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CHAINS OF FACTORIZATIONS IN WEAKLY KRULL DOMAINS

BY

ALFRED GEROLD INGER (GRAZ)

1. Introduction. In a noetherian domain every non-zero non-unit has
a factorization into a product of irreducible elements. In general, such a
factorization need not be unique. A lot of arithmetical invariants have been
introduced to describe the non-uniqueness of factorizations. Most of them
concentrate only on lengths of factorizations. However, there are noetherian
domains which behave as good as possible when lengths are concerned but
whose arithmetic is far from being simple.

The central topic of this paper is an arithmetical invariant, the catenary
degree, which is more subtle than invariants which just control the lengths
of factorizations. It was introduced in [G-L] and is defined as follows. Let
R be a noetherian domain, 0 6= a ∈ R and z, z′ two factorizations of a.
We say that there is an N -chain of factorizations from z to z′ if a has
factorizations z = z0, z1, . . . , zk = z′ such that the distance between two
subsequent factorizations zi−1 and zi is bounded by N ∈ N for all 1 ≤ i ≤ k.
The catenary degree c(R) of R is the minimal N ∈ N ∪ {∞} such that for
all 0 6= a ∈ R and any two factorizations z, z′ of a there is an N -chain of
factorizations from z to z′ (cf. Definition 3.2).

In the theory of non-unique factorizations, Krull domains (including in-
tegrally closed noetherian domains) represent the best investigated class of
domains. Most results are achieved by a divisor-theoretic approach using the
fact that a Krull domain admits a (classical) divisor theory (i.e., a divisor
homomorphism into a free abelian monoid). Domains which are not inte-
grally closed admit no divisor theory. In spite of various partial results, their
arithmetic is still far less understood than the arithmetic of Krull domains.

Quite recently were weakly Krull domains introduced to literature
(cf. [A-M-Z]). These domains are not necessarily integrally closed but include
Krull domains and all one-dimensional noetherian domains. Using the close
relationship between divisor homomorphisms and generalized valuations (as
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developed in [G-HK]) F. Halter-Koch showed in [HK3] that a domain is
weakly Krull if and only if it admits a weak divisor theory (i.e., a divisor
homomorphism into a coproduct of primary monoids). This characteriza-
tion provides the algebraic basis for the main result of the present paper
(Theorem 7.3): weakly Krull domains satisfying certain natural finiteness
conditions have finite catenary degree.

The property of being a weakly Krull domain is a purely multiplicative
one; a domain is weakly Krull if and only if its multiplicative monoid is
a weakly Krull monoid. In general, the factorization properties of a do-
main just depend on the structure of its multiplicative monoid. Hence all
notions and most results of this paper are formulated in the context of
monoids. Their relevance, however, lies in their ring-theoretic applications.
Apart from technical advantages, this semigroup-theoretic procedure makes
it possible to describe most clearly the combinatorial structures which are
responsible for the investigated phenomena.

The paper is organized as follows. All relevant arithmetical notions are
introduced in Section 3. Section 4 deals with (general) block monoids as
introduced in [Ge3], which are the crucial combinatorial tool. These tech-
nical preparations are developed to such an extent that they meet future
requirements. Theorem 5.4 in Section 5 states that weakly Krull monoids
satisfying certain finiteness conditions have finite catenary degree. The rel-
evance of these finiteness conditions will become more clear in Section 6,
where we give examples of monoids with infinite catenary degree. In Sec-
tion 7 the semigroup-theoretic result is applied to weakly Krull domains. In
particular, the result is valid for orders in holomorphy rings in global fields,
and it will serve as a basis for quantitative investigations in these domains
(see [Ge5]).

2. Preliminaries on monoids. Throughout this paper, a monoid is
a commutative and cancellative semigroup with unit element. If not stated
otherwise, we will use multiplicative notation. We review some necessary
terminology.

For a family (Hp)p∈P of monoids we denote, as usual, by
∏

p∈P Hp their
direct product, and by∐

p∈P

Hp =
{

(ap)p∈P ∈
∏
p∈P

Hp : ap = 1 for almost all p ∈ P
}

their coproduct. For every Q ⊆ P we view
∐

p∈QHp as a submonoid of∐
p∈P Hp. If all Hp are infinite cyclic (i.e.Hp ' (N,+)) then

∐
p∈P Hp is

the free abelian monoid with basis P and will be denoted by F(P ). If P = ∅,
then F(P ) = {1}.
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Every a ∈ F(P ) has a unique representation

a =
∏
p∈P

pvp(a)

with vp(a) ∈ N and vp(a) = 0 for almost all p ∈ P . Furthermore,

σ(a) =
∑
p∈P

vp(a) ∈ N

is called the size of a.
If D is a monoid, then D× denotes the group of invertible elements of D.

D is called reduced if D× = {1}. Q(D) denotes a quotient group of D,
and we always assume D ⊆ Q(D). The complete integral closure D̂ of D is
defined as

D̂ = {x ∈ Q(D) :
there exists some c ∈ D such that cxn ∈ D for all n ∈ N+}.

By definition, we have D ⊆ D̂ ⊆ Q(D).
A subset D′ ⊆ D is called divisor closed if for all a, b ∈ D with a | b and

b ∈ D′ we have a ∈ D′.
Let H and D be submonoids of some abelian group. We call

fD/H = {f ∈ H : fD ⊆ H}

the conductor of D in H. If H ⊆ D and fD/H 6= ∅, then Q(H) = Q(D).
We define congruence modulo H in D by

x ≡ y mod H if x−1y ∈ Q(H).

The factor monoid of D with respect to congruence modulo H is denoted
by D/H. For a ∈ D [a] ∈ D/H denotes the class containing a. If H is a
group, then [a] = {ax : x ∈ H} = aH. In particular, we set Dred = D/D×.

H ⊆ D is called saturated if a, b ∈ H, c ∈ D and a = bc imply that
c ∈ H (equivalently, H = D ∩ Q(H)). If H ⊆ D is divisor closed, then it is
saturated.

Next we consider monoid homomorphisms. Such a homomorphism ϕ :
H → D induces a unique group homomorphism Q(ϕ) : Q(H) → Q(D).
Further,

Cl(ϕ) = Q(D/ϕH)
is called the class group of ϕ : H → D. It will be written additively.
Obviously we have

Cl(ϕ) ' Q(D)/Q(ϕ)(Q(H)).
In particular, if H is a submonoid of D, then the class group of the embed-
ding ϕ : H ↪→ D will be called the class group of H ⊆ D.
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A monoid homomorphism ϕ : H → D is said to be a divisor homomor-
phism if a, b ∈ H and ϕ(a) |ϕ(b) imply a | b.

A monoid D is said to be primary if D 6= D× and if a, b ∈ D and b 6∈ D×

imply that a | bn for some n ∈ N+. For various equivalent conditions for
being primary and some historical remarks cf. [Ge4; Lemma 1].

Let (Dp)p∈P be a family of primary monoids and set D =
∐

p∈P Dp.
Then the monoids Dp are called the primary components of D. For a family
(a(i))i∈I of elements a(i) = (a(i)

p )p∈P ∈ D and an element a = (ap)p∈P ∈ D,
we call a a strict greatest common divisor and write

a =
∧

(a(i))i∈I

if the following two conditions are satisfied for all p ∈ P :

(i) ap | a(i)
p for all i ∈ I;

(ii) a(i)
p | ap for at least one i ∈ I.

If D is factorial, then the strict greatest common divisor coincides with
the usual greatest common divisor (cf. [G-HK; Definition 4.5]).

Definition 2.1. Let H be a monoid.

1. A divisor homomorphism

ϕ : H → D =
∐
p∈P

Dp

into a coproduct of reduced primary monoids Dp is called a weak divisor
theory if for all a ∈ D there exist u1, . . . , um ∈ H such that a =

∧m
i=1 ϕui.

If Dp ' (N,+) for all p ∈ P , then ϕ is said to be a divisor theory.
2. H is called a (weakly) Krull monoid if it admits a (weak) divisor

theory.

Weakly Krull monoids were introduced in [HK3]. The weak divisor the-
ory of a weakly Krull monoid is uniquely determined (up to isomorphism).
This uniqueness implies that the group Cl(H) = D/ϕH just depends on
H. Cl(H) is called the (divisor) class group of H (cf. [HK3; Section 2]).
The main examples we cite are the multiplicative monoids of weakly Krull
domains; these will be discussed in Section 7.

Let ϕ : H → D be a weak divisor theory. Since ϕ is a divisor ho-
momorphism, ϕ(H) ⊆ D is saturated and the induced homomorphism
ϕred : Hred → Dred is injective (cf. [G-HK; Lemma 2.6]). Hence it means
no restriction to suppose that H ⊆ D is a saturated submonoid. We
shall adopt this viewpoint in the sequel. Indeed, if D is free abelian and
H ⊆ D saturated, then H is a Krull monoid. However, there are monoids H
saturated in a coproduct of primary monoids which are not weakly Krull
(cf. [HK3; Proposition 2.13]).



WEAKLY KRULL DOMAINS 57

Let G be an abelian group. As usual, we say that elements g1, . . . , gr are
linearly independent if each equation

∑r
i=1 nigi = 0 with integer coefficients

ni ∈ Z implies n1g1 = . . . = nrgr = 0. If G is a bounded torsion group,
then exp(G) denotes the exponent of G.

3. On the arithmetic of monoids. We briefly recall some arith-
metical invariants of monoids and some basic notions from the theory of
non-unique factorizations. For their relevance and properties the reader is
referred to the cited literature.

Let H be a monoid. We denote by U(H) the set of irreducible elements
of H. The factorization monoid Z(H) of H is defined as the free abelian
monoid with basis U(Hred). Thus,

Z(H) = F(U(Hred))

and the elements z ∈ Z(H) are written in the form

z =
∏

u∈U(Hred)

uvu(z).

Let π : Z(H) → Hred be the canonical homomorphism. We say that H is
atomic if π is surjective.

Suppose that H is atomic, and let a ∈ H be given. The elements of

ZH(a) = Z(a) = π−1(aH×) ⊆ Z(H)

are called factorizations of a and

LH(a) = L(a) = {σ(z) : z ∈ Z(a)} ⊆ N

denotes the set of lengths of a. For a subset H ′ ⊆ H the elasticity %(H ′) of
H is defined as (cf. [HK4])

%(H ′) = sup
{

supL(a)
minL(a)

: a ∈ H ′ \H×
}
∈ N+ ∪ {∞}.

An atomic monoid H is said to be (cf. [HK2]):

1. factorial if #Z(a) = 1 for all a ∈ H,
2. half-factorial if #L(a) = 1 for all a ∈ H,
3. an FF-monoid (finite-factorization monoid) if #Z(a) < ∞ for all

a ∈ H,
4. a BF-monoid (bounded-factorization monoid) if #L(a) < ∞ for all

a ∈ H.

The most thoroughly studied invariants, as sets of lengths and the elas-
ticity, consider only lengths of factorizations. However, there are even half-
factorial monoids with bad factorization properties. In [A-A-Z; Example 4.1]
an example of a noetherian domain is given whose multiplicative monoid is
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half-factorial but not even an FF-monoid. Such phenomena make it indis-
pensable to look more closely at factorizations.

Let H be an atomic monoid. For two factorizations z, z′ ∈ Z(H) we call

d(z, z′) = max
{
σ

(
z

gcd(z, z′)

)
, σ

(
z′

gcd(z, z′)

)}
∈ N

the distance between z and z′. This means that, if z = u1 . . . ulv1 . . . vm and
z′=u1 . . . ulw1 . . . wn with ui, vj , wk ∈ U(Hred) such that {vj : 1 ≤ j ≤ m}
∩{wk : 1 ≤ k ≤ n} = ∅, then d(z, z′) = max{m,n}. Thus d(z, z′) = 0 if and
only if z = z′. If z, z′ ∈ Z(a) for some a ∈ H and z 6= z′, then d(z, z′) ≥ 2.

The following lemma is trivial but throws a first light on the situation
in non-factorial monoids.

Lemma 3.1. Let H be an atomic monoid. If H is not factorial , then for
every n ∈ N+ there exists some element a ∈ H and factorizations z, z′ ∈
Z(a) with d(z, z′) ≥ n.

P r o o f. Suppose that H is not factorial. Then there exists some element
c ∈ H having two distinct factorizations y, y′ ∈ Z(c). So for every n ∈ N+

we have yn, y′
n ∈ Z(cn) and

d(yn, y′
n) = nd(y, y′) ≥ 2n.

Hence in all non-factorial monoids there are elements having completely
different factorizations. Thus the best we can expect is that these fac-
torizations are somehow connected. This is made precise in the following
definition.

Definition 3.2. Let H be an atomic monoid.

1. Let a ∈ H, z, z′ ∈ Z(a) and N ∈ N ∪ {∞}; we say that there
is an N -chain (of factorizations) from z to z′ if there exist factorizations
z = z0, z1, . . . , zk = z′ ∈ Z(a) such that d(zi−1, zi) ≤ N for 1 ≤ i ≤ k.

2. The catenary degree

cH(H ′) = c(H ′) ∈ N ∪ {∞}
of a subset H ′ ⊆ H is the minimal N ∈ N∪{∞} such that for every a ∈ H ′

and any two factorizations z, z′ ∈ Z(a) there exists an N -chain from z to z′.
For simplicity, we write c(a) instead of c({a}).

The main aim of this paper is to prove that weakly Krull monoids
satisfying certain natural finiteness conditions have finite catenary degree
(cf. Theorem 5.4).

R e m a r k s. Let H be an atomic monoid and let a ∈ H.

1. We have c(a) = 0 if and only if #Z(a) = 1. Thus H is factorial if and
only if c(H) = 0.
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2. By definition, we always have c(a) 6= 1. If c(a) = 2, then #L(a) = 1.
Therefore c(H) = 2 implies that H is half-factorial. However, there are
half-factorial monoids with infinite catenary degree (see [G-L; Remark 2
after Definition 2]).

3. If c(a) = 3, then L(a) = {y, y + 1, . . . , y + k} for some y, k ∈ N+.
4. Suppose that a =

∏n
i=1 ai with maxL(ai) ≤ N for some N ∈ N+.

Further, let zi, z
′
i ∈ Z(ai) for 1 ≤ i ≤ n and z =

∏n
i=1 zi, z

′ =
∏n

i=1 z
′
i. Then

there exists an N -chain from z to z′. Indeed, setting yj =
∏j

i=1 z
′
i

∏n
i=j+1 zi

for 0 ≤ j ≤ n, we have y0 = z, yn = z′ and d(yj , yj+1) = d(z′j+1, zj+1) ≤ N .
5. Let ϕ : H → D be a monoid epimorphism onto an atomic monoid D

with ϕ(U(H)) ⊆ U(D)∪D×. Then ϕ has a natural extension to ϕ : Z(H) →
Z(D) and for z, z′ ∈ Z(H) we have d(ϕz, ϕz′) ≤ d(z, z′). Furthermore,
c(ϕH ′) ≤ c(H ′) for all subsets ∅ 6= H ′ ⊆ H.

We introduce a new arithmetical invariant which will be crucial for our
further investigations.

Definition 3.3. Let D be an atomic monoid and D′ ⊆ D a non-empty
subset.

1. For u ∈ D let wD(D′, u) be defined as the minimum of all w ∈ N+ ∪
{∞} having the following property: if a1, . . . , an ∈ D\D× with

∏n
i=1 ai ∈ D′

such that u |
∏n

i=1 ai, then there exists a subset J ⊆ {1, . . . , n} with #J ≤ w
and u |

∏
i∈J ai.

2. For a subset U ⊆ D we set

wD(D′, U) = sup{wD(D′, u) : u ∈ U} ∈ N+ ∪ {∞}.

The following two situations will be of special importance:

(i) U = U(D) and D′ ⊆ D a divisor closed subset,
(ii) D′ = D and U = U(H) for a saturated submonoid H ⊆ D.

R e m a r k s. Let D be an atomic monoid.

1. For every u ∈ D we have wD(D,u) = wDred(Dred, uH
×) and hence

wD(D,U(D)) = wDred(Dred,U(Dred)).
2. If D′′ ⊆ D′ ⊆ D and U ⊆ V ⊆ D are subsets, then by definition

wD(D′′, U) ≤ wD(D′, V ).

3. Let β ∈ N+ and D′ = {a ∈ D : supL(a) ≤ β}. Then D′ ⊆ D is
divisor closed and wD(D′,U(D)) ≤ β.

4. Let u ∈ D be a product of primes, say u = p1 . . . pr, and let D′ ⊆ D
be a divisor closed subset containing u. Then wD(D′, u) = r; in particular,
if u ∈ D is prime, then wD(D,u) = 1. Conversely, if for some u ∈ D\D×

we have wD(D,u) = 1, then u is a prime element.
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An atomic monoid is factorial if and only if all its irreducible elements
are prime. Hence D is factorial if and only if wD(D,U(D)) = 1.

Proposition 3.4. Let D be an atomic monoid.

1. If Dred is finitely generated , then wD(D,U(D)) <∞.
2. If D =

∐
i∈I Di and D′

i ⊆ D are non-empty subsets, then

wD

( ∐
i∈I

D′
i,U(D)

)
= sup

i∈I
wDi(D

′
i,U(Di)).

P r o o f. 1. By the previous remark we may assume without restriction
that D is finitely generated. Let U(D) = {u1, . . . , us} and let i ∈ {1, . . . , s}
be given. It suffices to show that wD(D,ui) <∞. For this we consider the
set

Ai =
{
k = (k1, . . . , ks) ∈ Ns : ui |

s∏
ν=1

ukν
ν

}
⊆ Ns.

By [C-P; Theorem 9.18] the set Mi of minimal points of Ai is finite and we
set

w = max
{ s∑

ν=1

kν : k ∈Mi

}
.

Let a1, . . . , an ∈ D\D× be given with ui |
∏n

ν=1 aν . Now, if
∏n

ν=1 aν =∏s
ν=1 u

lν
ν , then there exists some k ∈ Mi with k ≤ l and ui |

∏s
ν=1 u

kν
ν .

Hence there exists a subset J ⊆ {1, . . . , n} with ui |
∏

j∈J aj and #J ≤∑s
ν=1 kν ≤ w.
2. Clearly,

wDi(D
′
i, u) = wD

( ∐
j∈I

D′
j , u

)
for every i ∈ I and every u ∈ U(Di). Since U(D) =

⋃
i∈I U(Di) we infer

that

wD

( ∐
j∈I

D′
j ,U(D)

)
= sup

i∈I
wD

( ∐
j∈I

D′
j ,U(Di)

)
= sup

i∈I
wDi

(D′
i,U(Di)).

Proposition 3.5. Let D be an atomic monoid , D′ ⊆ D a divisor closed
subset and u, v ∈ D′.

1. supL(u) ≤ wD(D′, u).
2. wD(D′, uv) ≤ wD(D′, u) + wD(D′, v).
3. supL(u) ≤ minL(u) · wD(D′,U(D)).
4. %(D′) ≤ wD(D′,U(D)).



WEAKLY KRULL DOMAINS 61

P r o o f. 1. We show that k ≤ wD(D′, u) for every k ∈ L(u). Let
u = v1 . . . vk with each vj ∈ U(D). Then u | v1 . . . vk and hence u |

∏
j∈J vj

for some J ⊆ {1, . . . , k} with #J ≤ wD(D′, u). But this implies that
v1 . . . vk |

∏
j∈J vj and thus J = {1, . . . , k}. Therefore we obtain k = #J ≤

wD(D′, u).
2. Let a1, . . . , an ∈ D\D× be given with

∏n
i=1 ai ∈ D′ such that

uv |
∏n

i=1 ai. Then without restriction of generality it follows that u |
∏k

i=1 ai

with k ≤ wD(D′, u). If we set
∏k

i=1 ai = ua0, then v | a0ak+1 . . . an. Again
we may assume that v | a0ak+1 . . . ak+l with l ≤ wD(D′, v). Therefore

uv |ua0ak+1 . . . ak+l =
k+l∏
i=1

ai,

which implies the assertion.
3. Let u = v1 . . . vk with vj ∈ U(D) and k = minL(u). Using parts 1

and 2 we infer that

supL(u) ≤ wD(D′, u) ≤
k∑

i=1

wD(D′, vi) ≤ minL(u) · wD(D′,U(D)).

4. This follows from part 3.

Corollary 3.6. Let D be an atomic monoid and H ⊆ D a saturated
atomic submonoid.

1. If D′ ⊆ D is a divisor closed subset , then H ′ = H∩D′ ⊆ H is divisor
closed and

wH(H ′,U(H)) ≤ sup
u∈U(H)

supLD(u) · wD(D′,U(D)).

2. If D is free abelian, then

wH(H,U(H)) ≤ sup{σ(u) : u ∈ U(H)}.

Furthermore, if H ↪→ D is a divisor theory with class group G,G0 ⊆ G the
set of classes containing primes and G0 = −G0, then equality holds in the
above formula.

P r o o f. 1. Obviously, H ′ ⊆ H is a divisor closed subset. Let u ∈ U(H)
be given.

First we show that wH(H ′, u) ≤ wD(D′, u). Let a1, . . . , an ∈ H\H× with∏n
i=1 ai ∈ H ′ such that u |

∏n
i=1 ai in H. Since H ⊆ D is saturated, we have

H× = D×∩H. Therefore a1, . . . , an ∈ D\D×,
∏n

i=1 ai ∈ D′ and u |
∏n

i=1 ai

in D. So there exists a subset J ⊆ {1, . . . , n} with #J ≤ wD(D′, u) such
that u |

∏
i∈J ai in D. Thus u |

∏
i∈J ai in H and wH(H ′, u) ≤ wD(D′, u).
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Suppose u = v1 . . . vd with vj ∈ U(D). Using parts 1 and 2 of Proposi-
tion 3.5 we infer that

wD(D′, u) ≤
d∑

i=1

wD(D′, vi) ≤ dwD(D′,U(D)) ≤ supLD(u) ·wD(D′,U(D)).

2. Suppose that D is free abelian. Then LD(u) = {σ(u)} for every u ∈ D
and wD(D,U(D)) = 1 by Remark 4 after Definition 3.3. This implies

wH(H,U(H)) ≤ sup{σ(u) : u ∈ U(H)}

by part 1.
Suppose further thatH ↪→ D is a divisor theory and thatG0 = −G0 with

G0 as above. Let u = p1 . . . pr ∈ U(H) be given with primes p1, . . . , pr ∈ D.

C a s e 1: r = 2. Since p1 is a greatest common divisor of elements from
H, there is a v ∈ H with v = p1a for some a ∈ D with u - v. For the same
reason there is some w = p2b ∈ H with b ∈ D and u -w. Then u | vw, u - v,
u -w, which implies wH(H,u) ≥ 2 = σ(u).

C a s e 2: r ≥ 3. By assumption we may choose primes qi ∈ D such that
vi = piqi ∈ H for 1 ≤ i ≤ r. Because u ∈ U(H) and r ≥ 3, we infer that
qi 6∈ {p1, . . . , pr}\{pi} for 1 ≤ i ≤ r. Then u |

∏r
i=1 vi but u -

∏
i∈I vi for

any I ( {1, . . . , r}, which implies wH(H,u) ≥ r = σ(u).

Proposition 3.7. Let D be an atomic monoid and D′ ⊆ D a divisor
closed subset. Then

c(D′) ≤ wD(D′,U(D)).

P r o o f. We set w = wD(D′,U(D)); if w = ∞, nothing has to be done.
So suppose w <∞; then for every a ∈ D′,

supL(a) ≤ minL(a) · w <∞

by Proposition 3.5. So we may argue by induction on maxL(a). Obvi-
ously, the assertion is true for all a ∈ D′ with maxL(a) ≤ w. Now let
a ∈ D′, z =

∏r
i=1 ui ∈ Z(a), and z′ =

∏s
j=1 vj ∈ Z(a) with ui, vj ∈

U(Dred). If r ≤ w and s ≤ w then d(z, z′) ≤ w. So we can suppose
that r > w. After some suitable renumbering, we infer that v1 |u1 . . . ur−1.
Hence, there are w1, . . . , wt ∈ U(Dred) with u1 . . . ur−1 = v1w1 . . . wt. Since
maxL(u1 . . . ur−1) < maxL(a) and maxL(w1 . . . wtur) < maxL(a), there
are w-chains from

z = (u1 . . . ur−1)ur to z′′ = (v1w1 . . . wt)ur

and from
z′′ = v1(w1 . . . wtur) to z′ = v1(v2 . . . vs).
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4. Block monoids. Let G be an abelian group, G0 ⊆ G an arbitrary
subset and T an atomic reduced monoid. A monoid homomorphism

ι : F(G0)× T → G

is called a content homomorphism if for every S =
∏

g∈G0
gvg(S) ∈ F(G0)

we have ι(S) =
∑

g∈G0
vg(S)g ∈ G0. Suppose ι is a content homomorphism;

then
B = B(G0, T, ι) = Ker(ι) ⊆ F(G0)× T

is called the block monoid over G0 with respect to ι and T . Next,

B(G0) = B ∩ F(G0) =
{ ∏

g∈G0

gng ∈ F(G0) :
∑

g∈G0

ngg = 0
}

is the (ordinary) block monoid over G0.
If ι(T ) = {0}, then B = B(G0)× T ; if T = {1}, then B = B(G0).
Recall that Davenport’s constant D(G0) of G0 is defined as

D(G0) = sup{σ(U) : U ∈ U(B(G0))} ∈ N+ ∪ {∞}.
If G0 is finite, then D(G0) < ∞ ([Ge1; Proposition 2]). If G0 is a finite
abelian group, say G0 '

⊕r
i=1 Z/niZ with n1 | . . . |nr, then D(G0) ≥ 1 +∑r

i=1(ni − 1); equality holds for cyclic groups and for p-groups (cf. [G-S]
for a survey).

Block monoids in the above sense were introduced in [Ge3], where they
were called T -block monoids. If H is a saturated submonoid of an atomic
monoid D, there exists a corresponding block monoid B whose arithmetic
reflects the arithmetic of H. The argument runs as follows.

Let H,D be reduced atomic monoids such that H ⊆ D is saturated
with class group G. Let P ⊆ U(D) be the set of prime elements of D and
T = {a ∈ D : p - a for any p ∈ P}. Then D ' F(P ) × T (cf. [Ge3; Lemma
2]) and we shall later identify these two monoids. We set G0 = {g ∈ G :
g ∩ P 6= ∅} and define a content homomorphism

ι : F(G0)× T → G

by ι(t) = [t] ∈ G for every t ∈ T . Then B = B(G0, T, ι) is the block monoid
associated with H ⊆ D and the relationship between H and B is established
by the block homomorphism

β : F(P )× T → F(G0)× T

which is defined by β(t) = t for all t ∈ T and β(p) = [p] ∈ G0 for all p ∈ P .
Of course, the whole procedure is most powerful if D is free abelian (then

B = B(G0)) and is completely ineffective if D has no primes (then P = ∅
and H = B).

Lemma 4.1. Let all notations be as above and set G1 = {g ∈ G :
g ∩ U(D) 6= ∅}. Then G0 ⊆ G1 and we have
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1. If a =
∏

p∈P p
np

∏s
i=1 ti ∈ H with t1, . . . , ts ∈ U(T ), then A =∏

p∈P [p]np
∏s

i=1[ti] ∈ B(G1). Moreover , if a ∈ U(H) then A ∈ U(B(G1)).
2. β(H) = B, β(U(H)) = U(B) and β−1(U(B)) = U(H).
3. β induces an epimorphism β : Z(H) → Z(B) such that for every

a ∈ H, β(Z(a))=Z(β(a)). In particular , supLD(a)=supLF(G0)×T (β(a)).
4. We have

D(G0) ≤ sup
U∈U(B)

supLF(G0)×T (U) = sup
u∈U(H)

supLD(u) ≤ D(G1).

P r o o f. 1. Obvious.
2 and 3 follow from [Ge3; Proposition 4].
4. We have B(G0) ⊆ B and an element B ∈ B(G0) is irreducible in

B(G0) if and only if it is irreducible in B. Hence U(B(G0)) ⊆ U(B) and thus

D(G0) ≤ sup
U∈U(B)

supLF(G0)×T (U).

Part 3 implies that for every u ∈ U(H) we have

supLD(u) = supLF(G0)×T (β(u))

and by 1 we infer that

sup
u∈U(H)

LD(u) ≤ D(G1).

The following proposition reveals the usefulness of block monoids for our
purpose.

Proposition 4.2. With all notations as above, suppose that ∅ 6= H ′ ⊆ H,
β(H ′) = B′, a ∈ H ′ and β(a) = A ∈ B′.

1. Let Z,Z ′∈Z(A) and z0, . . . , zk∈Z(a) with β(z0)=Z and β(zk)=Z ′.
Then β(z0), . . . ,β(zk) ∈ Z(A) and d(β(zi−1), β(zi)) ≤ d(zi−1, zi) for 1 ≤
i ≤ k.

2. Let z, z′∈Z(a) and Z0, . . . , Zk∈Z(A) with β(z)=Z0 and β(z′)=Zk.
Then there exists a chain z = z0, . . . , zk ∈ Z(a) with β(zi) = Zi and
d(zi−1, zi) = d(Zi−1, Zi) for 1 ≤ i ≤ k. Furthermore, there is a 2-chain
zk, . . . , zl ∈ Z(a) with zl = z′ and β(zi) = β(z′) for k ≤ i ≤ l.

3. c(B′) ≤ c(H ′) ≤ max{c(B′), 2}.
P r o o f. 1. Since β : H → B is surjective and β(U(H)) = U(B), the

assertion follows from Remark 5 after Definition 3.2.
2. It is sufficient to verify the following two assertions:

Assertion 1. For every Z,Z ′ ∈ Z(A) and every z ∈ Z(a) with β(z) =
Z there exists some z′ ∈ Z(a) with β(z′) = Z ′ and d(Z,Z ′) = d(z, z′).

Assertion 2. For every z, z′∈Z(a) with β(z)=β(z′) there is a 2-chain
z = z0, . . . , zk = z′ ∈ Z(a) from z to z′ with β(zi) = β(z) for 1 ≤ i ≤ k.
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P r o o f o f A s s e r t i o n 1. Suppose Z = Y B1 . . . Br, Z ′ = Y C1 . . . Cs

with Y ∈ Z(B), Bi, Cj ∈ U(B), {B1, . . . , Br} ∩ {C1, . . . , Cs} = ∅,
z = yb1 . . . br with y ∈ Z(H), bi ∈ U(H), β(y) = Y , β(bi) = Bi and
d(Z,Z ′) = max{r, s}. Clearly, we may choose cj ∈ β−1(Cj) such that∏s

j=1 cj =
∏r

i=1 bi. Then z′ = yc1 . . . cs ∈ Z(a) and d(z, z′) = d(Z,Z ′).

P r o o f o f A s s e r t i o n 2. Let z =
∏m

i=1 ui ∈ Z(a) and z′ =
∏n

j=1 u
′
j

∈ Z(a) be given with

ui =
ri∏

ν=1

pi,ν · ti ∈ U(H), u′j =
r′j∏

ν=1

p′j,ν · t′j ∈ U(H),

where pi,ν , p′j,ν ∈ P and ti, t
′
j ∈ T . Since β(z) = β(z′) ∈ Z(B), we infer

n = m. After a suitable renumbering it follows that, for 1 ≤ i ≤ m,

β(ui) = β(u′i)

and hence
ri = r′i, ti = t′i and β(pi,ν) = β(p′i,ν).

Because z, z′ ∈ Z(a) we obtain
m∏

i=1

ri∏
ν=1

pi,ν =
m∏

i=1

ri∏
ν=1

p′i,ν .

Thus, there is some permutation

% : Q = {pi,ν : 1 ≤ ν ≤ ri, 1 ≤ i ≤ m} → Q

such that %(pi,ν) = p′i,ν for 1 ≤ ν ≤ ri and 1 ≤ i ≤ m.
Let τ : P → P be a permutation with [τ(p)] = [p] ∈ G for all p ∈ P .

For b =
∏

p∈P p
np · t ∈ F(P ) × T we set τ(b) =

∏
p∈P τ(p)

np · t. Then
β(b) = β(τ(b)) and hence b ∈ U(H) if and only if τ(b) ∈ U(H). Thus τ
has an extension τ : U(H) → U(H) and a unique extension to a monoid
homomorphism τ : Z(H) = F(U(H)) → Z(H). If τ is a transposition, then
clearly d(x, τ(x)) ≤ 2 for every x ∈ Z(H). If P ′ ⊆ P is finite, τ(P ′) = P ′

and b =
∏

p∈P ′ p · t ∈ F(P ′)× T , then τ(x) ∈ Z(b) for every x ∈ Z(b).
To complete the proof of Assertion 2, we extend % : Q→ Q to % : P → P

by %(p) = p for all p ∈ P\Q. Then %(z) = z′. We write % as a product of
transpositions

% = %k ◦ . . . ◦ %1

such that [%j(q)] = [q] for all q ∈ Q and all j ∈ {1, . . . , k}. If z0 = z and
zj = %j(zj−1) for 1 ≤ j ≤ k, then zk = %(z) = z′, d(zj , zj−1) ≤ 2 and
β(zj) = β(z) for 1 ≤ j ≤ k.

3. The left inequality follows from 1, and the right inequality follows
from 2.
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Let G be an abelian group and G0 ⊆ G a non-empty subset. We will
write c(G0) instead of c(B(G0)). The rest of this section is devoted to the
study of c(G0).

Proposition 4.3. Let G be an abelian group and ∅ 6= G0 ⊆ G.

1. c(G0) ≤ wB(G0)(B(G0),U(B(G0))) ≤ D(G0).
2. If #G ≤ 2, then B(G) is factorial , whence c(G) = 0.
3. Suppose 2 < #G < ∞ and let r denote the maximal p-rank of G.

Then

max{r + 1, exp(G)} ≤ c(G) ≤ wB(G)(B(G),U(B(G))) = D(G).

P r o o f. 1. The left inequality follows from Proposition 3.7 and the right
inequality from Corollary 3.6.

2. Obvious.
3. By [HK1; §2, Beispiel 6], B(G) ↪→ F(G) is a divisor theory such that

each class contains exactly one prime divisor. Hence Corollary 3.6 implies
wB(G)(B(G),U(B(G))) = D(G).

It remains to verify that max{r + 1, exp(G)} ≤ c(G). Since #G ≥ 3 we
have max{r + 1, exp(G)} ≥ 3. Suppose exp(G) = n ≥ 3 and let g ∈ G with
ord(g) = n. Then

A = (gn)((−g)n) = (−g · g)n ∈ B(G)

has exactly two factorizations whose distance equals n.
Suppose r ≥ 2 and g1, . . . , gr ∈ G are linearly independent. Setting

g0 = −
∑r

i=1 gi it follows that

A =
( r∏

i=0

gi

)( r∏
i=0

−gi

)
=

r∏
i=0

(−gi · gi) ∈ B(G)

has exactly two factorizations with distance r + 1.

The previous result shows in particular that c(G) = D(G) for cyclic
groups and for elementary 2-groups G with #G > 2. However, it is possible
that c(G) < D(G).

5. Weakly Krull monoids with finitely primary components.
Finitely primary monoids were introduced in [HK4] and further studied in
[Ge4]. Their relevance lies in their appearance in ring theory, as will be seen
in Section 7. For other examples see [Ge4].

In the sequel we use all notations concerning the complete integral closure
and the conductor of monoids as introduced in Section 2. Furthermore, for
s ∈ N+ let Ns denote the additive monoid (Ns,+).

Definition 5.1. A monoid D is said to be finitely primary (of rank
s ∈ N+) if one of the following two equivalent conditions is satisfied:
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1. D is primary, D̂ ' Ns × D̂× and fD̂×/D 6= ∅,
2. D is a submonoid of a finitely generated factorial monoid F contain-

ing s pairwise non-associated prime elements p1, . . . , ps such that the
following holds:

(a) D× = D ∩ F×,
(b) there exists an α ∈ N+ such that for every a = εpk1

1 . . . pks
s ∈ F

(with ε ∈ F× and ki ∈ N), min{ki : 1 ≤ i ≤ s} ≥ α implies that
a ∈ D,

(c) if a = εpk1
1 . . . pks

s ∈ D\D× (where ε ∈ F× and ki ∈ N), then
min{ki : 1 ≤ i ≤ s} ≥ 1.

The equivalence of the two conditions was proved in [Ge4; Theorem 1]
where it was also shown that D̂ = F . If some α ∈ N+ satisfies 2(b), then
α is called an exponent of D. If a = εpk1

1 . . . pks
s ∈ F with all notation as

above, then set

vpν (a) = kν for all 1 ≤ ν ≤ s.

We shall frequently use the fact that for a ∈ D,

maxLD(a) ≤ min{vpν (a) : 1 ≤ ν ≤ s}

(cf. [Ge4; Lemma 6] for the details).

Proposition 5.2. Let D be a finitely primary monoid of rank s and
exponent α.

1. If s ≥ 2, then wD(D,U(D)) = ∞.
2. If s = 1, then c(D) ≤ wD(D,U(D)) ≤ 3α/2.

P r o o f. 1. By [HK4; Theorem 4] we have %(D) = ∞ and thus Proposi-
tion 3.5 implies the assertion.

2. By Proposition 3.7 it is sufficient to show that wD(D,U(D)) ≤ 3α/2.
Let p ∈ D̂ be a prime element. Suppose that εp ∈ D for some ε ∈ D̂×. Since
εp is prime in D, it follows that D is factorial by [Ge4; Proposition 5] and
hence wD(D,U(D)) = 1 by Remark 4 after Definition 3.3. Now suppose
vp(a) ≥ 2 for all a ∈ D. Let u = εpl ∈ U(H) be given; we show that
wD(D,u) ≤ [3α/2] = λ.

For this it suffices to verify that u divides any product consisting of λ
factors. For 1 ≤ i ≤ λ, let ai = εip

li ∈ H be given with εi ∈ D̂× and li ≥ 2.
Then

b = u−1
λ∏

i=1

ai =
(
ε−1

λ∏
i=1

εi

)
p
∑λ

i=1 li−l,
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and hence b ∈ D, since
λ∑

i=1

li − l ≥ 2λ− (2α− 1) ≥ α.

Proposition 5.3. Let H ⊆ D =
∐

i∈I Di be a saturated submonoid with
finitely primary monoids Di. Then H is a BF-monoid. If all D̂×

i are finite,
then H is an FF-monoid.

P r o o f. Without restriction of generality we can suppose that D is
reduced (cf. [G-HK; Lemma 2.6], [Ge4; Corollary 1] and [HK2]).

By [Ge4; Proposition 6] all Di are BF-monoids and hence D is a BF-
monoid. This implies that H ⊆ D is a BF-monoid by [HK2; Theorem 3].

If all D̂×
i are finite, then all Di are FF-monoids by [Ge4; Proposition 6]

and therefore D is an FF-monoid. Since H is a submonoid of the reduced
FF-monoid D, it is an FF-monoid by [HK2; Corollary 3].

Theorem 5.4. Let H ⊆ D =
∐

i∈I Di be a saturated submonoid with
bounded class group G. Suppose that all Di are finitely primary of some fixed
exponent α ∈ N+ and that D(G1) <∞ with G1 = {g ∈ G : g ∩ U(D) 6= ∅}.
Then H has finite catenary degree. More precisely , we have

c(H) ≤ (α+ β)D(G1)[4β + α+ (α+ β)D(G1)(2α− 1)],

where β = α exp(G).

Starting with the preliminaries of the proof, we introduce some notation
which will remain valid throughout this section.

Let H ⊆ D =
∐

i∈I Di be a saturated submonoid with bounded class
group G, where all Di are finitely primary of some exponent α ∈ N+. Sup-
pose that i ∈ I, eachDi is finitely primary of rank si ∈ N+, and pi,1, . . . , pi,si

are pairwise non-associated primes of D̂i. For any k1, . . . , ksi
∈ N+ we have

si∏
ν=1

pkνβ
i,ν =

( si∏
ν=1

pkνα
i,ν

)exp(G)

∈ H.

If a ∈ D, then a has a unique decomposition of the form

a =
∏
j∈I

aj

with all aj ∈ Dj and aj = 1 for all but finitely many j ∈ I. For all i ∈ I
and all 1 ≤ ν ≤ si we set

vpi,ν (a) = vpi,ν (ai).

Lemma 5.5. For every i ∈ I let

D′
i = {ci ∈ Di : min{vpi,ν (ci) : 1 ≤ ν ≤ si} ≤ α+ β},
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D′ =
∐

i∈I D
′
i and H ′ = H ∩ D′. Then H ′ is divisor closed and c(H ′) ≤

D(G1)(α+ β).

P r o o f. By Corollary 3.6, H ′ is divisor closed and we have

c(H ′) ≤ wH(H ′,U(H)) by Proposition 3.7
≤ sup

u∈U(H)

supLD(u) · wD(D′,U(D)) by Corollary 3.6

≤ D(G1) · wD(D′,U(D)) by Lemma 4.1
≤ D(G1) sup

i∈I
wDi(D

′
i,U(Di)) by Proposition 3.4.

Let i ∈ I; since

D′
i ⊆ D′′

i = {ci ∈ Di : supLDi(ci) ≤ α+ β}

and wDi
(D′′

i ,U(Di)) ≤ α+ β (cf. Remark 3 after Definition 3.3), the asser-
tion follows.

Lemma 5.6. Let J ⊆ I be finite and a ∈ H ∩
∐

i∈J Di. Then there exists
a factorization z ∈ ZH(a) such that

σ(z) < (4β + α)#J +
∑
i∈J
si=1

vpi,1(a).

P r o o f. Let a =
∏

i∈J ai with ai ∈ Di. We set

J1 = {i ∈ J : vpi,ν
(ai) ≥ 2β + α for all 1 ≤ ν ≤ si}.

If i ∈ J1, then

ai = εip
k1
i,1 . . . p

ksi
i,si

with εi ∈ D̂×
i and kj = 2βlj + α+ rj with lj ∈ N+ and 0 ≤ rj < 2β. If

bi = (p2l1
i,1 . . . p

2lsi
i,si

)β and ci = (εpα+r1
i,1 . . . p

α+rsi
i,si

),

then bi ∈ H, ci ∈ Di and ai = bici. For i ∈ J\J1 we set ci = ai, b =
∏

i∈J1
bi,

and c =
∏

i∈J ci. Then a = bc with b ∈ H, c ∈ D, and hence c ∈ H since
H ⊆ D is saturated.

By construction we have, for all i ∈ J ,

min{vpi,ν (ci) : 1 ≤ ν ≤ si} < 2β + α

and hence

maxLH(c) ≤ maxLD(c) =
∑
i∈J

maxLDi(ci) < (2β + α)#J.

Next we consider the elements bi. Let i ∈ J1. If si = 1, then

maxLH(bi) ≤ vpi,1(bi) ≤ vpi,1(a).
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If si ≥ 2, then set

bi,1 = (pi,1p
2l2−1
i,2 . . . p

2lsi
−1

i,si
)β and bi,2 = (p2l1−1

i,1 pi,2 . . . pi,si)
β .

We infer that bi,1, bi,2 ∈ H, bi = bi,1bi,2 and

minLH(bi) ≤ maxLH(bi,1) + maxLH(bi,2) ≤ 2β.

By combining these results the assertion follows.

P r o o f o f T h e o r e m 5.4. Let i ∈ I. Since (pi,1 . . . pi,si)
β ∈ H there

exists an element ui ∈ U(H) ∩Di with

vpi,ν
(ui) ≤ β for 1 ≤ ν ≤ si.

From Lemma 4.1 we infer that supLD(ui) ≤ D(G1).
If a ∈ H\H× is given, then there exists a finite subset J ⊆ I such that

a =
∏
i∈J

ai ∈
∐
i∈J

Di

with 1 6= ai ∈ Di. For every i ∈ J we write ai in the form

ai = uκi
i bi

with κi ∈ N maximal such that bi ∈ Di. Then

min
{
vpi,ν (bi) : 1 ≤ ν ≤ si

}
< α+ max

{
vpi,ν (ui) : 1 ≤ ν ≤ si

}
≤ α+ β.

Hence we obtain
a =

∏
i∈J

uκi
i · b

with b =
∏

i∈J bi. Since a ∈ H,
∏

i∈J u
κi
i ∈ H and b ∈ D, it follows that

b ∈ H because H ⊆ D is saturated.
Define Z ⊆ Z(a) as

Z =
{ ∏

i∈J

uκi
i · y : y ∈ Z(b)

}
⊆ Z(a).

For any two factorizations z =
∏

i∈J u
κi
i · y ∈ Z and z′ =

∏
i∈J u

κi
i · y′ ∈ Z,

Lemma 5.5 guarantees the existence of a (D(G1)(α+ β))-chain of factoriza-
tions from z to z′.

Hence it remains to verify that for every z ∈ Z(a) there exists an
(α+ β)D(G1)

[
4β + α+ (α+ β)D(G1)(2α− 1)

]
-chain of factorizations from

z to some z′ ∈ Z. Let

z =
∏
i∈J

u%i

i

λ∏
k=1

vk ∈ Z(a)

be given with %i ∈ N and vk ∈ U(H). The maximality of the κi’s implies
that %i ≤ κi. We set % =

∑
i∈J %i and complete the proof by induction on

% from % =
∑

i∈J κi to % = 0.
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If % =
∑

i∈J κi, then z ∈ Z and we are done. So suppose % <
∑

i∈J κi.
Set

λ∏
k=1

vk = c =
∏
i∈J

ci ∈ H

with ci ∈ Di. We distinguish two cases:

C a s e 1: For all i ∈ J we have min{vpi,ν (ci) : 1 ≤ ν ≤ si} ≤ α + β.
If y ∈ Z(b), then

∏
i∈J u

κi−%i

i · y ∈ Z(c) and by Lemma 5.5 there is a
D(G1)(α+ β)-chain of factorizations from

z =
∏
i∈J

u%i

i v1 . . . vλ to z′ =
∏
i∈J

u%i

i

( ∏
i∈J

uκi−%i

i · y
)
∈ Z.

C a s e 2: There exists some i ∈ J such that vpi,ν
(ci) ≥ α + β for all

1 ≤ ν ≤ si. Each vk, 1 ≤ k ≤ λ, is a product of irreducibles in D. Taking
these irreducibles, we obtain a factorization (in D) of each cj , say

cj = cj,1 . . . cj,λj

for all j ∈ J . There exists a µ′ ≤ min{λi, α+ β} ≤ α+ β such that

vpi,ν

( µ′∏
l=1

ci,l

)
≥ α+ β for all 1 ≤ ν ≤ si.

Now each ci,l comes from a factorization of some vk. Thus (after some
renumbering), there is a µ ≤ µ′ such that for

d =
µ∏

k=1

vk

we have

vpi,ν (d) ≥ α+ β for all 1 ≤ ν ≤ si.

We write d in the form

d =
∏
j∈J′

dj

with 1 6= dj ∈ Dj . Since each vk is a product of at most D(G1) irreducibles
in D, it follows that #J ′ ≤ µD(G1) ≤ (α+ β)D(G1).

Next we set

d = uie.

Since vpi,ν
(e) = vpi,ν

(d) − vpi,ν
(ui) ≥ α for all 1 ≤ ν ≤ si, we infer that

e ∈
∏

j∈J′ Dj and hence e ∈ H. By Lemma 5.6 there is a factorization
y ∈ Z(e) with
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σ(y) < (4β + α)#J ′ +
∑
j∈J′

sj=1

vpj,1(e)

≤ (4β + α)(α+ β)D(G1) +
∑
j∈J′

sj=1

µ∑
k=1

vpj,1(vk)

≤ (4β + α)(α+ β)D(G1) + #J ′ · µ(2α− 1)D(G1)

≤ (4β + α)(α+ β)D(G1) + (α+ β)2D(G1)2(2α− 1).
Finally, if

z′ =
∏
i∈J

u%i

i

λ∏
k=µ+1

vk · ui · y,

then

d(z, z′) = d
( µ∏

k=1

vk, uiy
)
≤ max{µ, 1 + σ(y)}

≤ (α+ β)D(G1)[4β + α+ (α+ β)D(G1)(2α− 1)].

Now the assertion follows by induction hypothesis.

6. Monoids having infinite catenary degree. Let H ⊆ D =∐
i∈I Di be a saturated submonoid with class group G. Theorem 5.4 states

that if G is finite and all Di are finitely primary of some fixed exponent
α ∈ N+, then c(H) < ∞. Our first aim in this section is to show that
c(H) = ∞ may happen if one of these two conditions fails (cf. Corollaries
6.2 and 6.4). We do even more. We prove that %(H) = ∞ and that the set
∆(H) (defined below) is infinite.

For a subset L ⊆ N we set

∆(L)={l−k : k < l, k, l ∈ L and there is no m ∈ L with k < m < l}⊆N+.

If #L ≤ 1, then ∆(L) = ∅. For an atomic monoid H we define

∆(H) =
⋃

a∈H

∆(L(a)).

For the relevance of ∆(H) cf. [Ge1] and [Ge2].

Proposition 6.1. Let H,D be reduced atomic monoids, H ⊆ D satu-
rated and U∗ ⊆ U(D) a subset having the following two properties:

(a) If u1, . . . , un ∈ U∗ are pairwise distinct , then the product u1 . . . un

∈ D has unique factorization in D (i.e., #ZD(u1 . . . un) = 1),
(b) G = {[u] ∈ D/H : u ∈ U∗} is an infinite group.

Then H has infinite catenary degree, infinite elasticity and ∆(H) is in-
finite.
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P r o o f. Let g1, . . . , gn ∈ G be pairwise distinct and u1, . . . , un ∈ U∗ with
[ui] = gi for 1 ≤ i ≤ n, such that a =

∏n
i=1 ui ∈ H and A =

∏n
i=1 gi ∈ B(G).

By assumption, a has unique factorization in D. If ∅ 6= I ⊆ {1, . . . , n} is a
subset, then ∏

i∈I

ui ∈ U(H) and
∏
i∈I

ui | a in H

if and only if ∏
i∈I

gi ∈ U(B(G)) and
∏
i∈I

gi |A in B(G).

Hence, there is a bijection ψ : ZH(a) → ZB(G)(A) with σ(z) = σ(ψ(z))
and d(z, z′) = d(ψ(z), ψ(z′)) for all z, z′ ∈ ZH(a). In particular, cH(a) =
cB(G)(A) and LH(a) = LB(G)(A).

Therefore it suffices to verify that there exists an element A ∈ B(G)
which is squarefree in F(G), and with cB(G)(A), %B(G)(A) and sup∆(L(A))
arbitrarily large.

Let N ≥ 3 be given. We consider two cases:

C a s e 1: G contains some element g of infinite order. We choose natural
numbers m1, . . . ,mN−1 ∈ N+ such that mj >

∑j−1
i=1 mi for 1 < j ≤ N − 1

and we set m0 = −
∑N−1

i=1 mi. Then

A =
( N−1∏

i=0

mig
)( N−1∏

i=0

−mig
)

=
N−1∏
i=0

((mig) · (−mig)) ∈ B(G)

has just the above two factorizations. Hence we infer that

c(A) = N, %(A) =
N

2
and ∆(L(A)) = {N − 2}.

C a s e 2: G contains 2N non-zero linearly independent elements g1, . . .
. . . , g2N . We set g0 = −

∑2N
i=1 gi and define

A =
( 2N∏

i=0

gi

)(
(−g0 − g2N−1 − g2N ) ·

N−1∏
i=1

(−g2i−1 − g2i)
)

=
N−1∏
i=1

(
(−g2i−1 − gi) · g2i−1 · g2i

)
×

(
(−g0 − g2N−1 − g2N ) · g0 · g2N−1 · g2N

)
.

Obviously, A ∈ B(G) and A is squarefree in F(G). The second factorization
is the only one in which g0 and −g0−g2N−1−g2N are in the same irreducible
block. If g0 and−g0−g2N−1−g2N are in distinct irreducible blocks appearing
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in a factorization z of A, then σ(z) = 2. Therefore,

c(A) = N, %(A) =
N

2
and ∆(L(A)) = {N − 2}.

Corollary 6.2. Let H and D =
∐

i∈I Di be reduced atomic monoids
such that H ⊆ D is saturated with infinite class group G.

1. Suppose there is a subset U∗ ⊆ U(D) such that g ∩ U∗ 6= ∅ for every
g ∈ G and with #(U∗ ∩Di) ≤ 1 for all i ∈ I. Then %(H) = c(H) = ∞ and
∆(H) is infinite.

2. Suppose that H is a Krull monoid , H ↪→ D a divisor theory , and
that g ∩ U(D) 6= ∅ for every g ∈ G. Then %(H) = c(H) = ∞ and ∆(H) is
infinite.

P r o o f. 1. Obviously, U∗ has properties (a) and (b) of the previous
proposition.

2 is a special case of 1.

Proposition 6.3. For every s ∈ N+ and every α ≥ 2 there exists a
finitely primary monoid D of rank s and exponent α2 with c(D) ≥ α.

P r o o f. Let s ∈ N+ and α ≥ 2 be given. We set u = (α, . . . , α) ∈ Ns,
v = (α+ 1, . . . , α+ 1) ∈ Ns and define

Dα = D = {(n1, . . . , ns) ∈ Ns : ni ≥ α2 for 1 ≤ i ≤ s}
∪ {ku+ lv ∈ Ns : 0 ≤ k, l ≤ α} ⊆ (Ns,+).

Then D is a finitely primary monoid of rank s and exponent α2 (cf. Condi-
tion 2 in Definition 5.1). Next we consider factorizations of a =

(
α(α + 1),

. . . , α(α+ 1)
)
∈ D. Clearly, u, v ∈ U(D) and

a = αv = (α+ 1)u.

Let z =
∑r

i=1 wi ∈ Z(a) be an arbitrary factorization with wi ∈ U(D)
and suppose z 6= αv. Then v 6= wi for all 1 ≤ i ≤ r, which implies that
d(αv, z) ≥ α. Therefore we have

c(D) ≥ c(a) ≥ α.

Corollary 6.4. There exists a weakly Krull monoid H with trivial class
group but infinite catenary degree.

P r o o f. Obviously, H =
∐

α≥2Dα is weakly Krull with trivial class
group and

c(H) = sup
α≥2

c(Dα) = ∞.

Let H, D be atomic monoids and ϕ : H → D a divisor homomorphism
with finite class group. In [G-L; Theorem 2] it was proved that c(D) < ∞
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and %(D) < ∞ imply that c(H) < ∞. (In fact, the terminology in [G-L] is
different; cf. [HK4; §1] for the relationship between %(D) and µm(D).)

Now if D =
∐

i∈I Di, then %(D) = sup{%(Di) : i ∈ I} (by [HK4; Propo-
sition 4]) and if Di is finitely primary of rank si ≥ 2 then %(Di) = ∞ (by
[HK4; Theorem 4]).

Hence Theorem 5.4 is not a consequence of [G-L; Theorem 2]. Even
more, let ϕ : H → D be as above and suppose c(D) < ∞ and %(D) = ∞.
Then c(H) = ∞ might occur, as can be seen from the next result.

Proposition 6.5. 1. For every n ∈ N+ there exists a finitely generated
monoid Dn and a saturated submonoid Hn ⊆ Dn with Dn/Hn ' Z/2Z,
c(Dn) = 3 and c(Hn) ≥ n+ 1.

2. There exists an atomic monoid D having a saturated submonoid H ⊆
D with D/H ' Z/2Z such that c(D) = 3 but c(H) = ∞.

P r o o f. 1. Let n ∈ N+ and Un = {u0, u
′
0, u1, . . . , un, v1, v

′
1, . . . , vn, v

′
n}

an arbitrary set. We define Dn as the free abelian monoid with basis Un

modulo the following relations:

u0u
′
0 = v1v

′
1u1 and viv

′
i = vi+1v

′
i+1ui+1 for 1 ≤ i < n.

Then Dn is finitely generated with U(Dn) = Un and c(Dn) = 3. The
element an = u0u

′
0 ∈ Dn has exactly n + 1 factorizations in Dn, which are

the following:

an = u0u
′
0 = viv

′
i

i∏
j=1

uj for 1 ≤ i ≤ n.

We define a monoid epimorphism

ϕn : Dn → Z/2Z
by ϕn(u′0) = ϕn(ui) = 0 + 2Z for 0 ≤ i ≤ n and ϕn(vj) = ϕn(v′j) = 1 + 2Z
for 1 ≤ j ≤ n. Then Hn = Ker(ϕn) ⊆ Dn is saturated and Cl(ϕn) ' Z/2Z.
For every 1 ≤ i < n the elements viv

′
i ∈ Hn are not irreducible in Hn and

hence
an = u0u

′
0 = (vnv

′
n)un . . . u1

are the only two factorizations of a in Hn. Thus we infer that

c(Hn) ≥ c(an) = n+ 1.

2. We set D =
∐

n∈N+
Dn and define a monoid epimorphism ϕ : D →

Z/2Z by ϕ|Dn = ϕn for all n ∈ N+. Then H = Ker(ϕ) ⊆ D is satu-
rated with class group Cl(ϕ) ' Z/2Z. Since Hn ⊆ H is a divisor closed
submonoid, we obtain

cH(an) = cHn
(an) = n+ 1

for every n ∈ N+, and thus c(H) = ∞.
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7. Weakly Krull domains. In this section we discuss weakly Krull
domains with some additional properties. Our main result will be formulated
in Theorem 7.3.

Let R be an integral domain with quotient field K. Then R• = R\{0}
denotes its multiplicative monoid, R× = R•× its group of units and R# =
R•/R× the reduced multiplicative monoid. For a prime p ∈ spec(R), h(p)
means the height of p and d(p) the depth of p. We set X(1)(R) = {p ∈
spec(R) : h(p) = 1}. As usual, R denotes the integral closure of R in its
quotient field K and R̂ = R̂• ∪ {0} its complete integral closure. Clearly,
R ⊆ R ⊆ R̂ ⊆ K and if R is noetherian, then R = R̂. If I(R) denotes the
multiplicative monoid of integral invertible ideals of R and H(R) ⊆ I(R)
the submonoid of principal ideals, then Pic(R) = I(R)/H(R) is the Picard
group of R. We denote by It(R) the monoid of integral t-invertible t-ideals
(equipped with t-multiplication) and by Clt(R) = It(R)/H(R) the t-class
group (cf. [An]). Clearly, R# ' H(R), I(R) ⊆ It(R) and Pic(R) ⊆ Clt(R).
If R = R̂, then Cl(R) means the the divisor class group of R. We say that
R is a local domain if it has just one maximal ideal.

If S/R is a ring extension, then the annihilator of the factor module S/R,

AnnR(S/R) = fS•/R• ∪ {0} = fS/R,

is just the conductor of the ring extension.
Suppose that (Vi)i∈I is a family of overrings of R (i.e., R ⊆ Vi ⊆ K

for all i ∈ I) such that R =
⋂

i∈I Vi. We say the intersection is of finite
character if for all 0 6= x ∈ K (equivalently, all x ∈ R•) we have x ∈ V ×

i for
all but finitely many i ∈ I.
Definition 7.1. An integral domain R is said to be a weakly Krull

domain if
R =

⋂
P∈X(1)(R)

RP

and the intersection is of finite character. If in addition all RP are discrete
valuation rings, then R is called a Krull domain.

In [A-M-Z; Theorem 1] various ideal-theoretic characterizations of weakly
Krull domains are given. F. Halter-Koch showed that the notion of a weakly
Krull domain is a purely multiplicative one.

Lemma 7.2. Let R be an integral domain. Then R is a weakly Krull
domain if and only if R• is a weakly Krull monoid. Furthermore, let ϕ :
R• → D be a weak divisor theory. Then D ' It(R), (R#

P )P∈X(1)(R) are (up
to isomorphism) just the primary components of D and Cl(R•) = Clt(R).
If R is Krull , then Clt(R) = Cl(R).

P r o o f. See [HK3; Theorem 4.6].
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The above lemma allows us to apply our main result from monoid theory
to weakly Krull domains.

Theorem 7.3. Let R be a weakly Krull domain such that for some α ∈
N+ all R#

P , P ∈ X(1)(R), are finitely primary of exponent α.

1. The monoid It(R) of integral t-invertible t-ideals has finite catenary
degree.

2. If Clt(R) is finite, then R• has finite catenary degree.

P r o o f. By Lemma 7.2 both assertions follow from Theorem 5.4. Note
that It(R) is a weakly Krull monoid with trivial class group.

Clearly, Krull domains (hence, in particular, integrally closed noethe-
rian domains) with finite divisor class group satisfy the assumptions of the
above theorem. The following elementary ring-theoretic lemmata provide
further examples of (not necessarily integrally closed) noetherian domains
satisfying the assumptions of Theorem 7.3. Indeed, these “examples” were
our motivation for investigating weakly Krull monoids.

Lemma 7.4. Let R be an integral domain. Then the following conditions
are equivalent :

1. R• is finitely primary.
2. R is a one-dimensional local domain, R̂ is a semilocal principal ideal

domain and fR̂/R 6= (0).

P r o o f. See [Ge4; Theorem 2].

Lemma 7.5. Let R be a noetherian domain.

1. For every P ∈ X(1)(R) the following conditions are equivalent :

(a) RP is a finitely generated RP -module.
(b) R#

P is a finitely primary monoid.

2. If R is a finitely generated R-module, then all R#
P , P ∈ X(1)(R),

are finitely primary of some fixed exponent α ∈ N+.

P r o o f. 1. Let P ∈ X(1)(R) be given.
(a)⇒(b). We check the conditions of Lemma 7.4. Clearly, RP is a one-

dimensional local noetherian domain; hence R̂P =RP . By the Krull–Akizuki
Theorem [Ma; Corollary to Theorem 11.7], RP is a semilocal Dedekind
domain and thus a principal ideal domain. Finally, (a) implies that fRP /RP

6= (0).
(b)⇒(a). Since R#

P is finitely primary, f
R̂P /RP

= fRP /RP
6= (0) by

Lemma 7.4 and hence RP is a finitely generated RP -module (cf. [Ge4;
Lemma 4] for the detailed argument).
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2. Suppose that R is a finitely generated R-module and let P ∈ X(1)(R)
be given. Then RP is a finitely generated RP -module and hence R#

P is
finitely primary by part 1. Furthermore,

fRP /RP
= AnnRP

(RP /RP )

= Ann(R\P )−1·R
(
(R\P )−1 ·R/R) = (R\P )−1 ·AnnR(R/R) 6= (0).

Therefore we have P 6⊃ fR̄/R if and only if fR̄/R ∩ (R\P ) 6= ∅ if and only if
(1) = fRP /RP

if and only if RP = RP . So, if P 6⊃ fR̄/R, then R#
P is finitely

primary of exponent 1, and since there are only finitely many P ∈ X(1)(R)
containing fR̄/R the assertion follows.

The next lemma shows that Cohen–Macaulay domains (cf. [B-H]) are
weakly Krull.

Lemma 7.6. Let R be a noetherian domain, P ⊆ spec(R) a set of non-
zero prime ideals and Q =

⋃
a∈R• Ass(R/aR).

1. The following conditions are equivalent :

(a) R =
⋂

P∈P RP .
(b) For every Q ∈ Q there is some P ∈ P with Q ⊆ P .

2. R is a weakly Krull domain if and only if every prime ideal of depth
one has height one.

P r o o f. 1. (a)⇒(b). Let Q ∈ Q be given; then Q = AnnR(a + bR) for
some a, b ∈ R with a 6∈ bR. Since a/b 6∈ R, there exists some P ∈ P such
that a/b 6∈ RP , which implies AnnR(a+ bR) ⊆ P .

(b)⇒(a). By [B-I-V; Lemma 7.15] we have

R =
⋂

Q∈Q
RQ

and thus
R ⊆

⋂
P∈P

RP ⊆
⋂

Q∈Q
RQ = R.

2. Suppose that R is weakly Krull and take some Q′ ∈ spec(R) with
d(Q′) = 1. Then Q′ ⊆ Q for some Q ∈ Q (cf. [Ka; p. 67]) and by part 1
there is some P ∈ X(1)(R) with Q ⊆ P . Thus it follows that

1 ≤ h(Q′) ≤ h(Q) ≤ h(P ) = 1.

Conversely, suppose that every prime ideal of depth one has height one.
Then Q ⊆ X(1)(R) and thus

R ⊆
⋂

P∈X(1)(R)

RP ⊆
⋂

Q∈Q
RQ = R.
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Since R is noetherian, every a ∈ R• is contained in only finitely many
P ∈ X(1)(R) and therefore the intersection

R =
⋂

P∈X(1)(R)

RP

is of finite character.

Next we consider Z-rings. By definition, an integral domain R is said to
be a Z-ring if it is noetherian and if every invertible ideal is a product of
primary ideals. One-dimensional noetherian domains are Z-rings. If R is a
Z-ring and P ∈ X(1)(R) let

Ω(P ) = {Q ∈ U(I(R)) :
√
Q = P}

denote the set of multiplicatively irreducible P -primary invertible ideals.

Lemma 7.7. Let R be a Z-ring and P ∈ X(1)(R).

1. R is a weakly Krull domain, It(R) = I(R) and Clt(R) = Pic(R).
2. Ω(P ) = {P} if and only if RP is a discrete valuation domain.
3. #Ω(P ) < ∞ if and only if R#

P is a finitely generated monoid if and
only if R#

P is finitely primary of rank 1.
4. Suppose that R is a finitely generated R-module. Then I(R) has finite

catenary degree. If Pic(R) is finite, then R• has finite catenary degree.

P r o o f. Assertion 1 follows from [A-M-Z; Theorem 3.3] and 2 from [HK5;
Lemma 2].

3. Ω(P ) is a generating system of the submonoid IP (R) ⊆ I(R) con-
sisting of P -primary invertible ideals. Since IP (R) is isomorphic to I(RP )
and since invertible ideals in a local ring are principal, we infer that

IP (R) ' I(RP ) = H(RP ) ' R•P /R
×
P = R#

P .

Hence Ω(P ) is finite if and only if R#
P is finitely generated. The second

assertion follows from [Ge4; Corollary 2].
Finally, 4 follows from Lemma 7.5 and Theorem 7.3.

R e m a r k s. 1. Let R be a one-dimensional noetherian domain such that
R is a finitely generated R-module and let f denote the conductor (i.e., R is
an order in the Dedekind domain R). Then we have an exact sequence (cf.
[Ne; I, §12])

1 → R
×
/R× → (R/f)×/(R/f)× → Pic(R) → Cl(R) → 1.

Hence if, for example, R has finite class group and the finite norm property,
then Pic(R) is finite.

2. In [HK5; Satz 1], [Ge2; Theorem 4] and [Ge3; Theorem 3] finiteness
theorems are derived for the arithmetic of a Z-ring R having finite Picard
group, finite set Ω(P ) for all P ∈ X(1)(R), and with Ω(P ) = {P} for all but
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finitely many P ∈ X(1)(R). All these results are valid for a weakly Krull
domain R with finite t-class group, with R#

P finitely primary of rank one
for all P ∈ X(1)(R), and with RP a discrete valuation domain for all but
finitely many P ∈ X(1)(R).
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