
COLLOQU IUM MATHEMAT I CUM
VOL. 72 1997 NO. 1

ESTIMATES FOR SIMPLE RANDOM WALKS ON FUNDAMENTAL

GROUPS OF SURFACES
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TULLIO C E C C H E R I N I - S I L B E R S T E I N (L’AQUILA)

AND PIERRE D E L A H A R P E (GENÈVE)

Numerical estimates are given for the spectral radius of simple random
walks on Cayley graphs. Emphasis is on the case of the fundamental group
of a closed surface, for the usual system of generators.

Introduction. Let X be a connected graph, with vertex set X0. We
denote by kx the number of neighbours of a vertex x ∈ X0. The Markov

operator MX of X is defined on functions on X0 by

(MXf)(x) =
1

kx

∑

y∼x

f(y), f : X0 → C, x ∈ X0,

where the summation is taken over all neighbours y of x (we assume that
1 ≤ kx <∞ for all x ∈ X0).

If X is a regular graph, i.e. if kx = k is independent of x ∈ X0, this op-
erator induces a bounded self-adjoint operator on the Hilbert space ℓ2(X0),
again denoted by MX . The spectral radius µ(X) of the graph X is the norm
of this bounded operator. It is also a measure of the asymptotic probability
for a path of length n in X to be closed, and has several other interesting
interpretations (see e.g. [Woe]). This carries over to the case of a not nec-
essarily regular graph, but the definition of the appropriate Hilbert space is
slightly more complicated (see again [Woe], Section 4.B).

Let Γ be a group generated by a finite set S which is symmetric (s ∈ S
⇔ s−1 ∈ S) and which does not contain the unit element 1 ∈ Γ. Denote by
Cay(Γ, S) the Cayley graph with vertex set X0 = Γ and, for x, y ∈ Γ, with
{x, y} an edge if x−1y ∈ S. We denote by µ(Γ, S) the spectral radius of the
graph Cay(Γ, S).
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Let us recall two important results due to Kesten [Ke1], [Ke2]. The first
one is the relation

2
√
k − 1

k
≤ µ(Γ, S) ≤ 1

with equality on the right if and only if Γ is amenable (k is the number of
generators in S). For the second one let us assume (for simplicity) that Γ
does not have any element of order 2, so that k = 2h for some integer h ≥ 1;
assume also (again for simplicity) that h ≥ 2. Then one has the equality

√
2h− 1

h
=

2
√
k − 1

k
= µ(Γ, S)

if and only if Γ is a free group on a set S+ = {s1, . . . , sh} such that S =
S+ ∐ S−1

+ (where ∐ indicates a disjoint union).
There are few examples of exact computations of µ(Γ, S) for non-amen-

able groups. Most of those we are aware of are for groups which contain free
subgroups of finite index, even if there are a few known cases beyond these
“almost free” groups (see e.g. [Car, Theorem 2] and [CaM]). One direction
for further progress is to find good estimates for new classes of examples.

As a test case, we consider here the fundamental group of an orientable
closed surface of genus g ≥ 2, namely the group Γg given by the presentation

Γg =
〈
a1, b1, . . . , ag, bg

∣∣∣
g∏

j=1

ajbja
−1
j b−1

j = 1
〉

and the generating set

Sg = {a1, a
−1
1 , b1, b

−1
1 , . . . , ag, a

−1
g , bg, b

−1
g }

with k = 4g elements; the resulting Cayley graph is denoted by Xg.
Setting µg = µ(Xg) = µ(Γg, Sg), one has

√
4g − 1

2g
< µg < 1

by Kesten’s estimates recalled above. In particular,

0.6614 ≈
√

7

4
< µ2 < 1

when g = 2. As Γg has 2g generators and as Xg has cycles of length 4g, the
previous estimate may be improved to

√
4g − 1

2g
+

4 − 2
√

3

(4g + 2)(4g)4g+2
≤ µg < 1

(see Formula (4.15) in [Kes]), which gives for g = 2 an improvement of order
5×10−11. There is a better result due to Paschke, for which the improvement
is about 1.75 × 10−4 [Pas].
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In Section 1 below, we present a very simple method based on an obser-
vation of O. Gabber to show that

µg ≤
√

2g − 1

g
and in particular µ2 ≤

√
3

2
≈ 0.8660.

Section 2 records a computation with Poisson kernels; though it is in our
view the most interesting part of the present work, its numerical outcome
so far is limited to the inequality

µ2 ≤ 0.7675

and to similar inequalities for other small values of g. Section 3 uses embed-
ding of trees in graphs to improve the results of Section 1; more precisely,
one has

µg ≤
√

4g − 2

2g
+

1

4g
and in particular µ2 ≤

√
6

4
+

1

8
≈ 0.7373.

(One can extend much of Sections 1 and 3 to C ′(1/6) small cancellation
groups and to one relator groups.) It follows from Section 3 and from
Kesten’s result that

µg = g−1/2 +O(g−1)

for large g.

Our numerical results for g ≤ 10 are summarized in the following table.

genus Kesten Section 1 Section 2 Section 2 Section 3

g

√

4g−1
2g

√

2g−1
g

ν 1− α
√

4g−2
2g + 1

4g

2 .6614 .8660 .2990 .7675 .7373
3 .5529 .7453 .2944 .6588 .6104
4 .4841 .6615 .2932 .5872 .5303
5 .4359 .6000 .2926 .5352 .4742
6 .3997 .5529 .2920 .4953 .4325
7 .3712 .5153 .2916 .4633 .3999
8 .3480 .4841 .2912 .4369 .3736
9 .3287 .4581 .2908 .4147 .3518
10 .3123 .4359 .2905 .3956 .3332

For example, for g = 3, one has the lower bound µ3 ≥ 0.5529 (Kesten)
and the upper bounds

µ3 ≤
√

5

3
≈ 0.7453 (method of Section 1),

µ3 ≤ 0.6588 (method of Section 2 with ν = 0.2944),

µ3 ≤
√

10

6
+

1

12
≈ 0.6104 (method of Section 3).
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After completion of this work, the method of Section 1 has been improved
by A. Żuk [Żuk], who has shown in particular that

µg < 1/
√
g

for all g ≥ 2, and again by T. Nagnibeda [Nag], who has shown in particular
that

µ2 ≤ 0.6629.

We are grateful to Marc Burger, Bill Paschke, Rostislav Grigorchuk,
Alain Valette and Wolfgang Woess for useful comments.

1. Upper bounds from discrete 1-forms. Let X be a graph with
vertex set X0 and with edge set X1. Denote by X

1 the set of oriented edges
of X (if X is finite, then |X1| = 2|X1|). For each e ∈ X

1 we denote by e the
oriented edge obtained from e by reversing the orientation. A 1-form on X
with values in some group G is a map ω : X

1 → G such that ω(e) = ω(e)−1

for all e ∈ X
1. We denote by R

∗
+ the multiplicative group ]0,∞[.

The following proposition is due to O. Gabber. It can be found in [CdV]
(with the proof below) and its corollary in [ChV] (with a different proof).

Proposition 1. Let X be a regular graph of degree k. Suppose there

exists a 1-form ω : X
1 → R

∗
+ and a constant c > 0 such that

1

k

∑

e∈X1,e+=x

ω(e) ≤ c

for all x ∈ X0. Then

µ(X) ≤ c.

(The summation is over all oriented edges e heading to the vertex x.)

Corollary 1. One has

µg ≤
√

2g − 1

g

for all g ≥ 2. In particular ,

µ2 ≤
√

3

2
≈ 0.8660.

P r o o f o f C o r o l l a r y 1. As the only relation in the chosen presen-
tation of Γg has even length, any edge e in the Cayley graph Xg of (Γg, Sg)
joins two vertices e+, e− at different distances from the vertex 1. Let d(x, y)
denote the combinatorial distance in a graph between two vertices x, y, and
write ℓ(x) for d(1, x). For a number b ≥ 1 (to be made precise below), one
may thus define a 1-form on Xg by

ω(e) =

{
b−1 if ℓ(e+) < ℓ(e−),
b if ℓ(e+) > ℓ(e−).
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Say that a vertex x in Xg is of type t if the set

{y ∈ Xg | d(y, x) = 1 and ℓ(y) = ℓ(x) − 1}
is of cardinality t. For example x is of type 1 if 0 < ℓ(x) < 2g, and x is of
type 2 if x is at distance 2g from 1 on a 4g-gon containing 1. It follows from
the definition that 1 is the only vertex of type 0.

It is a fact that any other vertex is either of type 1 or of type 2. This is
well known and goes back to M. Dehn (or H. Poincaré?); it is for example
a straightforward consequence of Lemma 2.2 in [Ser]. Compare with [Can]
and [Wag]; note, however, that a vertex is type 1 [respectively type 2] in our
sense if and only if its Cannon type is in {1, . . . , 2g − 1} [resp. is 2g]. For
convenience of the reader, we give a proof of the fact we use in Appendix A
below.

One has

∑

e∈X1,e+=x

ω(e) =





4gb−1 if x = 1 (type 0),
(4g − 1)b−1 + b if x is of type 1,
(4g − 2)b−1 + 2b if x is of type 2,

and Proposition 1 applies with

c =
(4g − 2)b−1 + 2b

k
.

To minimize c, one sets b =
√

2g − 1, so that

c =
4
√

2g − 1

4g
.

P r o o f o f P r o p o s i t i o n 1. Let f ∈ ℓ2(X0). Choose e ∈ X
1; set

x = e+ and y = e−. From
(√

ω(e)|f(x)| − 1√
ω(e)

|f(y)|
)2

≥ 0

one has

2|f(x)| · |f(y)| ≤ ω(e)|f(x)|2 + ω(e)|f(y)|2.
Summing over e ∈ X

1 one obtains

2
∑

x∈X0

|f(x)|
∑

e∈X1,e+=x

|f(e−)|

≤
∑

x∈X0

|f(x)|2
∑

e∈X1,e+=x

ω(e) +
∑

y∈X0

|f(y)|2
∑

e∈X1,e+=y

ω(e)

and

2k|〈f |MXf〉| = 2k
∣∣∣

∑

x∈X0

f(x)(MXf)(x)
∣∣∣ ≤ 2kc ‖f‖2

.
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As this holds for all f ∈ ℓ2(X0), and as the operator MX on ℓ2(X0) is
self-adjoint, one has ‖MX‖ ≤ c and the conclusion follows.

Generalization. Let Γ = 〈S+ | R〉 be a group presentation satisfying

a small cancellation hypothesis C ′(1/6). If h
.
= |S+| ≥ 2 and if S = S+ ∪

(S+)−1, one has

µ(Γ, S) ≤ 2
√
h− 1

h
.

P r o o f. One has |S| = 2h because small cancellation groups cannot have
elements of order 2 (see e.g. Section V.4 in [LyS]). Types being defined as
in the proof of Corollary 1, it is known that any vertex distinct from the
identity in the Cayley graph of (Γ, S) is either of type 1 or of type 2 (lemme
4.19 in [Cha]). Defining a 1-form ω on this Cayley graph by

ω(e) =





b−1 if ℓ(e+) < ℓ(e−),
1 if ℓ(e+) = ℓ(e−),
b if ℓ(e+) > ℓ(e−),

one may apply verbatim the argument of Corollary 1.

2. Upper bounds from Poisson kernels. Let again X = Cay(Γ, S)
be as in the introduction and let MX be the corresponding Markov operator.
The combinatorial Laplacian of X is defined to be

∆X = 1 −MX .

Let α ∈ R; a function f : Γ → [0,∞[ is said to be α-superharmonic if f 6= 0
and if ∆Xf ≥ αf. (If there exists such a function f , one has f ≥ ∆Xf ≥ αf
and consequently α ≤ 1. One may also show that f(γ) > 0 for all γ ∈ Γ.)
The function is said to be α-harmonic if moreover ∆Xf = αf.

Proposition 2. Let α ∈ R. The following are equivalent.

(i) α ≤ 1 − µ(X) = inf{spectrum of ∆X on the Hilbert space ℓ2(Γ )}.
(ii) There exists a function f : Γ → [0,∞[ which is α-superharmonic.

(iii) There exists a function f : Γ → [0,∞[ which is α-harmonic.

There is one proof in terms of graphs in [DoK, Proposition 1.5]. But
there are earlier proofs in the literature on irreducible stationary discrete
Markov chains; the equivalence of (i) and (ii) is standard; the equivalence
with (iii) is more delicate (see [Har] and [Pru]).

Corollary 2. One has µ2 ≤ 0.784. More generally , upper estimates for

µg and small g’s are given by the table in the introduction.

We begin the proof of Corollary 2 with the following lemma.
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Lemma 1. Let g be an integer , g ≥ 2. Set

(1) Dg = 2arccosh

(
cot

π

4g

)

For φ ∈ [0, 2π[, set

(2) b(̺, φ) =
1

cosh ̺− sinh ̺ cosφ

for all ̺ > 0 and

(3) Fg(ν, φ) =
1

4g

4g−1∑

j=0

{
b

(
Dg, φ+ j

2π

4g

)}ν

for all ν ∈ R. Then

µg ≤ max
0≤φ<2π

Fg(ν, φ)

for all ν ∈ R.

P r o o f. F i r s t s t e p: definition of a function fν . Let H2 be the hy-
perbolic plane.

There is a free discrete isometric action of Γg on H2 and a point z0 ∈ H2

such that the Dirichlet cells of the orbit Γgz0 constitute a tesselation of H2

by regular 4g-gons with all inner angles equal to π/(2g). There is conse-
quently an embedding of the graph Xg = Cay(Γg, Sg) in H2, with vertices
of the graph corresponding to points of the orbit Γgz0 and edges correspond-
ing to pairs of adjacent Dirichlet cells. Trigonometric computations for a
hyperbolic triangle with angles π/2, π/(4g), π/(4g) show that Dg in (1) is
the distance between the centres of two adjacent Dirichlet cells.

Let ω0 ∈ ∂H2 be a point at infinity. Let P : H2 → ]0,∞[ be the function
given by the value at ω0 of the Poisson kernel. For computations we choose

(4) H2 = {z ∈ C | Im(z) > 0} and ω0 = ∞i so that P (x+ iy) = y.

Let ∆H be the hyperbolic Laplacian on H2. One has

∆HP
ν = −ν(ν − 1)P ν

for all ν ∈ R. (We have chosen a positive Laplacian ∆H . This implies that
the spectrum of the corresponding self-adjoint operator on the Hilbert space
L2(H2, y−2dxdy) is [1/4,∞[. The equality ∆HP

ν = −ν(ν−1)P ν shows that
there exist α-harmonic functions for ∆H for all α ≤ 1/4, in accordance with
an analogue for ∆H of the previous proposition. Much more on this in [Sul].)

We define

fν : Γg → ]0,∞[
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by fν(γ) = P ν(γz0). For γ ∈ Γ, let zγ,j (0 ≤ j ≤ 4g − 1) denote the centres
of the Dirichlet cells adjacent to the Dirichlet cell centred at γz0. One has

(∆Xfν)(γ) = P ν(γz0) −
1

4g

4g−1∑

j=0

P ν(zγ,j)

for each γ ∈ Γ. The strategy of the proof is to find some α ∈ R such that
∆Xfν ≥ αfν , and to deduce from the previous proposition that µg ≤ 1−α.

S e c o n d s t e p: lower estimate for ∆Xfν . For z ∈ H2, ̺ > 0 and
φ ∈ [0, 2π[, let z(̺, φ) ∈ H2 be the point at hyperbolic distance ̺ from z for
which the oriented angle between the geodesic ray −−−→z0, ω0 and the geodesic

segment
−−−−−−→
z0, z(̺, φ) is φ. Set

(5) cg(ν, ̺, φ, z) =

P ν(z) − 1

4g

4g−1∑

j=0

P ν

(
z

(
̺, φ+ j

2π

4g

))

P ν(z)
.

Observe that there is one well-defined value φγ ∈ [0, 2π/(4g)[ such that

(∆Xfν)(γ) = cg(ν,Dg, φγ , γz0)fν(γ)

for each γ ∈ Γ. But computing the angles φγ is a difficult task, and we
rather look for an estimate of the right-hand side in the inequality

∆Xfν ≥ ( min
0≤φ<2π

z∈H2

cg(ν,Dg, φ, z))fν .

Now (5) shows that cg(ν, ̺, φ, z) depends neither on the real part of z, be-
cause P (x + iy) = y for all x ∈ R, nor on the imaginary part of z, because
P ν(λz) = λνP ν(z) for all λ > 0. Thus one has

∆Xfν ≥ ( min
0≤φ<2π

cg(ν,Dg, φ, z0))fν .

Choosing moreover z0 = i, one has

P (z0) = 1

and

cg(ν,Dg, φ, z0) = 1 − 1

4g

4g−1∑

j=0

{
ℑ

(
z0

(
Dg, φ+ j

2π

4g

))}ν

by (5).

T h i r d s t e p: computation of ℑ(z0(̺, φ)). Let C be a hyperbolic circle
of hyperbolic radius ̺ centred at the point z0 = i of the Poincaré half-plane.
The Cartesian coordinates (a, b) of a point on C satisfy

(6) a2 + (b− cosh ̺)2 = (sinh ̺)2.



ESTIMATES FOR RANDOM WALKS 181

For each φ ∈ ]−π, π[, let Cφ be the hyperbolic geodesic through z0 defining
at this point an angle φ with the vertical axis. The Cartesian coordinates
of a point on Cφ satisfy

(7)

(
a− 1

tanφ

)2

+ b2 = 1 +
1

tan2 φ
.

Let us compute the second coordinates of the two points of C ∩ Cφ (see
Figure 1). Subtracting (7) from (6), one finds

a

tanφ
− b cosh ̺ = −1

and inserting this in (7) one obtains

(cosh2 ̺ tan2 φ+ 1)b2 − 2(cosh ̺ (tan2 φ+ 1))b+ 1 + tan2 φ = 0.

Straightforward manipulations show that

(cosh ̺ (tan2 φ+ 1))2 − (cosh2 ̺ tan2 φ+ 1)(1 + tan2 φ) =

(
sinh ̺

cosφ

)2

and consequently that

b =
cosh ̺(tan2 φ+ 1) ± sinh ̺

cosφ

cosh2 ̺ tan2 φ+ 1
=

cosh ̺± sinh ̺ cosφ

cosh2 ̺ sin2 φ+ cos2 φ
(8)

=
1

cosh ̺∓ sinh ̺ cosφ
.

Thus one has

ℑ(z0(̺, φ)) =
1

cosh ̺− sinh ̺ cosφ
= b(̺, φ)

where the last equality is (2). (The other sign in (8) would give b(̺, φ+π).)

Fig. 1

F o u r t h s t e p: coda. The previous computations show that one has

∆Xfν ≥ αfν

for

α = min
0≤φ<2π

{1 − Fg(ν, φ)}
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where Fg is defined in (3). As µg ≤ 1 − α by Proposition 2, this ends the
proof.

At this point, the problem is to compute infν maxφ Fg(ν, φ). One could
use just here a computer system such as Maple and obtain a table of
numerical results. However, we rather adopt the following program.

A first step consists of a lemma of calculus showing that, for any ν ∈
[0, 1], the function φ 7→ Fg(ν, φ) reaches its maximum at φ = 0. (This at
least for g ≤ 27; we have not found a reasonably short proof working for all
g.) This is stated below, and proved in Appendix B at the end of our paper.

Only in a second step do we use a computer, first to find an efficient
value of ν (which turns out to be near 0.3 for all g) and then to compute
Fg(ν, 0) for this ν, so that one has a numerical estimate

µg ≤ Fg(ν, 0)

for the spectral radius of µg = µ(Cay(Γg, Sg)).
For g and ν fixed, the function φ 7→ 4gFg(ν, φ) is a sum of a function

β : φ 7→ (cosh(Dg) − sinh(Dg) cosφ)−ν

and of 4g − 1 translates of β. It is straightforward to check that β̇(0) = 0
and β̈(0) < 0, so that β has a local maximum at the origin. The purpose
of Lemma 2 (which is proved in Appendix B) is to show that this local
maximum is strong enough for φ 7→ Fg(ν, φ) to have an absolute maximum
at the origin.

Lemma 2. For 2 ≤ g ≤ 27 and 0 ≤ ν ≤ 1 one has

max
0≤φ≤2π

Fg(ν, φ) = Fg(ν, 0).

Thus, for these g’s,

µg ≤ Fg(ν, 0)

for all ν ∈ [0, 1], by Lemma 1.

E n d o f p r o o f o f C o r o l l a r y 2. Thanks to the previous lemma,
we may consider the function

ν 7→ Fg(ν, 0) =
1

4g

4g−1∑

j=0

β

(
j
2π

4g

)
,

and compute its minimum over 0 ≤ ν ≤ 1, yielding an upper bound for µg.
The computer algebra programMaple was used here, giving for g ≤ 10 the
values of the table in the introduction.

3. Upper bounds from regular subtrees. Let X be a regular graph
of degree k, as in Section 1. Assume that there is a subgraph Y of X which
is spanning (that is, which contains all vertices of X) and which is regular
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of degree l for some l ∈ {2, . . . , k − 1} (we assume k ≥ 3). The Markov
operators MX and MY act on the same space ℓ2(X0) = ℓ2(Y 0). One has

(MXf)(x) =
1

k

{ ∑

e∈Y1,e+=x

f(e−) +
∑

e∈X1\Y1,e+=x

f(e−)
}

=
l

k
(MY f)(x) +

1

k

∑

e∈X1\Y1,e+=x

f(e−)

so that

‖MX‖ ≤ l

k
‖MY ‖ +

k − l

k
.

In case Y is a disjoint union of regular trees, ‖MY ‖ is explicitly known from
Kesten’s computations and one has the following.

Proposition 3. Let X be a regular graph of degree k ≥ 3 and let Y be a

spanning subgraph of X which is a disjoint union of regular trees of degree

l, for some l ∈ {2, . . . , k − 1}. Then

2
√
k − 1

k
≤ ‖MX‖ ≤ 2

√
l − 1

k
+
k − l

k
.

Lemma 3. The graph Xg contains a spanning subgraph Yg which is a

disjoint union of regular trees of degree 4g − 1.

P r o o f. Recall from Section 1 that ℓ(x) denotes the combinatorial dis-
tance in Xg between a vertex x and the base point 1, and from Appendix
A that vertices in Xg are shared amongst three types numbered 0, 1 and 2.
Recall also that

(a) two vertices of type 2 are at distance at least 3 from each other,
(b) any vertex x of type 1 has a convenient neighbour y ∈ X0

g such that
• ℓ(y) = ℓ(x) + 1,
• y is of type 1,
• all neighbours of y in Xg are of type 1

[indeed x has at least 4g − 2 such neighbours].
The construction goes in two steps.

F i r s t s t e p. Let Zg be the spanning subgraph of Xg obtained from
Xg by erasing, for each vertex x of type 2, one edge connecting x to a
neighbour y of x such that ℓ(y) = ℓ(x) − 1. (This edge is chosen arbitrarily
from 2 candidates.) By (a) above, any vertex of type 1 has degree 4g− 1 or
4g in Zg and any vertex of type 2 has degree 4g − 1 in Zg.

S e c o n d s t e p. For each k ≥ −1, define inductively a graph Y
(k)
g as

follows. First, set Y
(−1)
g = Zg. Then, if k ≥ 0, let Y

(k)
g be a spanning

subgraph of Xg obtained from Y
(k−1)
g by erasing, for each vertex x with
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|x| = k which is of degree 4g in Y
(k−1)
g , one edge connecting x to one of its

convenient neighbours. (This edge is chosen arbitrarily from at least 4g − 2

candidates.) By (b) above, any vertex with |x| ≤ k in Y
(k)
g is of degree

4g − 1.

Observe that, for all l ≥ k, the graphs Y
(k)
g and Y

(l)
g coincide “in the

ball defined by |x| ≤ k”. Thus one may set Yg = Y
(∞)
g ; any vertex in Yg is

of degree 4g − 1.

Let us check that Yg does not contain any circuit. For this, we will show
that Zg has no circuit.

Observe that two neighbours in Zg are never at the same distance from
1 (because this is already so in Xg, a consequence of the relation defining
the group Γg being of even length). If there were a circuit in Zg, it would
contain a vertex x at maximum distance, say n, from 1, and this x would
have two neighbours at distance n − 1; in particular, x would be of type 2;
this is ruled out by the first step above.

Thus Yg is indeed a spanning forest of degree 4g − 1 in Xg.

Though this fact is not needed for what follows, let us observe that Yg

has infinitely many connected components. Indeed, choose a vertex x of
type 1 and a convenient neighbour y of x such that the edge connecting x
to y has been erased in the second step above; then any neighbour z of y
in Yg is such that ℓ(z) = ℓ(y) + 1. Choose similarly a vertex x′ 6= x and a
convenient neighbour y′, with the same properties as x and y. Then y and
y′ are not in the same component of Yg, because any path from y to y′ in
Yg should have a maximum strictly between y and y′, and this is ruled out
by the first step above.

There are infinitely many such x’s, because from (a) there are infinitely
many vertices of type 1 and degree 4g in Zg.

R e m a r k. In another terminology, Lemma 3 shows that the set of edges
of Xg which are not edges of Yg constitute a perfect matching of Xg, also
called a 1-factor.

Corollary 3. One has

µg ≤
√

4g − 2

2g
+

1

4g

for all g ≥ 2. In particular ,

µ2 ≤
√

6

4
+

1

8
≈ 0.7373.

P r o o f. Immediate from Proposition 3 and Lemma 3.

Comparison with Corollary 1. Computations in this section are more
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efficient than computations of Section 1 (with discrete 1-forms), because
√

4g − 2

2g
+

1

4g
<

√
2g − 1

g

for all g ≥ 2. But computations of Section 1 can be improved to beat the
present ones [Nag]!

Corollary 4. Let Γ = 〈S+ | R〉 be a one-relator group, with S+ ⊂
Γ \ {1} of order h ≥ 2. Then

√
2h− 1

h
< µ(Γ, S) ≤

√
2h− 3 + 1

h

for S = S+ ∪ (S+)−1.

P r o o f. Let T+ be a subset obtained from S+ by erasing one letter
appearing in R (we assume R to be cyclically reduced). Then T+ is free
by the Dehn–Magnus’ Freiheitssatz (see e.g. [ChM, Chapter II.5]). Set
T = T+ ∪ (T+)−1. Let Y be the spanning subgraph of the Cayley graph
Cay(Γ, S) for which two vertices x, y are connected by an edge whenever
xy−1 ∈ T. As T+ is free in Γ, the graph Y is a disjoint union of regular trees
of degree 2h− 2. The corollary follows from Proposition 3.

Appendix A: on planar graphs. Let X be a connected graph em-
bedded in the plane, edges of X being piecewise smooth curves which are
pairwise disjoint (but for common vertices). If X is infinite, we assume that
the following strong planarity condition holds: for any simple closed curve
in X, the corresponding bounded region of the plane (via the Jordan curve
theorem) contains only finitely many vertices of X. A face of X is the closure
of a connected component of the complement of X in the plane.

Let d(x, y) denote the combinatorial distance between two vertices x, y ∈
X0; let x0 ∈ X0 be a base point and set ℓ(x) = d(x0, x). IfX is bipartite, two
neighbouring vertices x, y ∈ X0 are necessarily such that |ℓ(x) − ℓ(y)| = 1.
Recall that the type t(x) of a vertex x ∈ X0 is here the number of neighbours
y of x such that ℓ(y) < ℓ(x). Observe that, for x ∈ X0, one has t(x) = 0 if
and only if x = x0.

Geometric Proposition. Let X be a strongly planar graph with base

point x0 ∈ X0. Assume that X is connected , bipartite, and satisfies the

following conditions:

(i) (large degree) each vertex x ∈ X0 has kx ≥ 4 neighbours in X;
(ii) (large faces) each face F of X contains kF ≥ 4 vertices of X;
(iii) (no-sink-vertex) each vertex x ∈ X0 has at least one neighbour y ∈

X0 such that ℓ(y) = ℓ(x) + 1.

Then t(x) ≤ 2 for all x ∈ X0.
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Assume moreover that each face F of X contains kF ≥ 8 vertices of X.
Then

(a) for two vertices x, y of type t(x) = t(y) = 2, one has d(x, y) ≥ 3,

(b) any vertex x of type 1 has a neighbour y ∈ X0 such that d(x0, y) =
d(x0, x) + 1 and such that all neighbours of y are also of type 1.

P r o o f. We will make use of the following maximum principle: if C is a
simple closed curve in X enclosing a bounded open region R of the plane,
then

max
x∈R∩X0

d(x0, x) < max
y∈C∩X0

d(x0, y).

To show this, consider a point x′ ∈ R and a geodesic segment from x0 to
x′. By (iii), this can be extended to an arbitrarily long geodesic segment
starting at x0. By strong planarity, such an extension has to escape R and
does so crossing C in some vertex y′. One has clearly d(x0, x

′) < d(x0, y
′),

and this proves the inequality above.

We will also make use of another standard fact: for two distinct faces
F and G, the intersection F ∩ G is either empty, or a vertex of the graph,
or one edge of the graph. (To rule out the case of several edges, one may
evaluate the Euler characteristics of the closure of a bounded component of
the complement of F ∪G.)
Claim A. For each face F of X, the function

fF : F ∩X0 → N, x 7→ ℓ(x),

has a unique local minimum (say mF ) and a unique local maximum (say
MF ). In other words, the function fF is unimodal.

To prove the claim, it is enough to show that, for any n ∈ N, the cardinal
of the fibre f−1

F (n) is at most 2.

Suppose ab absurdo that this is not the case. Let x, y, z ∈ F ∩ X0 be
three distinct vertices such that fF (x) = fF (y) = fF (z). Denote by [x, y],
[y, z], [z, x] the three sides of a triangle with vertices x, y, z contained in
the boundary of F. Choose geodesic segments Lx, Ly, Lz from x0 to x, y, z
respectively. Then appropriate subsegments of [x, y], Lx, Ly constitute a
simple closed curve Cx,y defining a bounded open region Rx,y of the plane;
one has similarly curves Cy,z, Cz,x and regions Ry,z, Rz,x. Let R be the
interior of Rx,y ∪Ry,z ∪Rz,x. There is exactly one of the three points x, y, z
which is inside R; upon changing notations for x, y, z, one may assume that
y ∈ R (as in Figure 2).

The geodesic segment Ly can be extended infinitely, by (iii). Such an
extension of Ly has to escape R through its boundary, and this is impossible;
thus Claim A is proved.
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It follows that the two geodesic segments in F ∩X from mF to MF have
the same number ℓ(MF )−ℓ(mF )−1 of interior vertices—this number being
strictly positive by (ii).

Fig. 2

Claim B. There is no vertex x ∈ X0 with type t(x) ≥ 3.

Indeed, suppose ab absurdo that X has vertices of type at least 3 and let
m be one of these for which the distance to x0 is minimum. Let v1, . . . , vr, w1,
. . . , ws be the neighbours of m, listed in such a way that

ℓ(vi) = ℓ(m) − 1, 1 ≤ i ≤ r (r ≥ 3),

ℓ(wk) = ℓ(m) + 1, 1 ≤ k ≤ s (s ≥ 1).

For i ∈ {1, . . . , r}, choose a geodesic segment Li from x0 to vi.

For i, j ∈ {1, . . . , r} with i 6= j, the segment [vi,m, vj ] and appropri-
ate subsegments of Li, Lj constitute a simple closed curve Ci,j defining a
bounded open region Ri,j of the plane. By the maximum principle, wk 6∈ Ri,j

for all k ∈ {1, . . . , s}. Thus, upon renumbering the vi’s and the wk’s, one
may assume that v1, . . . , vr, w1, . . . , ws are arranged in cyclic order around
the vertex m. It follows that there is a face F1 containing v1,m, v2, a face
F2 containing v2,m, v3, and that F1, F2 are adjacent along [v2,m] (see Fig-
ure 3).

For h ∈ {1, 2}, let uh denote the vertex of Fh such that d(uh, v2) = 1
and ℓ(uh) = ℓ(v2)− 1; let also mh denote the vertex of Fh nearest to x0 and

choose a geodesic segment L̃h from x0 to mh. (We have used Claim A here.)
By (i), the vertex v2 has a neighbour u0 ∈ X0 \ {m,u1, u2}. Using again
the maximum principle for a region enclosed by appropriate subsegments
of L̃1 ∪ [m1, v2] and L̃2 ∪ [m2, v2], one checks that ℓ(u0) = ℓ(v2) − 1. It
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Fig. 3

follows that v2 is of type at least 3 (because it has neighbours u0, u1, u2), in
contradiction with the choice of m (because ℓ(v2) < ℓ(m)); thus Claim B is
proved.

P r o o f o f (a). Let x, y ∈ X0 be such that x 6= y and t(x) = t(y) = 2.
There is a face F such that x is the vertex of F maximizing the distance to
the origin on F ∩X0, and a face G similarly associated with y. The equality
d(x, y) = 1 would contradict Claim B, as indicated in Figure 4 (this uses
only kH ≥ 6 for all faces H of X).

Fig. 4

The equality d(x, y) = 2 gives rise to two types of configuration, each in
contradiction with Claim B, as indicated in Figure 5.
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Fig. 5

P r o o f o f (b). Let x ∈ X0 be a vertex of type 1. Let v,w1, . . . , ws be
the neighbours of x, listed in cyclic order around the vertex x, with

ℓ(v) = ℓ(x) − 1,

ℓ(wk) = ℓ(x) + 1, 1 ≤ k ≤ s (s ≥ 3).

We leave it to the reader to check the following facts:

• the vertices w1 and ws are of types 1 or 2 (not both of type 2 by
Claim B),

• the intermediate vertices w2, . . . , wk−1 are all of type 1,

• any of these has all its neighbours of type 1.

This ends the proof of the proposition.

Appendix B: proof of Lemma 2

Lemma 4. For g ≥ 2, set

Cg = cosh(Dg), δg = arccos

(
Sg

Cg

)
= arccos(tanh(Dg)),

Sg = sinh(Dg), εg = arccos

(
Sg

Cg
− 1

SgCg

)
.

Then

(9) 0 < δg < εg <
π

4g
,

and
d

dφ

1

(Cg − Sg cosφ)ν
≤ 0 for all φ ∈ [0, π],

d2

dφ2

1

(Cg − Sg cosφ)ν
≥ 0 for all φ ∈ [δg, π],

d3

dφ3

1

(Cg − Sg cosφ)ν
≤ 0 for all φ ∈ [εg, π].
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P r o o f. F i r s t s t e p: inequalities of (9) in Lemma 4. Obviously 0 <
δg, as Cg and Sg are both positive. Better, Sg > 1 because Dg > 1; indeed,
Dg is an increasing function of g (being the composite of two decreasing
functions and an increasing one), and D2 ≈ 3.057 > 1. This allows us to
write Sg > Sg − 1/Sg > 0; dividing by Cg and taking arccosines yields
δg < εg.

Next εg < π/(4g). For this, as “cos” is decreasing, we must show that

(10)
Sg

Cg
− 1

SgCg

?
> cos

(
π

4g

)

holds without the ? sign. We set X = cot2(π/(4g)) and we express Cg, Sg,
cos(π/(4g)) in terms of X; as Cg = cosh(Dg) = 2(cosh(Dg/2))

2 −1, one has

Cg = 2X − 1, Sg = 2
√
X(X − 1), cos

(
π

4g

)
=

√
X

X + 1
,

whence (10) becomes

2
√
X(X − 1)

2X − 1
− 1

2
√
X(X − 1)(2X − 1)

?
>

√
X

X + 1
.

Squaring,

4X(X − 1) − 2 +
1

4X(X − 1)

?
>

X

X + 1
(2X − 1)2

or, provided X > 1,

16X4 − 44X3 + 20X2 + 9X + 1
?
> 0.

We rewrite this as

16(X − 2)4 + 84(X − 2)3 + 140(X − 2)2 + 73(X − 2) + 3
?
> 0.

This inequality is true for all X > 2, as the left hand side is a polynomial in
X−2 with all coefficients positive. It remains to check that cot2(π/(4g)) > 2
for all g ≥ 2; but this is clear because cot2(π/(4g)) is an increasing function
of g with value 3 + 2

√
2 at g = 2.

S e c o n d s t e p: the function β. Set

β(φ) = b(Dg, φ)ν =
1

(Cg − Sg cosφ)ν

so that

(11) Fg(ν, φ) =
1

4g

4g−1∑

j=0

β

(
φ+ j

2π

4g

)
.
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The first derivative of β is

(12) β̇(φ) =
−νSg sinφ

(Cg − Sg cosφ)ν+1

so that β̇(φ) ≤ 0 for all φ ∈ [0, π]. The second derivative of β is

(13) β̈(φ) = νSg
Sg − Cg cosφ+ νSg sin2 φ

(Cg − Sg cosφ)ν+2
≥ νSg

Sg − Cg cosφ

(Cg − Sg cosφ)ν+2

so that β̈(φ) ≥ 0 as soon as cos φ ≤ Sg/Cg, namely as soon as φ ∈ [δg, π].
The third derivative of β is

...
β (φ) = νSg sinφ

1 − (3ν + 1)Sg(Sg − Cg cosφ) − ν2S2
g sin2 φ

(Cg − Sg cosφ)ν+3

≤ νSg sinφ
1 − (3ν + 1)Sg(Sg − Cg cosφ)

(Cg − Sg cosφ)ν+3

so that
...
β (φ) ≤ 0 for φ ∈ [εg, π].

P r o o f o f L e m m a 2. Let g ≥ 2 and ν ∈ [0, 1] be fixed. As the
function φ 7→ Fg(ν, φ) is smooth, even and periodic of period π/(2g) it is
enough to show that

Fg(ν, φ) ≤ Fg(ν, 0)

for all φ ∈ [0, π/(4g)].
In the range [δg, π/(2g) − δg], the functions φ 7→ b

(
Dg, φ + j 2π

4g

)ν
are

convex for all j ∈ {0, 1, . . . , 4g − 1} by Lemma 4. Their convex sum φ 7→
Fg(ν, φ) is thus also convex, so that

Fg(ν, φ) ≤ Fg(ν, δg)

for all φ ∈ [δg, π/(4g)].
We now suppose φ ∈ [0, δg ] and we want to show that d

dφFg(ν, φ) ≤ 0.
One has

d

dφ
4gFg(ν, φ) = β̇(φ) +

4g−1∑

j=1

β̇

(
φ+ j

π

2g

)

by (11). As β̇ is an odd function
∑4g−1

j=0 β̇
(
j π

2g

)
= 0; as β̇(0) = β̇(π) = 0

one also has

d

dφ
4gFg(ν, φ) = β̇(φ) +

4g−1∑

j=1

(
β̇

(
φ+ j

π

2g

)
− β̇

(
j
π

2g

))
.

By the theorem of Rolle,

d

dφ
4gFg(ν, φ) = β̇(φ) +

4g−1∑

j=1

φβ̈

(
ψj + j

π

2g

)

for some ψj ∈ [0, φ]. By the computation for
...
β in Lemma 4, one has β̈

(
ψj +

j π
2g

)
≤ β̈

(
π
2g

)
and
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d

dφ
4gFg(ν, φ) ≤ β̇(φ) + (4g − 1) φβ̈

(
π

2g

)
.

Using (12) and (13) one finds

d

dφ
4gFg(ν, φ) ≤ − νSg

sinφ

(Cg − Sg cosφ)ν+1

+ (4g − 1)νSgφ
Sg − Cg cos(π/(2g)) + νSg sin2(π/(2g))

(Cg − Sg cos(π/(2g)))ν+2

so all we have to check is

(sinφ)/φ

(Cg − Sg cosφ)ν+1
≥ (4g − 1)

Sg − Cg cos(π/(2g)) + νSg sin2(π/(2g))

(Cg − Sg cos(π/(2g)))ν+2

for all φ ∈ [0, δg].
As cos φ ≥ cos(π/(2g)), so (Cg −Sg cosφ)ν ≤ (Cg −Sg cos(π/(2g)))ν , we

may tighten the inequality to

(sinφ)/φ

Cg − Sg cosφ
≥ (4g − 1)

Sg − Cg cos(π/(2g)) + νSg sin2(π/(2g))

(Cg − Sg cos(π/(2g)))2
.
= Rg(ν);

as the right hand side is constant in φ while the left hand side decreases
monotonically, we let φ = δg. Finally, we set ν = 1 to maximize the right
hand side. Our goal is now to show

(sin δg)/δg
Cg − Sg cos δg

≥ Rg(1).

But, by definition of δg (see Lemma 4), one has Cg − Sg cos δg = 1/Cg and

Cg sin δg =
√
C2

g − S2
g = 1, so that our goal reduces to showing

1/δg ≥ Rg(1).

That this is true for g ≤ 27 can in turn be checked on a pocket calculator.
Thus when g ≤ 27 and ν ∈ [0, 1] the function Fg(ν,−) is monotonically
decreasing on [0, π/(4g)]; its maxima are at 0 + jπ/(2g) and its minima at
π/(4g) + jπ/(2g).
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