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1. Introduction. Let D be a skew field containing a subfield K and
consider the free D-ring over K on a set X:

(1) DK〈X〉,

defined as the ring generated by X over D, with defining relations αx = xα

for all x ∈ X, α ∈ K. In the special case D = K we write K〈X〉 for KK〈X〉;
further when K is commutative, K〈X〉 is called the free K-algebra on X.

It is known that DK〈X〉 is always a fir (= free ideal ring) and hence has
a universal field of fractions (see Th. 2.4.1, p. 105f. and Cor. 7.5.11, p. 417
of [1]). This leaves open the question whether a tensor product DK〈X1〉⊗D

DK〈X2〉 has a universal field of fractions. When D = K is commutative,
we shall answer this question affirmatively in Theorem 3.1 below. This
question is of some interest because the multiplication algebra of (1), that
is, the subring of End(K〈X〉) generated by all left and right multiplications,
has the form of such a tensor product. Our indirect approach is needed, for
as we shall see, the tensor product is not even a Sylvester domain as soon as
the sets Xi each have more than one element, or when the tensor product
has more than two factors. Some limitation on D is also necessary because
in general D ⊗K D need not be embeddable in a field; indeed, it may not
even be an integral domain.

2. The multiplication algebra of a free ring. All rings are assumed
to be associative, with a unit element denoted by 1, which is inherited by
subrings, preserved by homomorphisms and which acts unitally on modules.

Let R be a ring. Generally we shall write maps on the right, so that the
right multiplication ̺a : x 7→ xa (a, x ∈ R) gives rise to a homomorphism
from R to End(R), while the left multiplication λa : x 7→ ax defines an
anti-homomorphism. The maps a 7→ ̺a and a 7→ λa are injective (thanks to
the presence of 1), so the right multiplications form a ring isomorphic to R
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while the ring of left multiplications is isomorphic to the opposite ring Ro.
When R is a k-algebra (where k is a commutative ring), the multiplication
is k-bilinear, by definition, and we have a homomorphism

(2) φ : Ro ⊗k R → End(R),

where f =
∑

ai ⊗ bi maps to φf : u 7→
∑

aiubi.

The image of this mapping is often called the multiplication algebra M(R)
of R. Our aim in this section is to prove the elementary result that for a free
ring of rank greater than 1 the map (2) is injective. This is of course well
known, but we include a proof since no convenient reference seems available.
By the rank of a free D-ring DK〈X〉 we understand the cardinal of X: this
can be shown to depend only on the ring, not on X (see p. 60 of [1] for the
case D = k; the same proof works in general).

Theorem 2.1. Let D be a skew field , k a central subfield and R = Dk〈X〉
the free D-ring over k on a set X. The map (2) defines an isomorphism of

Ro ⊗k R with the multiplication ring of R, provided that either (i) the rank

of R is greater than 1, or (ii) X 6= ∅ and D 6= k.

P r o o f. Let X be indexed as X = {xλ} and take a k-basis {uα} of D

including 1 = u0. Then the finite products of terms xλuα form a left D-basis
of R; we have to show that φ given by (2) is injective.

Consider f =
∑

ai ⊗ bi in the kernel of φ. We can take each bi to be a
product of terms xλuα (and possibly a factor uβ on the left). Write b0 = 1;
if no term in b0 occurs, this just means that a0 = 0, and our task is to show
that ai = 0 for all i. Suppose first that |X| > 1 and let x, y be distinct
members of X. Choose n larger than the degree of any aibi and consider
the result of applying f to xn and yn:

(3) a0x
n +

∑

i

aix
nbi = 0,

(4) a0y
n +

∑

i

aiy
nbi = 0.

Since the bi are distinct, they are linearly independent over k and from (3)
we see, by the choice of n, that there can be no bi that is not a power of x.
Similarly (4) shows that each bi is a power of yn; this means that there can
be no bi apart from b0. Hence each ai must vanish and f = 0, as we wished
to show.

Next assume that X = {x} and the k-basis of D includes 1, u 6= 1. We
now have (3) and

(5) a0(xu)n +
∑

i

ai(xu)nbi = 0.
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As before, (3) shows that each bi is a power of x while (5) shows that it is a
power of xu. Hence there can be no bi and again f = 0. This shows φ to be
injective in all cases, and it is therefore an isomorphism between Ro ⊗k R

and the multiplication algebra of R.

In the excluded case we have either R = k[x]; then the conclusion is
clearly false. Or we have R = D and then the situation depends on the
precise nature of D.

3. Universal fields of fractions. Throughout, the term field will mean
a not necessarily commutative division ring; sometimes the prefix skew is
added for emphasis. As is well known, every commutative integral domain
has a (commutative) field of fractions, which is unique up to isomorphism.
By contrast, in the general case the absence of zero-divisors is necessary but
not sufficient for a field of fractions to exist, and when it exists it need not
be unique.

Let us recall the terminology. For any ring R an R-field is a field K with
a homomorphism R → K; if K is generated as a field by the image of R, it is
called an epic R-field. An epic R-field for which the canonical map R → K

is injective is called a field of fractions. In 7.2 of [1] (and 4.1 of [4]) it is
explained that for a given ring R the epic R-fields may be regarded as the ob-
jects of a small category, and an initial object in this category, if it exists, is
called a universal R-field , or if applicable, a universal field of fractions of R.

A matrix P over any ring R is said to be full if it is square, say n×n, and
cannot be written as P = ST , where S has fewer than n columns. Clearly
any matrix P over R can be mapped to an invertible matrix over a given
R-field only if P is full; thus the full matrices are the most that one can
hope to invert. We recall that a ring R is called a Sylvester domain if in any
matrix equation AB = 0 over R, one can write A = A′A′′ and B = B′B′′,
where A′′ is r×n, B′ is n× s and r + s ≤ n. Sylvester domains have a field
of fractions over which each full matrix can be inverted; clearly this must be
the universal field of fractions, because any epic R-field is characterized up to
isomorphism by the matrices over R that are inverted and only full matrices
can be inverted. This property, of having “fully inverting” homomorphisms
to a field, is actually characteristic of Sylvester domains (see Th. 7.5.10
of [1]). Since every fir is a Sylvester domain, any free ring DK〈X〉 has a
universal field of fractions over which all full matrices are inverted. This
field is denoted by DK<(X>) .

Of course there may well be rings that are not Sylvester domains and
nevertheless have a universal field of fractions; this just means that some
matrices that are full cannot be inverted over any R-field. Below we shall
find examples of such a class.
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Theorem 3.1. Let k be a commutative field and Ai = k〈Xi〉 (Xi 6= ∅,
i = 1, 2) be two free k-algebras. Then the tensor product R = A1 ⊗A2 has a

universal field of fractions U containing the universal fields of fractions of

each Ai. Moreover , R is a Sylvester domain if and only if one of X1, X2

has at most one element.

P r o o f. Denote the universal field of fractions of Ai by Ki and let
P be any square matrix over R. If P is full over A1 ⊗ K2 = K2〈X1〉,
it will be invertible over K2<(X1>) , hence it will be full over K1 ⊗ K2,
therefore also over K1 ⊗ A2 = K1〈X2〉 and so invertible over K1<(X2>) .
This and a symmetric argument interchanging 1 and 2 shows that K1<(X2>)
and K2<(X1>) arise by inverting the same set of matrices over R, namely
those that are full over K1 ⊗ K2, and so these fields are isomorphic. We
denote the corresponding localization by U ; it now remains to show that U

is the universal field of fractions of R.

K1〈X2〉 K1<(X2>)

R K1 ⊗K2 U

K2〈X1〉 K2<(X1>)

>>>>>�� //

∼=

��ppppppppppp 77NNNNNNNNNNN '' }}}}}}>>AAAAAA  ??�����
//

∼=

OO

Consider any epic R-field H. The homomorphism R → H induces an
epimorphism A1 → E1, where E1 is the subfield of H generated by the image
of A1. Since E1 is an epic A1-field, it arises as the residue-class field of a
local ring L (Th. 7.2.2 of [1]). Now L is the universal localization of a set
of matrices over A1 and all these matrices are inverted over H, hence there
is a natural homomorphism g : L ⊗ A2 → H. Under this homomorphism
the maximal ideal of L is mapped to 0, therefore g can be factored by the
natural homomorphism L ⊗ A2 → E1 ⊗ A2 and we have the diagram

L⊗ A2

E1 ⊗ A2

R = A1 ⊗ A2 H

��
g

+++++++++++++++++++ ��777777777��f
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If P is any matrix over R which becomes invertible over H, then it must
be full over E1 ⊗ A2 and so it is full over K1 ⊗ A2, because E1 is an
A1-specialization of K1. Thus P is full over K1〈X2〉 and hence invertible
over K1<(X2>) ∼= U . This shows U to be the universal field of fractions of R.

If X1 = X2 = ∅, then R = k and this is a fir; if one of X1, X2 has one
element, say X1 = {x}, then R = k[x]〈X2〉, and this is a Sylvester domain
by Th. 5.5.12 of [1]. To complete the proof we have to show that R is not
a Sylvester domain when |Xi| > 1 for i = 1, 2; clearly it will be enough to
show this when |X1| = |X2| = 2. Let us write X1 = {a, b}, X2 = {x, y},
R = k〈a, b〉 ⊗ k〈x, y〉 and in R consider the equation

(6) (a b − x − y)







x 0 y 0
0 x 0 y

a b 0 0
0 0 a b






= 0.

In a Sylvester domain every full matrix is a non-zerodivisor, as an easy
consequence of the definition, so it will be enough to show that the 4 × 4
matrix in (6), C say, is full. If not, we would have an equation

(7) C = PQ, where P is 4 × 3 and Q is 3 × 4 over R.

We shall show that this leads to a contradiction; in the proof we may assume
that all the variables commute. Write P4 for the 3 × 3 matrix consisting of
the first three rows of P . We have

(8) P4Q =





x 0 y 0
0 x 0 y

a b 0 0



 .

Leaving out one column at a time on the right we get four 3 × 3 matrices
with determinants axy, bxy, ay2, by2 (up to sign). Each is detP4 times the
determinant formed from three columns of Q, hence det P4 is either 1 or y.
If it is 1, we can replace P , Q by PP−1

4
, P4Q in (7) and find

C =







1 0 0
0 1 0
0 0 1
d e f











x 0 y 0
0 x 0 y

a b 0 0



 .

By comparing the last row, we find: dx+fa = 0, ex+fb = 0, dy = a, ey = b.
But this is impossible in R, or even in R made commutative, so detP4 = y.
Let us take R commutative (i.e. take its quotient by the commutator ideal)
and write

P−1

4
= y−1





p p′ p′′

q q′ q′′

r r′ r′′



 .
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Then by (8),

Q = y−1





px + p′′a p′x + p′′b py p′y

qx + q′′a q′x + q′′b qy q′y

rx + r′′a r′x + r′′b ry r′y



 .

Since all the entries of Q lie in R, we obtain from the first row px+p′′a ≡ 0,
p′x + p′′b ≡ 0 (mod y), hence p = ua + vy, p′ = hb + v′y for some
u, h, v, v′ ∈ R and so there exist v′′, w′′ ∈ R such that

p′′ = −ux + v′′y = −hx + w′′y.

It follows that (h − u)x + (v′′ − w′′)y = 0, so h = u + ty, w′′ = v′′ + tx for
some t ∈ R and we obtain

(p p′ p′′) = u(a b −x) + (v v′ + tb v′′)y.

Similarly for the second and third row, hence we have

P−1

4
= y−1





u

u′

u′′



 (a b −x) + S,

for some matrix S. Writing S = (sij), we have

Q = P−1

4





x 0 y 0
0 x 0 y

a b 0 0



 =





s11 s12 s13 u

s21 s22 s23 u′

s31 s32 s33 u′′



 C.

Denote the first factor on the right by T , so that Q = TC = TPQ. By (8) the
first three columns of Q form a full matrix, so Q is left regular and we have
TP = I. If we make a Binet–Cauchy expansion by 3 × 3 minors, we obtain

(9) (t1 t2 t3 t4)(p1 p2 p3 p4)
T = 1,

where ti is the 3× 3 minor obtained by omitting row i from T and pi is the
3 × 3 minor obtained by omitting column i from P , while the superscript
T indicates transposition. We have seen that p4 = y; by symmetry we have
p3 = x, p2 = b, p1 = a, so (9) has the form

t1a + t2b + t3x + t4y = 1,

where ti ∈ R. This is clearly impossible, and it proves that C must be full.
Therefore R is not a Sylvester domain and the proof is complete.

We note that even though the matrix C is full, it cannot be inverted over
any R-field. This follows because it is not invertible over the universal field
of fractions, but it can also be seen directly: if C becomes invertible, then
(a b − x − y) must become zero, by (6), but then C = 0 and we have a
contradiction. In fact, the proof shows that C is not even full over K1⊗K2.

From the proof of Theorem 3.1 we see that U arises by inverting all full
matrices over K1 ⊗ K2; this shows the latter to be a Sylvester domain (by
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Th. 7.5.10 of [1]), but in fact we can show that it must be a fir. To do
so we need a definition. A set Σ of square matrices over a ring R is called
factor -complete if whenever AB ∈ Σ, where A is r×n and B is n× r, then
r ≤ n and there is an n × (n − r) matrix B′ such that (B B′) is invertible
over the localization RΣ . It can be shown that for a semifir R a set Σ is
factor-complete if and only if RΣ is again a semifir; moreover, if R is a fir
(and Σ is factor-complete) then RΣ is also a fir ([1], Th. 7.10.4 and 7.10.7).
To apply these results to the present situation, consider the ring K1〈X2〉;
it is a fir and the ring K1 ⊗k K2 is obtained from it by localization at the
set Σ of all full matrices over k〈X2〉. Since K2 is a fir, it follows that Σ is
factor-complete in k〈X2〉 and it still has this property when considered as
matrix set over K1〈X2〉. Therefore, by the results quoted, K1 ⊗ K2 is a fir
and we obtain

Corollary 3.2. Let k〈Xi〉 be a free algebra with universal field of frac-

tions Ki (i = 1, 2). Then K1 ⊗k K2 is a fir.

The ring R of Theorem 3.1 has global dimension two, by Roganov’s
theorem (see Th. 3.6.10 of [3]); it would be of interest to know whether it
is projective-free (i.e. every finitely generated projective module is free, of
unique rank). It is known that any Sylvester domain is projective-free and
of weak global dimension at most 2, and for commutative rings the converse
holds, but not in general (see Cor. 5.5.5 of [1]).

We remark that the tensor product of a finite number of free algebras
k〈Xi〉 (i = 1, . . . , r), where each Xi is non-empty, is a fir for r = 1 and a
Sylvester domain for r ≤ 2 if at most one Xi has more than one element,
but in no other cases. This follows because the polynomial ring k[x1, x2, x3]
is not a Sylvester domain (see [1], p. 258, or for an elementary proof, [2]).
However, it is not known whether such a tensor product has a universal field
of fractions when there are more than two factors.

Finally, we may ask for an analogue for free D-rings, but this will depend
on the relation of D to k. To find a universal field of fractions of Dk〈X1〉⊗k

Dk〈X2〉 we need to examine D ⊗k D and this need not even be an integral
domain, e.g. if D contains elements algebraic over k but not in k.
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