈f(s, x), en〉| : s ≥ 0, x ∈ H}, n ∈ N.

Below, the assumptions (A1)–(A3) are formulated.

(A1) δn <∞ for n ∈ N and

∞∑

n=1

δnλ
−1/2
n =

∞∑

n=1

sup{|〈f(s, x), (−A)−1/2en〉| : s ≥ 0, x ∈ H} <∞.

(A2) There exists α > 0 such that

E exp{α|f(s, Zt,x(s))|2} <∞

for all t ∈ R+, s ∈ [t, t+ 1] and x ∈ H.
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(A3) There exist β > 1 and functions v1, v2 : H → R+, bounded on
bounded sets in H, such that

E exp
{
β

t+1\
t

|f(s, Ẑ(s))|2 ds
}
≤ v1(x)v2(y)

for t ∈ R+ and x, y ∈ H, where Ẑ(s) = Zt,x
t+1,y(s) is defined by (2.7)–(2.9).

The assumptions (A2) and (A3) are trivially satisfied if |f | is bounded
on R+ × H, in which case we also have δn < ∞ for any n ∈ N. It is
not difficult to construct an example of an unbounded function f so that
(A1)–(A3) are satisfied. However, we have the following statement, which
was communicated to us by Jan Seidler:

2.1. R e m a r k. Let D ⊂ R
d be a bounded domain, H = L2(D),

F ∈ C(R) with a linear growth, and define

f(x)(ξ) = F (x(ξ)), x ∈ H, ξ ∈ D.

Assume that there exists a g ∈ D((−A)1/2) such that

0 <
∣∣∣
\
D

g(ξ) dξ
∣∣∣ <∞

and |(−A)1/2g| ≤ 1. Then (A1) yields

sup{|F (y)| : y ∈ R} <∞.

To see this, note that (A1) implies that

(2.11) M := sup{|(−A)−1/2f(x)| : x ∈ H} <∞,

that is,

M = sup{|〈f(x), h〉| : |(−A)1/2h| ≤ 1, h ∈ D((−A)1/2), x ∈ H}

≥ sup{|〈f(x), g〉| : x ∈ H} = sup
{∣∣∣
\
D

F (x(ξ))g(ξ) dξ
∣∣∣ : x ∈ H

}
.

Thus, if we assume that there exists a sequence yk ∈ R such that
|F (yk)| → ∞, then setting xk(ξ) = yk, we get

M ≥ sup{|(−A)−1/2f(xk)| : k ∈ N} ≥ sup
{∣∣∣
\
D

F (yk)g(ξ) dξ
∣∣∣ : k ∈ N

}

≥
∣∣∣
\
D

g(ξ) dξ
∣∣∣ sup{|F (yk)| : k ∈ N} = ∞,

which contradicts (2.11).

The proof of the main result of the paper is based on the following
proposition whose proof is given in Section 3.
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2.2. Proposition. Assume (A1)–(A3), set γ := Q(1, 0, ·) and

(2.12) D =
{
y ∈ H :

∞∑

n=1

δn|〈y, en〉| <∞
}
,

and let B ∈ B(H) be a bounded set in H. Then P (t, x, t+ 1, ·) is absolutely

continuous with respect to Q(1, x, ·) for any t ≥ 0 and x ∈ H, and

(2.13) inf

{
dP (t, x, t + 1, ·)

dQ(1, x, ·)
(y) : x ∈ B, t ∈ R+

}
≥ h(y)

γ-almost everywhere on H, where h : H → R+ is a bounded measurable

function depending on B such that h(y) > 0 for y ∈ D.

2.3. Proposition. For every bounded set B ⊂ H there exist constants

κ1, κ2 > 0 such that

(2.14)
dQ(1, x, ·)

dγ
(y) ≥ κ1 exp{−κ2|y|}

for x ∈ B and γ-almost all y ∈ H.

P r o o f. We have Q(1, x, ·) = N(S(1)x,Q1) and γ = N(0, Q1), where

Q1 =
T1
0
S(2t) dt satisfies

(2.15) Q1en =

1\
0

e−2λnten dt =
1

2λn
(1 − e−2λn)en, n ∈ N.

It is clear that Range(S(1)) ⊂ Range(Q1) and by the closed graph the-
orem it follows that Q−1

1 S(1) ∈ L(H). By the Cameron–Martin formula
(see, e.g., [7], Proposition 2.24) we obtain

dQ(1, x, ·)

dγ
(y) = exp

{
〈Q

−1/2
1 S(1)x,Q

−1/2
1 y〉 − 1

2 |Q
−1/2
1 S(1)x|2

}

≥ exp
{
−|Q−1

1 S(1)x| · |y| − 1
2 |Q

−1/2
1 S(1)x|2

}

≥ exp
{
− 1

2
|Q

1/2
1 |2L(H) · |Q

−1
1 S(1)|2L(H)|x|

2
}

× exp{−|Q−1
1 S(1)|L(H)|x| · |y|}

≥ κ1 exp{−κ2|y|}.

In the following Proposition 2.4 specific conditions on f are given for
the general Proposition 1.7 and Theorem 1.5 to be applicable to the adjoint
Markov semigroup generated by (2.1).

For r > 0 denote by Br = {x ∈ H : |x| < r} the open ball in H with
center 0 and radius r. The following assumption (A4) is introduced:
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(A4) For every x ∈ H the function f(·, x) : R+ → H is continuous and
for every r > 0 there exists a constant Kr > 0 such that

|f(t, x) − f(t, y)| ≤ Kr|x− y|

for t ∈ [0, r] and x, y ∈ Br.

Set

m = sup
{

E

∣∣∣
t\
s

S(t− r) dWr

∣∣∣ : t ≥ s ≥ 0
}
.

From (2.2) and (2.3) it easily follows that m <∞.

Note that under the assumptions (A4) and (2.16)–(2.18) below there
exists a unique mild solution to (2.1), and that (2.1) induces a Markov
process on H (cf. [8], [7]).

2.4. Proposition. Assume that f satisfies (A4) and

(2.16) 〈Ax+ f(t, x+ y), x〉 ≤ −ω(t)|x|2 + a(t, |y|)|x|

for t ∈ R+, x ∈ D(A) and y ∈ H, where ω : R+ → R+ and a : R
2
+ → R+

are measurable and bounded on bounded sets, a(t, ·) is increasing for every

t ≥ 0,

(2.17) inf
{ σ+T\

σ

ω(λ) dλ : σ ∈ R+

}
→ ∞ as T → ∞,

and

(2.18) M := sup
{ t\

s

exp
{
−

t\
r

ω(λ) dλ
}

Ea(r, |φ(r)|) dr : t ≥ s ≥ 0
}
<∞,

where

φ(r) =

r\
s

S(r − u) dWu.

Then for every 0 ≤ s ≤ t <∞ we have

(i) E|Xs,x(t)| ≤ m+ |x|e−
t

s
ω(λ)dλ +M .

Furthermore,

(ii) for every ε > 0 and R1 > 0 there exists R0 > 0 such that P (σ, x, t,
H \BR0

) < ε for x ∈ BR1
and 0 ≤ σ ≤ t <∞, and

(iii) for any constants β̃, L > 0, satisfying

(2.19) (1 − β̃)L > m+M

and every R2 > 0 there exists T > 0 such that P (σ, x, σ+ t, BL) ≥ β̃ for all

x ∈ BR2
, σ ∈ R+ and t ≥ T .
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P r o o f. By a straightforward modification of the proof of Theorem 7.10
in [7] it can be shown that under the present conditions there exists a unique
solution v = v(t, s, x, ψ) of the equation

(2.20) v(t) = S(t− s)x+

t\
s

S(t− r)f(r, v(r) + ψ(r)) dr, s ≤ t ≤ T,

for every T ≥ s ≥ 0, x ∈ H and ψ ∈ C0([s, T ],H) := {ϕ ∈ C([s, T ],H) :
ϕ(s) = 0}, such that v(·, s, x, ψ) ∈ C([s, T ],H), and the mild solution of
(2.1) has the form X(t) = v(t, s, x, φ(·)) +φ(t), t ≥ s. Set R(n) = nR(n,A),
where R(n,A) = (nI − A)−1 is the resolvent of A, n > 0, and define a
sequence vn ∈ C([s, T ],H) by

vn(t) = R(n)S(t− s)x+

t\
s

R(n)S(t− r)f(r, v(r) + ψ(r)) dr, s ≤ t ≤ T,

where v is defined by (2.20). Note that for s ≤ T we have

sup
s≤r≤t≤T

|(R(n) − I)(S(t− r)f(r, v(r) + ψ(r)) + S(t− s)x)| → 0

as n→ ∞, and hence it is easy to see that

(2.21) sup
s≤t≤T

|vn(t) − v(t)| → 0, n→ ∞,

and

(2.22) sup
s≤t≤T

|δn(t)| → 0, n→ ∞,

where

δn(t) :=
dvn

dt
(t) −Avn(t) − f(t, vn(t) + ψ(t)).

Since

|vn(t)| ·
d−

dt
|vn(t)|

≤ 〈Avn(t) + f(t, vn(t) + ψ(t)), vn(t)〉 + 〈δn(t), vn(t)〉, t ≥ s,

we obtain

d−

dt
|vn(t)| ≤ −ω(t)|vn(t)| + a(t, |ψ(t)|) + |δn(t)|, t ≥ s,

by (2.16), and, consequently,

vn(t) ≤ |x|e−
t

s
ω(λ)dλ

+

t\
s

exp
{
−

t\
r

ω(λ) dλ
}

(a(r, |ψ(r)|) + |δn(r)|) dr, t ≥ s.
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By (2.21) and (2.22) it follows that

v(t) ≤ |x|e−
t

s
ω(λ)dλ +

t\
s

exp
{
−

t\
r

ω(λ) dλ
}
a(r, |ψ(r)|) dr, t ≥ s,

which yields

E|Xs,x(t)| = E|v(t, s, x, φ(·)) + φ(t)| ≤ m+ |x|e−
t

s
ω(λ)dλ +M

for every 0 ≤ s ≤ t < ∞ and x ∈ H, which is precisely (i). The assertions
(ii) and (iii) follow immediately from (i) by the Chebyshev inequality and,
in the case of (iii), by (2.17). Note that T is found by (2.17) so that

inf
{ σ+T\

σ

ω(λ) dλ : σ ∈ R+

}
> − log[1 − β̃ −R−1(m+M)].

2.5. Corollary. Assume that f : R+ ×H → H satisfies (A4) and

(2.23) |f(t, x)| ≤ k1 + k2|x|, (t, x) ∈ R+ ×H,

for some k1, k2 > 0 such that k2 < λ0 (cf. (2.2)). Then (2.16)–(2.18) are

satisfied , and hence the assertions (i)–(iii) of Proposition 2.4 hold.

P r o o f. Note that 〈Ax, x〉 ≤ −λ0|x|
2 for x ∈ D(A), and, therefore,

〈Ax+ f(t, x+ y), x〉 ≤ −λ0|x|
2 + k1|x| + k2|x|(|x| + |y|)

≤ (−λ0 + k2)|x|2 + (k1 + k2|y|)|x|

for x ∈ D(A), t ∈ R+, and y ∈ H. Thus we obtain (2.16) with a constant
ω = λ0 − k2 and with a(t, θ) = k1 + k2θ, θ ≥ 0.

Now we can state the main result of the present section.

2.6. Theorem. Assume (A1)–(A4), (2.16)–(2.18), and

(2.24) γ(D) > 0,

where γ and D are defined in Proposition 2.2. Then

(2.25) ‖P ∗
s,tν1 − P ∗

s,tν2‖ → 0, t→ ∞,

for all s ≥ 0 and ν1, ν2 ∈ P. If , moreover , f(t, x) = f(x) does not de-

pend on t, then there exists a unique invariant measure µ∗ ∈ P for the

equation (2.1) and

‖P ∗
t ν − µ∗‖ → 0, t→ ∞,

for every ν ∈ P, where P ∗
t is the adjoint Markov semigroup of the (homo-

geneous) Markov process defined by (2.1).

P r o o f. Take a fixed L > m + M , where m and M are the constants
from Proposition 2.4, and β > 0 such that (1−β)L > m+M . We verify the
assumptions of Proposition 1.7 with B(s) = BL, β(s) = β and a suitable
lower measure µ̂ (independent of s). The condition (i) of Proposition 1.7 is
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satisfied by Proposition 2.4(iii). Furthermore, for any s ≥ 0, Γ ∈ B(H) and
x ∈ BL, we have

P (t, x, t + 1, Γ ) =
\
Γ

dP (t, x, t + 1, ·)

dQ(1, x, ·)
(y)Q(1, x, dy)(2.26)

≥
\
Γ

h(y)Q(1, x, dy)

by Proposition 2.2, where h ≥ 0 does not depend on t ∈ R+ and x ∈ BL,
and h > 0 on D. Proposition 2.3 yields

(2.27)
\
Γ

h(y)Q(1, x, dy) ≥ κ1

\
Γ

h(y) exp{−κ2|y|} γ(dy),

where κ1 and κ2 are independent of x ∈ BL. Setting

µ̂(Γ ) = κ1

\
Γ

h(y) exp{−κ2|y|} γ(dy)

we obtain

inf{P (t, x, t + 1, Γ ) : x ∈ BL, t ∈ R+} ≥ µ̂(Γ ), Γ ∈ B(H),

hence the condition (ii) of Proposition 1.7 is satisfied. Since

µ̂(H) ≥ κ1

\
D

h(y) exp{−κ2|y|} γ(dy) > 0

by (2.24), the remaining assumption (iii) of Proposition 1.7 is also satisfied
and the proof is finished by applying Proposition 1.7 and Theorem 1.4.

Note that if γ(D) > 0 then, in fact, γ(D) = 1 since D is a Borel linear
subspace of H and so the Kallianpur 0-1 law applies (see, e.g., [18]).

If the mapping f is bounded in the norm of H, the assumptions of
Theorem 2.6 are considerably simplified.

2.7. Corollary. Assume that |f | is bounded , (A4) is satisfied , and

(2.28)

∞∑

n=1

δnλ
−1/2
n <∞,

(2.29) γ
({
y ∈ H :

∞∑

n=1

δn|〈y, en〉| <∞
})

> 0,

where δn = sup{|〈f(t, x), en〉| : t ≥ 0, x ∈ H}. Then the assumptions of

Theorem 2.6 are satisfied.

P r o o f. The conditions (2.28) and (2.29) are, in fact, the assumptions
(A1) and (2.24), respectively. The assumptions (2.16)–(2.18) are satisfied
by Corollary 2.5 and the remaining assumptions (A2), (A3) are satisfied
trivially.
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Some more specific sufficient conditions for (2.28) and (2.29) to hold will
be given. Denote by Dα

A, α > 0, the domain of the fractional power (−A)α

equipped with the graph norm.

2.8. Corollary. Assume that the function f satisfies (A4) and |f | is

bounded. Moreover , let one of the three conditions (i)–(iii) be satisfied :

(i)
∑∞

n=1 δ
2
n =

∑∞

n=1 sup{|〈f(t, x), en〉|
2 : t ≥ 0, x ∈ H} <∞.

(ii) f : R+ ×H → Dα
A is bounded for some α > 0 such that (−A)−α is

a Hilbert–Schmidt operator.

(iii)
∑∞

n=1 λ
−1/2
n <∞.

Then the conclusions of Theorem 2.6 hold true.

P r o o f. By Corollary 2.7 it suffices to verify (2.28) and (2.29). If (i)
holds then

∞∑

n=1

λ−1/2
n δn ≤

( ∞∑

n=1

λ−1
n

)1/2

·
( ∞∑

n=1

δ2n

)1/2

<∞

by (2.3), and

∞∑

n=1

δn|〈y, en〉| ≤ |y|
( ∞∑

n=1

δ2n

)1/2

for y ∈ H. It follows that D = H and (2.28), (2.29) are obviously satisfied.

Part (ii) is a particular case of (i) since

∞∑

n=1

δ2n =

∞∑

n=1

sup{|〈f(t, x), en〉|
2 : t ≥ 0, x ∈ H}

=
∞∑

n=1

sup{|〈(−A)αf(t, x), (−A)−αen〉|
2 : t ≥ 0, x ∈ H}

≤ sup{|(−A)αf(t, x)|2 : t ≥ 0, x ∈ H} ·

∞∑

n=1

|(−A)−αen|
2

= sup{|f(t, x)|2Dα

A

: t ≥ 0, x ∈ H} · |(−A)−α|2HS <∞,

where | · |HS stands for the Hilbert–Schmidt norm of operators on H.

If (iii) is satisfied then

∞∑

n=1

λ−1/2
n δn ≤ sup δn ·

∞∑

n=1

λ−1/2
n <∞

since sup δn ≤ sup |f |, and setting yn = 〈y, en〉 for y ∈ H and n ∈ N, we
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have
∞∑

n=1

|yn|δn =
∞∑

n=1

λ−1/4
n |λ1/4

n yn|δn

≤ sup δn ·
( ∞∑

n=1

λ−1/2
n

)1/2

·
( ∞∑

n=1

(λ1/4
n yn)2

)1/2

≤ sup |f | ·
( ∞∑

n=1

λ−1/2
n

)1/2

· |(−A)1/4y|

for y ∈ D
1/4
A , hence D ⊃ D

1/4
A . It is easy to check that (iii) implies that

γ(D
1/4
A ) = 1 and, therefore, (2.29) holds.

2.9. R e m a r k. Proposition 2.4(i) together with a lower estimate on
µ̂(H), where µ̂ is the measure defined in the proof of Theorem 2.6, make
it possible to apply Theorem 1.5 to estimate the “speed” of convergence in
(2.25) (cf. Remark 1.6). More precisely, given ν1, ν2 ∈ P and ε > 0 we can
use the fact that

P (σ, x, t,H \BR) ≤ R−1(m+ |x| +M), 0 ≤ σ ≤ t <∞, x ∈ H, R > 0,

in order to find R > m+M such that

P ∗
σ,tν1(H \BR) < ε, P ∗

σ,tν2(H \BR) < ε

for every 0 ≤ σ ≤ t < ∞. Furthermore, for any µ ∈ P with µ(BR) = 1,
σ ≥ 0, τ ≥ 1 and Γ ∈ B(H), we have

P ∗
σ,σ+τµ(Γ ) ≥

\
BR

P (σ + τ − 1, x, σ + τ, Γ )P ∗
σ,σ+τ−1µ(dx)(2.30)

≥ inf{P (σ + τ − 1, x, σ + τ, Γ ) : x ∈ BR}

× P ∗
σ,σ+τ−1µ(BR),

and tracing the proof of Theorem 2.6 (with BL = BR) we obtain

(2.31) inf{P (σ + τ − 1, x, σ + τ, Γ ) : x ∈ BR} · P
∗
σ,σ+τ−1µ(BR)

≥ µ̂(Γ )P ∗
σ,σ+τ−1µ(BR).

Choosing β̃ > 0 such that β̃ < 1−R−1(m+M) we get, by Proposition 2.4(i),

(2.32) P ∗
σ,σ+τ−1µ(BR) =

\
BR

P (σ, x, σ + τ − 1, BR)µ(dx) ≥ β̃

for τ = 1 + T , where T can be found by (2.17) so that

(2.33) inf
{ σ+T\

σ

ω(λ) dλ : σ ∈ R+

}
> − log[1 − β̃ −R−1(m+M)].
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From (2.30)–(2.32) it follows that

‖(P ∗
σ,σ+τµ(·) − β̃µ̂(·))−‖ = 0

for all σ ∈ R+ and for τ = 1 +T defined by (2.33). Thus (2.33) gives us the
upper estimate on τ required in Remark 1.6.

2.10. Example. Consider the equation

(2.34) dXt = (AXt + f(t,Xt))dt + dWt, t ≥ s, Xs = x,

on a Hilbert space H, where Wt is a standard cylindrical Wiener process on
H and A satisfies (2.2)–(2.3). The mapping f : R+ ×H → H is assumed to
have the form

(2.35) f(t, x) =

N∑

j=1

aj(t)ϕj(t, x), (t, x) ∈ R+ ×H,

where aj : R+ → H and ϕj : R+ × H → R are bounded and continuous,
and ϕj(t, ·) : H → R are Lipschitz on bounded sets for all t ≥ 0 and
j = 1, . . . , N . Moreover, assume that aj : R+ → Dα

A for some α > 0 such
that (−A)−α is a Hilbert–Schmidt operator and |(−A)αaj(·)| are bounded
for j = 1, . . . , N (note that (−A)−α is always Hilbert–Schmidt for α ≥ 1/2).
Then by Corollary 2.8(ii) the conclusions of Theorem 2.6 hold true for the
Markov evolution operator {P ∗

s,t : 0 ≤ s ≤ t < ∞} induced on P by the
equation (2.34).

2.11. Example. Consider the nonautonomous stochastic parabolic
equation

∂u

∂t
(t, ξ) = −

∂4u

∂ξ4
(t, ξ)(2.36)

+F (t, u(t, ξ)) + ẇtξ, t ≥ s ≥ 0, ξ ∈ (0, 1),

with the initial condition u(s, ξ) = u0(ξ), ξ ∈ (0, 1), and the boundary
conditions

u(t, 0) = u(t, 1) =
∂2u

∂ξ2
(t, 0) =

∂2u

∂ξ2
(t, 1) = 0, t ≥ s,

where ẇtξ stands symbolically for a space-time white noise and F : R+ × R

→ R is bounded, continuous, and Lipschitz in the second variable. The
formal equation (2.36) is rewritten in the usual way as an equation of the
form

(2.1) dXt = (AXt + f(t,Xt))dt + dWt, t ≥ s,

in the Hilbert space H = L2(0, 1), with the initial condition Xs = u0 ∈ H,
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where

(2.37)
A = −

∂4

∂ξ4
, D(A) =

{
u ∈ H4

0 (0, 1) :
∂2u

∂ξ2
(0) =

∂2u

∂ξ2
(1) = 0

}
,

f(t, x)(θ) = F (t, x(θ)), x ∈ H, θ ∈ (0, 1), t ∈ R+,

and Wt is a standard cylindrical Wiener process on H. (See, e.g., [15], [6],
[20] or [31] for related existence and regularity results.) It is obvious that
A = A∗ is negative on H, A−1 is nuclear and the eigenvalues of −A satisfy

(2.38) λn ∼ n4,

so clearly
∑∞

n=1 λ
−1/2
n < ∞. Thus Corollary 2.8(iii) may be applied. We

conclude that the statements of Theorem 2.6 hold true.

2.12. Example. Consider the stochastic integrodifferential equation of
the form

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ)(2.39)

+

1\
0

K(t, ξ, r, u(t, r)) dr + ẇtξ , t ≥ s ≥ 0, ξ ∈ (0, 1),

with the Neumann type boundary conditions

(2.40)
∂u

∂ξ
(t, 0) =

∂u

∂ξ
(t, 1) = 0, t ≥ s,

and an initial condition u(s, ξ) = us(ξ), ξ ∈ (0, 1), where K : R+ × (0, 1)2 ×
R → R is bounded and measurable and satisfies

(2.41) |K(t, ξ, r, θ1) −K(t, ξ, r, θ2)| ≤ kT |θ1 − θ2|

for all t ∈ [0, T ], T ≥ 0 and (ξ, r, θ1, θ2) ∈ (0, 1)2 × R
2, where the constant

kT > 0 depends just on T , K(·, ξ, r, θ) : R+ → R is continuous for every
(ξ, r, θ) ∈ (0, 1)2×R, K(t, ·, r, θ) ∈ C1(0, 1) for every (t, r, θ) ∈ R+×(0, 1)×R,
and ∂K/∂ξ is bounded on R+ × (0, 1)2 × R. The system (2.39)–(2.41) can
be rewritten in the usual way as an equation of the form

(2.1) dXt = (AXt + f(t,Xt))dt + dWt, Xs = us ∈ H, t ≥ s ≥ 0,

in the space H = L2(0, 1), where Wt is a standard cylindrical Wiener process
on H, A = ∂2/∂ξ2 is defined on the subspace of H2(0, 1) consisting of
functions satisfying the boundary conditions (2.40), and f : R+ ×H → H
is given by

(2.42) f(t, x)(ξ) =

1\
0

K(t, ξ, r, x(r)) dr, x ∈ H, t ∈ R+, ξ ∈ (0, 1).
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It is well known that A satisfies the conditions (2.2)–(2.3) with a suitably
defined orthonormal basis {en} in H and with λn ∼ n2. From the above
assumptions on the kernel K it easily follows that f defined by (2.42) is

bounded in the norm of H and satisfies (A4). Furthermore, since D
1/2
A =

H1(0, 1) in the present case (cf. [12]) and

1\
0

∣∣∣∣
∂

∂ξ

1\
0

K(t, ξ, r, x(r)) dr

∣∣∣∣
2

dξ

is bounded by a constant independent of t ∈ R+ and x ∈ H, we obtain

sup
{
|(−A)1/2f(t, x)| : (t, x) ∈ R+ ×H

}
<∞.

Noting that (−A)−1/2 is Hilbert–Schmidt we conclude that the statements
of Theorem 2.6 hold in the present case by Corollary 2.8(ii).

3. Proof of Proposition 2.2. We keep the notation introduced at
the beginning of the preceding section and the assumptions (2.2)–(2.3) and
(A1)–(A3). In order to prove Proposition 2.2, two auxiliary results are
established. For n ∈ N set fn(t, x) = 〈f(t, x), en〉 for (t, x) ∈ R+ ×H.

3.1. Lemma. Assume (2.2)–(2.3) and (A1)–(A3). Then

(i) there exist k > 1 and ck > 0 such that

E exp

{
k

( m∑

n=1

t+1\
t

fn(s, Ẑ(s)) dwn(s)

−
1

2

m∑

n=1

t+1\
t

|fn(s, Ẑ(s))|2 ds

)}
≤ ckv1(x)v2(y)

for every m ∈ N and t ∈ R+,

(ii) for every x ∈ H, y ∈ D, k > 0 and m ∈ N we have

E exp
{
k
∣∣∣

m∑

n=1

t+1\
t

fn(s, Ẑ(s))an(s, xn, yn) ds
∣∣∣
}

≤ exp

{
2k

∞∑

n=1

δn
|yn − e−λnxn|

1 − e−2λn

}
<∞,

where

(3.1) an(s, xn, yn) =
2λne

−λn(t+1−s)

1 − e−2λn

(yn − e−λnxn),
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(iii) for every k > 0 there exists a constant c′k > 0 depending only on k
such that

E exp

{
k

m∑

n=1

t+1\
t

δn
2λne

−2λn(t+1−s)

1 − e−2λn(t+1−s)
|Yn(s)| ds

}
≤ c′k

for all m ∈ N and t ∈ R+.

P r o o f. The above statements are straightforward modifications of
known results: The estimate (i) follows from (A3) in the same way as, e.g.,
the inequality (1.10) in [10], Chapter 7, Section 1, while the proof of (iii) is
completely analogous to the proof of Lemma 4.1 in [33]. Simple calculations
yield

∣∣∣
m∑

n=1

t+1\
t

fn(s, Ẑ(s))an(s, xn, yn) ds
∣∣∣ ≤ 2

m∑

n=1

δn
|yn − e−λnxn|

1 − e−2λn

,

and (ii) follows.

Set

(3.2) φ(t, x, y) =
∞∑

n=1

φn(t, x, y) = L1-lim
m→∞

m∑

n=1

φn(t, x, y)

for t ∈ R+, x ∈ H and y ∈ D, where L1-lim denotes the limit in the mean,

φn(t, x, y) =

t+1\
t

fn(s, Ẑ(s)) dwn(s) −
1

2

t+1\
t

|fn(s, Ẑ(s))|2 ds

+

t+1\
t

fn(s, Ẑ(s))an(s, xn, yn) ds

− 2

t+1\
t

fn(s, Ẑ(s))
λne

−2λn(t+1−s)

1 − e−2λn(t+1−s)
Yn(s) ds,

and an, Yn and Ẑ(s) are defined by (3.1), (2.7) and (2.8), respectively.
The limit passage in (3.2) is justified since the series in (3.2) converges in
probability while the condition (A3) and Lemma 3.1(ii), (iii) imply that the
partial sums in (3.2) are uniformly bounded in Lp for some p > 1 and,
therefore, uniformly integrable.

3.2. Lemma. Assume (2.2)–(2.3) and (A1)–(A3). Then

(3.3)
dP (t, x, t + 1, ·)

dQ(1, x, ·)
(y) = E exp{φ(t, x, y)} γ-a.e. y ∈ D

for any t ∈ R+ and x ∈ H.
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P r o o f. Let x ∈ H and t ∈ R+ be fixed. By the Girsanov theorem we
have

dP (t, x, t + 1, ·)

dQ(1, x, ·)
(y) = E(̺t | Z

t,x(t+ 1) = y)

Q(1, x, ·)-a.e., where ̺t = L1-lim ̺m
t and

̺m
t = exp

{ m∑

n=1

t+1\
t

fn(s, Zt,x(s)) dwn(s) −
1

2

m∑

n=1

t+1\
t

|fn(s, Zt,x(s))|2 ds

}

(cf. [26], [13], [33], Lemma 3.1). As m → ∞, E(̺m
t | Zt,x(t + 1) = y)

converges in L1(H,B(H), Q(1, x, ·)) to E(̺t | Z
t,x(t+1) = y) and, therefore,

there exists a subsequence of E(̺m
t | Zt,x(t + 1) = y) (denoted again by

E(̺m
t | Zt,x(t+1) = y)) which converges Q(1, x, ·)-almost everywhere. Since

the Ornstein–Uhlenbeck process Z defined by (2.4) is strongly Feller in the
present case (see, e.g., [26]), the measures Q(1, x, ·) and γ = Q(1, 0, ·) are
equivalent and we arrive at

(3.4) lim
m→∞

E(̺m
t | Zt,x(t+ 1) = y) = E(̺t | Z

t,x(t + 1) = y) γ-a.e.

Now, for each m ∈ N, we have

(3.5) E(̺m
t | Zt,x(t+ 1) = y)

= E

(
exp

{ m∑

n=1

t+1\
t

fn(s, Zt,x(s)) dZt,x
n (s)

+

m∑

n=1

fn(s, Zt,x(s))λnZ
t,x
n (s) ds

−
1

2

m∑

n=1

t+1\
t

|fn(s, Zt,x(s))|2 ds

} ∣∣∣∣Z
t,x(t + 1) = y

)

= E exp

{ m∑

n=1

t+1\
t

fn(s, Ẑ(s)) dẐn(s)

+

m∑

n=1

t+1\
t

fn(s, Ẑ(s))λnẐn(s) ds−
1

2

m∑

n=1

t+1\
t

|fn(s, Ẑ(s))|2 ds

}
,

where Ẑ(s) is the Ornstein–Uhlenbeck process conditioned to go from x at

s = t to y at s = t+ 1, and Ẑn(s) = 〈Ẑ(s), en〉. The processes Ẑn(s) satisfy
the stochastic differential equation
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(3.6)

dẐn(s) = dwn(s) − λnẐn(s) ds

− 2λn
e−2λn(t+1−s)Ẑn(s) − e−2λn(t+1−s)yn

1 − e−2λn(t+1−s)
ds,

Ẑn(t) = xn

(cf. [35] for the details from the theory of conditioned processes). Solving
(3.6) we get the formula (2.9). It follows that

(3.7) E(̺m
t | Zt,x(t+ 1) = y)

= E exp

{ m∑

n=1

t+1\
t

fn(s, Ẑ(s)) dwn(s)

−
1

2

m∑

n=1

t+1\
t

|fn(s, Ẑ(s))|2 ds

− 2

m∑

n=1

t+1\
t

fn(s, Ẑ(s))λn

×
e−2λn(t+1−s)Ẑn(s) − e−λn(t+1−s)yn

1 − e−2λn(t+1−s)
ds

}
.

Using (2.9) we calculate that

2λn
e−2λn(t+1−s)Ẑn(s) − e−λn(t+1−s)yn

1 − e−2λn(t+1−s)

= −an(s, xn, yn) +
2λne

−2λn(t+1−s)

1 − e−2λn(t+1−s)
Yn(s),

therefore, (3.7) yields

(3.8) E(̺m
t | Zt,x(t + 1) = y) = E exp

{ m∑

n=1

φn(t, x, y)
}
.

As for (3.2) it can be checked that

lim
m→∞

E exp
{ m∑

n=1

φn(t, x, y)
}

= E exp{φ(t, x, y)}

for t ∈ R+, x ∈ H and y ∈ D (uniform integrability of the partial sums
follows from Lemma 3.1(i)–(iii)). This, together with (3.8) and (3.4), implies
that

E(̺t | Z
t,x(t+ 1) = y) = E exp{φ(t, x, y)}

for γ-almost all y ∈ D.
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P r o o f o f P r o p o s i t i o n 2.2. For all m ∈ N we have

E

∣∣∣∣
m∑

n=1

t+1\
t

fn(s, Ẑ(s)) dwn(s) −
1

2

m∑

n=1

t+1\
t

|fn(s, Ẑ(s))|2 ds

∣∣∣∣

≤ 2E exp
{ t+1\

t

|f(s, Ẑ(s))|2 ds
}
≤ 2v1(x)v2(y)

by (A3). This, together with (ii) of Lemma 3.1, implies that

E|φ(t, x, y)| ≤ c1 + c22v1(x)v2(y) + 2

∞∑

n=1

δn
|yn − e−λnxn|

1 − e−2λn

for (t, x, y) ∈ R+ ×H ×D, where c1 is a constant. Since v1 is bounded on
bounded sets in H, it follows that for every bounded set B ⊂ H there exists
a constant cB such that

E|φ(t, x, y)| ≤ cB

[
1 + v2(y) +

∞∑

n=1

(δn|yn| + δne
−λn)

]
.

The sum on the right-hand side converges for y ∈ D, so setting

g(y) = cB

[
1 + v2(y) +

∞∑

n=1

(δn|yn| + δne
−λn)

]

for y ∈ D, we obtain

E exp{φ(t, x, y)} ≥ exp{Eφ(t, x, y)} ≥ exp{−E|φ(t, x, y)|} ≥ exp{−g(y)}

for all t ∈ R+, x ∈ B and y ∈ D. Setting h(y) = exp{−g(y)} for y ∈ D and
h(y) = 0 otherwise we complete the proof of Proposition 2.2.
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