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1. Introduction. Let A be a Banach algebra. As is well known, on
the second dual A** of A there exist two Banach algebra multiplications
extending that of A (see [1]). When these two multiplications coincide on
A** the algebra A is said to be Arens reqular. Let WAP(A*) denote the
space of all weakly almost periodic functionals on A. Then the equality
WAP(A*) = A* is equivalent to the Arens regularity of A (cf. [21]). Re-
cently, Granirer introduced the concept “extreme non-Arens regularity”. A
is called extremely non-Arens reqular (or ENAR for short) if A*/ WAP(A*)
is as big as A*, namely if A*/ WAP(A*) contains a closed subspace which
has A* as a continuous linear image (see [13]).

Let G be a locally compact group and A(G) the Fourier algebra of G.
Lau proved that if G is amenable then A(G) is Arens regular if and only if G
is finite (see [18, Proposition 3.3]). Generally, Forrest showed that if A(G)
is Arens regular then G is discrete ([8, Theorem 3.2]). He further showed in
[9] that A(G) is not Arens regular if G contains an infinite abelian subgroup.
Lately, Granirer investigated the non-Arens regularity of quotients of A(G).
Let J be a closed ideal of A(G) with zero set Z(J) = F. Granirer proved
that A(G)/J is not Arens regular if there exist a,b € G such that one of the
following conditions holds:

(1) intemp(F) # 0 for some non-discrete subgroup H of G;
(2) G contains R (or T) as a closed subgroup and there is a symmetric
set S C R (or T) satistying aSb C F ([14, Corollary 8]).

Furthermore, if G is second countable, Granirer showed that A(G)/J is
ENAR ([13, Corollaries 6 and 7]). He asked if this is the case when G is not
second countable.

In this paper, we attempt to deal with non-second countable groups.
Some conditions on G and Z(J) are proposed which guarantee the extreme
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non-Arens regularity of A(G)/J. In particular, we show that A(G)/J is
ENAR if ¢ is any o-compact non-discrete locally compact group and J is a
closed ideal of A(G) such that

() Z(J) contains a non-empty intersection B of X many open subsets of
G with R < b(G),

where b(G) denotes the smallest cardinality of an open basis at the unit e
of G (condition (x) is satisfied if int Z(J) # ().

It is worth noting that our discussion on the extreme non-Arens regu-
larity of A(G)/J is primarily based on our understanding of the extreme
non-ergodicity of (A(G)/J)*. Let VN(G) be the von Neumann algebra
generated by the left regular representation of G. Let P = J+ = {T ¢
VN(G) : (T,u) = 0 if u € J}. Then P is linear isometric to (A(G)/J)*.
For x € G, let Ep(z) be the norm closure of {T" € P : x ¢ suppT'} and
let Wp(z) = Co, + Ep(z). Denote by p the first ordinal with |u| = b(G)
and let X = {a : @ < p}. We show that if G is any non-discrete lo-
cally compact group and J is a closed ideal of A(G) such that Z(J) satis-
fies condition (%), then PP is extremely non-ergodic at each z € B, namely
P/Wp(x) has [°°(X) as a continuous linear image and TIMp(x) contains
F(X), where TIMp(x) = {¢ € P*;||¢|| = (¢,d,) = 1 and ¢ = 0 on Ep(x)}
and F(X) ={p cl>®(X)" : ||¢]| = ¢(1) =1 and ¢(f) =0if f € [*°(X) and
limyex f(a) = 0}. Moreover, if G is non-metrizable, then P/Wp(z) contains
an isomorphic copy of [*°(X) for each z € B (Theorem 3.4 combined with
Remark 3.5(iii)). These results extend and improve some of those in [13]
and [17].

It is our pleasure to thank Professor E. E. Granirer for his valuable
comments and also for providing the preprint of his paper [14].

2. Preliminaries and notations. Let G be a locally compact group
with identity e and a fixed left Haar measure A = dz, and let L?(G) be
the usual Hilbert space with the inner product (f,g) = {, f(z)g(x) dz, for
f.9 € LX(G).

Let VN(G) denote the von Neumann algebra generated by the left regular
representation of G, i.e. the closure of the linear span of {g(a) : a € G} in the
weak operator topology, where [o(a)f](x) = f(a~'x), for x € G, f € L*(G).
Let A(G) denote the subalgebra of Cy(G) (bounded continuous complex-
valued functions on G vanishing at infinity) consisting of all functions of the
form f * g, where f,g € L?>(G) and g(z) = g(z~1). Then each ¢ = f g in
A(G) can be regarded as an ultraweakly continuous functional on VN(G)
defined by ¢(T) = (T'f,g) for T € VN(G). Furthermore, as shown by
P. Eymard in [6, pp. 210 and 218], each ultraweakly continuous functional
on VN(G) is of the form f*g with f, g € L?(G). Also, A(G) with pointwise
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multiplication and the norm ||¢|| = sup{|¢(T)| : T € VN(G) and ||T]| < 1}
forms a commutative Banach algebra called the Fourier algebra of G.
There is a natural action of A(G) on VN(G) given by

(u-T,v) =(T,uv), foru,v € A(G), T € VN(G).

Under this action, VN(G) becomes a Banach A(G)-module. Let T' € VN(G).
We say that « € G is in the support of T, denoted by supp 7, if o(x) is the
ultraweak limit of operators of the form u - T, u € A(G).

An m € VN(G)* is called a topologically invariant mean on VN(G) if

(i) ||m|| = (m,I) =1, where I = p(e) denotes the identity operator,
(i) (m,u-T) = (m,T) for T € VN(G) and u € A(G) with ||u|| = u(e) = 1.

Let TIM(CA?) be the set of topologically invariant means on VN(G). De-
note by F(@) the space of all T € VN(G) such that m(T') equals a fixed
constant d(7') as m runs through TIM(@). Then F ((A}) is a norm closed
self-adjoint A(G)-submodule of VN(G).

The space {T" € VN(G) : u — u - T is a weakly compact operator of
A(G) into VN(G)} is called the space of weakly almost periodic functionals

~ ~

on A(G) and denoted by W(G). It turns out that W(G) is a self-adjoint

~ ~

closed A(G)-submodule of VN(G). Also, it is known that W(G) C F(G)
(see [5] and [10]).
Let M(G) denote the algebra of finite regular Borel measures on G with

convolution as multiplication. M (G) can be considered as a subspace of
VN(G) by virtue of

(p, u) = S udp, for u € A(G).
G

In particular, (0., u) = u(x), z € G, u € A(G), where ¢, denotes the point
measure at x.

Let P be a norm closed A(G)-submodule of VN(G) and « € G. Following
notations and definitions of Granirer [12], we put

oP)={z€G:9, € P},
P. = the norm closure of {T" € P : suppT is compact},
Ep(z) = the norm closure of {T' € P: x & suppT'},
Wp(x) = Cé,, + Ep(z).
It is shown that Ep(z) is the norm closure of {T'—w-T : T € P, u € A(G)
and |ju|| = u(x) = 1} (see Granirer [12, Proposition 1]). Furthermore, if

x € o(P), let TIMp(z) denote the set of all topologically invariant means on
P at x, i.e.
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TIMp(x) = {6 € P* : |[¢]| = 6(3,) = 1 and ¢ = 0 on Eg(x)}.

When P = VN(@), Wp(e) = F(G) and TIMp(e) = TIM(G).

For a closed ideal J of A(G), Z(J) denotes the set {z € G : u(x) = 0 for
all uw € J}. If F'is a closed subset of G, let I(F) = {u € A(G) :u=0on F}.
F is called a set of spectral synthesis, or simply an s-set, if I(F) is the only
closed ideal I of A(G) with Z(I) = F.

Let Ey and E5 be two Banach spaces. We say that E5 contains an
isomorphic (isometric) copy of E if there is a linear mapping L : 3 — Es
and some positive constants 71, v2 (71 = 72 = 1) such that v ||z| < || Lz|| <
v2||z|| for all x € Ey; further, Es has Ey as a quotient if there is a bounded
linear mapping from FEs onto E;. Also, for a Banach space Y, we denote
by D(Y') the density character of Y, i.e. the smallest cardinality such that
there exists a norm dense subset of Y having that cardinality.

For any set A, |A| denotes the cardinality of A. If p is an ordinal, then
|| denotes the cardinality of the set {« : a < p}. For a locally compact
group G with identity e, we denote by b(G) the smallest cardinality of an
open basis at e.

Let A be a Banach algebra. It is well known that there exist two Banach
algebra multiplications on A** extending that of .A. When these two mul-
tiplications coincide on A**, A is said to be Arens regular. Details of the
construction of these multiplications can be found in many places, including
the pioneering paper [1], the book [2] and the survey article [4]. T € A*
is called weakly almost periodic if the set {u-T : u € A and ||ul]| < 1} is
a relatively weakly compact subset of A*, where u-T € A* is defined by
(u-T,v) = (T,uv), v € A. The space of all weakly almost periodic function-
als on A is denoted by WAP(A*). Then WAP(A*) = A* if and only if A is
Arens regular ([21]). A is called extremely non-Arens reqular (or ENAR for
short) if A*/ WAP(A*) is as big as A*, namely if A*/ WAP(A*) contains a
closed subspace which has A* as a quotient. The definition of ENAR was
made by Granirer in [13] where he first investigated the extreme non-Arens
regularity for quotients of A(G).

LEMMA 2.1. Let A be a Banach algebra and I" be a set. If1°°(I") contains
an isomorphic copy of A* (in particular, if D(A) < |I'|) and A*/ WAP(A*)
has 1°°(I") as a quotient, then A is ENAR.

Proof. Let ¢ be a linear isomorphism of A* into {*°(I") and r a bounded
linear map of A*/ WAP(A*) onto [*°(I"). Let Y = r~![t(A*)]. Then Y
(C A*/ WAP(A*)) has A* as a quotient. Therefore, A is ENAR. If D(A) <
||, then there exists a subset I of I" such that D(A) = |I|. Let {z4}yer,
be norm dense in the unit ball of A. Define h : A* — [°°(Ig) by (h®)(v) =
(@,2,), € A*, v € Iy. Then h is a linear isometry of A* into [*°(I}) C
(). m
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3. Extreme non-ergodicity of A(G)-submodules of VN(G). This
section is partially motivated by Granirer [12] and [13]. The basic idea used
in the proof of our main theorem (Theorem 3.4) is similar to that used in
[17]. Let G be a locally compact group with identity e. We begin this section
with the following property of A(G)-submodules of VN(G), which is needed
in the proof of Theorem 3.4.

PROPOSITION 3.1. Let P be a norm closed A(G)-submodule of VN(G)

and e € o(P). Then Wp(e) = F(@) NP.
Proof. Since e € o(P), Wp(e) C P. Let S = {u € A(G) : |ju]| = u(e)
= 1}. By [12, Proposition 1], Ep(e) equals the norm closure of {T' —w - T :

~

T € Pand u € S}. So Wp(e) = CI + Ep(e) C F(G). Therefore, Wp(e) C
F(G)NP.

Conversely, let T' € F' (é) N P. Then there exists a constant a such that
m(T) = a for all m € TIM(G). We now follow an argument of Granirer [14,
Proposition 3| to show that T'—al € Ep(e). If T —al ¢ Ep(e), then, by the
Hahn-Banach theorem, there exists a ¢ € VN(G)* such that (¢, T—al) # 0,
but (¢,® —u-P) = 0 for all » € P and u € S. Note that the pointwise
multiplication in A(G) makes S into an abelian semigroup. Let M € [°>°(S)*

be a translation invariant mean. Define ) € VN(G)* by
(¢, @) = (M, ¢(u-P)), & e VN(G),

where ¢(u-®) is considered as a bounded function on S (i.e. it is in [*°(S)). It
is easy to check that ¢ extends ¢, and (¢, v - @) = (¢, P) for all & € VN(G)
and v € S. Therefore, v is topologically invariant and (¢, T — al) # 0.
According to Chou [3, Lemma 4.2], there exists an mo € TIM(G) such that
(mo, T —al) # 0, or (mg,T) # a. We have thus reached a contradiction. It

follows that T'— al € Ep(e) and hence T' € Wp(e). m

In the following, G is always a non-discrete locally compact group. Recall
that b(G) denotes the smallest cardinality of an open basis at e. Let p be
the initial ordinal with |u| = b(G) and let X = {a : « is an ordinal and
a < p}. Let [°°(X) be the Banach space of all bounded complex-valued
functions on X with the supremum norm and ¢(X) the subspace of [*°(X)
consisting of all f € [°°(X) such that lim,ex f(a) exists. In [16], we defined
a subset of [*°(X)* as follows

F(X) = {6 € 1™(X)" : ¢l] = (1) = 1 and 6(f) = 0 if lim f(a) = 0}.

It is shown that | F(X)| = 92! (see [16, Proposition 3.3]). If Y is a Banach
space and K C Y*, we say that K contains F(X) if there is an onto bounded
linear map ¢ : Y — [°°(X) such that t* : [*°(X)* — Y™ satisfies t*(F (X)) C
K (it is easily seen that t* is a w*-w* continuous norm isomorphism into).
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DEFINITION 3.2. Let X > 0 be a cardinal. A non-empty subset B of G
is called a Gy-set if B is an intersection of X many open subsets of G.

THEOREM 3.3. Let G be a non-discrete locally compact group. Let P
and Q be A(G)-submodules of VN(G) such that P is w*-closed, Q is norm
closed, P. CQ C P, and o(P) = F. Assume that

(¥) F contains a Gx-set B with X < b(G),

and e € B. Then Q/Wg(e) has [*°(X) as a quotient.

If G is further assumed to be non-metrizable, then Q/Wg(e) contains an
isomorphic copy of 1°°(X).

Proof. By the definition, B is a non-empty intersection of N many open
subsets of G. If G is metrizable, then B is open and e € B C int(F'). By
Granirer [13, Corollary 7], Q/Wg(e) has [*° as a quotient.

We now assume that G is non-metrizable. By the injectivity of [°°(X)
(see [19, p. 105]), we only need to show that Q/Wy(e) contains an isomorphic
copy of [°°(X). We may also assume that N is infinite and v is the initial
ordinal satisfying |v| = \. Then v < p.

Suppose first that G is compactly generated. Let (Nq)o<a<, be the
decreasing net of compact normal subgroups of G as in [16, Proposition
4.3]. According to the construction of (N )o<a<p, this net can be chosen
so that N, C B C F (see [16]). Let A\, be the normalized Haar measure
of No. Let Qo = A1 and Q4 = Aag1 — Ao (0 < @ < p). Then (Qa)a<y is
an orthogonal net of projections in VN(G) (see [16]). For each v < a < p,
Qa € P (since P = (*P)* and (Qa,u) = §,ud(Aag1 — Aa) =0 if u € A(G)
and u = 0 on F). Also, supp Qo (C N, ) is compact. Therefore, Q, € P. C Q
forally <a<p If f€1%°(X), let -, f(@)Quta denote the w*-limit of
{2 0en f(@)Quia : A C X is finite} in VN(G). Then >, f(@)Quia € P
(since P is w*-closed) and supp[y_,_, f(@)Qu+a] (€ N,) is compact. So
Yo f(@)Quia €Pc CQfor all f €1°°(X). Define 7:1°°(X) — Q by

()= f(@)Quiar fEI®(X).

a<p

By [17, Lemmas 4.4 and 4.5], 7 is a linear isometry of [*°(X) into Q and

T(c(X)) € F(G) N Q = Wg(e) (Proposition 3.1 above). For f € [*°(X),
define f € I°°(X) by

~ 0 if a < v,
f(o‘):{f(ﬁ) if o = v+ 8.

Then 7(f) = Yo, f(@)Qa- By [17, Lemma 5.8], ||f + c(X)|| = [I7(f) +
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F(G)|. Also, notice that ||f + ¢(X)|| = || f + ¢(X)]|. It follows that

|F +e(X)ll = I7(£) + F(G)]
<|I7(f) +Wg(e)|| (by Proposition 3.1)
< |[f + e(X)]l (since 7(c(X)) € Wo(e))
= I +e(X)],

ie. ||7(f) +Wale)| = ||f + c(X)] for all f € 1°°(X). Therefore, Q/Wg(e)
contains an isometric copy of [*°(X)/c¢(X). But [°°(X) can be isomorphically
embedded into [*°(X)/e(X) ([17, Lemma 3.2]). Consequently, Q/Wg(e)
contains an isomorphic copy of [*°(X).

Generally, let G be a compactly generated open subgroup of G. We may
assume that B C Gy (since we may assume that the closure of B is compact).
Now Gy is also non-metrizable with b(Gp) = b(G). Let r : A(G) — A(G)
be the restriction map. Then r* is isometric (see Eymard [6]). Granirer
showed that r*[TIM(G)] = TIM(Gy) (see [10]) and hence 7*[F(Gy)] C F(G).
Let Qy = {T € VN(Gy) : suppT C B}. Then Qq is a w*-closed A(Gy)-
submodule of VN(Gy) with o(Qg) = B. Let 7 : [*°(X) — Qo be the same
linear isometry as in the previous paragraph. We claim that r*o7[[°°(X)] C

Q. In fact, let f € [°°(X), then supp[r* o 7(f)] (C supp[r(f)] € N,)
is compact and 7* o 7(f) € P = (+P)* (by the definitions of r and T,
(r* o 7(f),u) = (7(f),r(u)) = 0 if u € *P). Therefore, r* o 7(f) € P, C Q.
Also, since r*[7(c(X))] C 7*[F(Go)] € F(G), we have r*o7(c(X)) C F(G)N
Q = Wqy(e) (Proposition 3.1). Consequently,
1 + (X = [1f + (X))

=I7(f) + F(Go)|  (by [17, Lemma 5.8))

= [IF* [ (N + F@)]  (by [17, Lemma 5.9])

< ||r*[7(f)] + Wg(e)|| (by Proposition 3.1)

< I +e(X)] (since 7% o 7(c(X)) € Wo(e)),
Le. ||r*[7(f)] + Wa(e)|| = |f + ¢(X)]| for all f € [°°(X). It follows that

Q/Wq(e) contains an isometric copy of [°°(X)/c(X) and hence it contains
an isomorphic copy of [*°(X) (by [17, Lemma 3.2]). m

The main result of this section is Theorem 3.4. The crux of its proof is
actually contained in the proof of Theorem 3.3.

THEOREM 3.4. With assumptions on P and Q as in Theorem 3.3, if
(¥) F contains a Gx-set B with X < b(G),
then Q/Wg(x) has I°°(X) as a quotient for all x € B.
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Furthermore, if G is non-metrizable, then Q/Wq(z) contains an isomor-
phic copy of 1°°(X) for all x € B.

Proof. Let x € B and y = z~!. Let L, be the left translation on
A(G) by y (i.e. u— yu, u € A(G)). Then Ly is a w*-w* continuous linear
isometry of VN(G) onto itself. Define P' = Ly (P), Q' = L;(Q), F' = ,F
and B’ = ,B. Then P’ and Q' are A(G)-submodules of VN(G) such that P’
is w*-closed and Q' is norm closed.

Also, B" is a Gy-set with e € B’ C F' and F' = o(P"). It is easy
to check that [P’]. = L;(P.) and hence [P']. € Q" C P'. But L;[Wq(x)]
= Wq(e). Therefore, Q/Wg(x) is linear isometric to Q'/Wy (e). It fol-
lows that Q/Wg(z) has I°°(X) as a quotient (or contains an isomorphic
copy of {*°(X) when G is non-metrizable) because so does Q' /Wy (e) (by
Theorem 3.3). m

Remark 3.5. (i) Theorem 3.3 improves [17, Theorem 6.9]. In [17],
we only considered the case when P = {T" € VN(G) : suppT C F} and

~

Q ={T € UCB(Q) : suppT C F} for some closed subset F' of G satisfying
condition (), where UCB(G) is the norm closure of {T € VN(G) : suppT
is compact}.

(ii) Note that if D(A(G)) = b(G) (e.g. if G is non-discrete and o-
compact) then VN(QG) is isometric to a subspace of {°°(X). Hence the asser-
tion “Q/Wg(z) has [>°(X) as a quotient” means that the space Q/Wg(x)
is as big as it can be.

(iii) Let G be non-metrizable and let 7 : VN(G) — [*°(X) be the
bounded onto linear mapping as in [17, Theorem 5.1]. With the assumptions
of Theorem 3.3, if we define 7’ : Q — [*°(X) by

o (T) (o) =n(T)(v+a), TeQ, aclX,

where v is the first ordinal with |v| = RN (we may assume that X is infi-
nite), then it can be seen that 7’ is onto, (7/)* is a linear isometry into,
7' (Wo(e)) € c(X) and (7')*(F(X)) € TIMg(e). Also, Ly*(TIMq (e)) =
TIMg(y~'), where Ly is the left translation on A(G) by y and Q" = L (Q).
Therefore, we can add to the conclusion of Theorem 3.4 that TIMg(x) con-
tains F(X) for all z € B (this is also true if G is metrizable and non-discrete,

see the following (iv)). In this situation, we have |TIMg(z)| = 22" because

|F(X)| =229 = |TIM(G)| (see [16]) and |TIMg(z)| < |[TIM(G)] (see [14,
Corollary 4]).

(iv) Granirer in [12]-[14] investigated operators in PM,(G) (1 < p < 00)
with thin support. In particular, under the same assumptions on P and Q
as in our Theorem 3.4, he showed that |TIMg(z)| > 2¢ if there exist a,b € G
such that one of the following two conditions is satisfied:
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(1) R (or T) is a closed subgroup of G and there is a symmetric set S C R
(or T) such that = € aSb C F;
(2) z € intpgp(F) for some non-discrete subgroup of G

(see [14, Theorems 6 and 7]). Furthermore, if F' is first countable, then it is
proved that Q/Wg(z) has [*° as a quotient and TIMq(x) contains F(N) (see
Granirer [13, Corollaries 6 and 7]). In this case, Granirer called Q extremely
non-ergodic at x € 0(Q) = F. Notice that if G is metrizable, then condition
(%) of Theorem 3.4 implies that B C int(F); if G is non-metrizable and F
satisfies (*), then condition (2) holds for all # € B but F' is not first countable
at each x € B. Therefore, Theorem 3.4 combined with the above (iii) extends
Granirer’s results on extreme non-ergodicity of Q to non-metrizable o(Q)
with {*° replaced by [°°(X) and condition (2) by condition ().

Recall that a Banach space Y is said to have the weak Radon—Nikodym
property (or WRNP for short) if every Y-valued measure £ on a finite com-
plete measure space (S, X, n) which is n-continuous and of o-finite variation
has a Pettis-integrable derivative f : S — Y (i.e. {(E) = P-{ f dn for each
E € ¥). See [20] for more information on the WRNP. It is known that if
Y has the WRNP then Y does not contain any isomorphic copy of > ([20,
Proposition 4]). So, our isomorphic embedding results yield the following

COROLLARY 3.6. Let G be a non-discrete locally compact group. Then

(i) VN(G) does not have the WRNP;
(ii) Q and Q/Wg(z) do not have the WRNP if G is non-metrizable and
Q and x are the same as in Theorem 3.4.

Proof. By [17, Theorem 5.1], VN(G) contains an isometric copy of
[>°(X). Also, according to Theorems 3.3-3.4 and their proofs, Q and
Q/Wg(z) contain an isomorphic copy of {°°(X) if G is non-metrizable and
Q and z are the same as in Theorem 3.4. Consequently, all the spaces con-
sidered in Corollary 3.6 contain an isomorphic copy of [*°. It follows that
they do not have the WRNP. =

Remark 3.7. (a) Corollary 3.6(i) is included in Granirer [11, Theorem
5(a)], where he showed that if G in non-discrete then any nonzero ideal of
A,(G) contains an isomorphic copy of I* and hence PM,(G) does not have
the WRNP.

(b) A particular case of Granirer [12, Theorem 1], namely p = 2, implies
that P does not have the WRNP if G is amenable as a discrete group, P
is a w*-closed A(G)-submodule of VN(G) and o(P) contains some compact
perfect metrizable set.

4. Extreme non-Arens regularity of quotients of A(G). Let G be
a locally compact group. For a closed ideal J of A(G), let A= A(G)/J and
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let ¢ : A(G) — A be the quotient map. Then A is a commutative Banach
algebra and ¢* : A* — VN(G) is a linear isometry of A* onto J+ = {T €
VN(G) : (T, u) = 0 for all u € J}. In the following, we will identify A* with
JL. Tt is easily seen that WAP(A*) = W(G) N J+ C F(G) N J*.

Granirer in [14, Corollary 8] showed that if F'=Z(.J) satisfies (1) or (2) of
Remark 3.4(iv) then A(G)/J is not Arens regular. If G is further assumed to
be second countable, then A(G)/J is extremely non-Arens regular (ENAR)
(see Granirer [13, Corollaries 6 and 7]). Granirer asked if this is the case
when G is not second countable (see [14]). In this section, we will propose
some conditions on G and Z(J) which guarantee that A(G)/J is ENAR.

Let u be the first ordinal satisfying |p| = b(G) and let X = {a: a < p}.
Also, recall that for a Banach space Y, D(Y) denotes the density character
of Y, i.e. the smallest cardinality of a norm dense subset of Y.

THEOREM 4.1. Let G be a mon-discrete locally compact group with
D(A(G)) = b(G). If J is is a closed ideal of A(G) such that

(%) Z(J) contains a Gx-set with X < b(G),
then A(G)/J is ENAR.

Proof. Let A = A(G)/J. Then D(A) < D(A(G)) = b(G) = |X]|.
By Lemma 2.1, we only need to show that A4*/ WAP(A*) has [*°(X) as a
quotient.

For z € G, let L, be the left translation on A(G) by x. Then L, is an
isometric algebra isomorphism of A(G) and Z(L,(J)) = ,-1Z(J). So we
may assume that e € B C Z(J) for some Gy-set B.

Let P = Jt. Then P is a w*-closed A(G)-submodule of VN(G) with
o(P) = Z(J). By Theorem 3.3, P/Wp(e) has [°°(X) as a quotient. But
A* = JL = P and WAP(A*) C F(G) NP = We(e) (Proposition 3.1).
It follows that the quotient Banach space A*/ WAP(A*) has [*°(X) as a
quotient. m

In Theorem 4.1, if int(Z(J)) # 0, then condition (*) is automatically
satisfied. In particular, we have

COROLLARY 4.2. Let G be a non-discrete locally compact group with
D(A(G)) = b(G). Then A(G) is ENAR.

COROLLARY 4.3. Let G be a o-compact non-discrete locally compact
group. Let J be a closed ideal of A(G) such that Z(J) satisfies condition
(). Then A(G)/J is ENAR.

In particular, A(G) is ENAR for any o-compact non-discrete locally
compact group G.

Proof. According to Theorem 4.1, it suffices to prove that D(A(G)) =
b(@G).
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If G is metrizable, then G is second countable (since G is o-compact)
and hence A(G) is norm separable. In this situation, D(A(G)) = Xy = b(G).

If G is non-metrizable, from [16, Lemma 5.2] we deduce that there exist
b(G) many elements in A(G) such that the distance between any two of
them is 2. So, D(A(G)) > b(G). On the other hand, D(L?*(G)) < b(G)
because G is o-compact. Therefore, D(A(G)) < b(G). =

Recall that, for a closed subset F' of G, I(F') denotes the closed ideal of
A(QG) consisting of all u € A(G) such that w =0 on F'. When F = H is a
closed subgroup of G, we have the following

COROLLARY 4.4. Let G be a locally compact group and H a o-compact
non-discrete closed subgroup of G. Then A(G)/I(H) is ENAR.

Proof. This follows from Corollary 4.3 because A(G)/I(H) is isomet-
rically algebra-isomorphic to A(H) (see [9, Lemma 3.8]). m

For any non-discrete locally compact group G, let Gg be a compactly
generated open subgroup of G. Since A(Gq) can be isometrically embedded
into A(G), D(A(G)) > D(A(Gp)). From the proof of Corollary 4.3 we see
that D(A(Gy)) = b(Go) = b(G). Therefore, D(A(G)) > b(G) for any locally
compact group G. It is natural to ask whether Theorem 4.1 holds when
D(A(G)) > b(G). We will see that the answer to this question is positive
for some closed ideals of A(G), such as those ideals J with Z(J) being a
compact s-set. In this case, J = I(Z(J)) = {u € A(G) :u=0on Z(J)}.

THEOREM 4.5. Let G be a mon-discrete locally compact group and J
a closed ideal of A(G). If Z(J) is an s-set satisfying condition (x) and
is contained in some o-compact open subgroup Go of G, then A(G)/J is
ENAR.

Proof. Let A = A(G)/J. An analogous argument to the proof of
Theorem 4.1 yields that A*/ WAP(A*) has [°°(X) as a quotient. So, to
complete the present proof, it suffices to establish a linear isometry of J+
into [*°(X) (by Lemma 2.1).

Let r: A(G) — A(Gp) be the restriction map and let ¢ : A(Gy) — A(G)
be the extension map defined by tv = v, where ¥ = v on G and 0 outside Gj.
Then ¢ is a linear isometry of A(Gj) into A(G) and ||r|| < 1 (see [6]). Notice
that D(A(Go)) = b(Gy) = b(G) = | X| (see the proof of Corollary 4.3). Let
{ta }aex be norm dense in the unit ball of A(Gy). Define A : J+ — [°°(X)
by

AT) (o) = (T, tuy), TeJ' acX.
For each u € A(G), u —t(ru) € J because u — t(ru) = 0 on Gy 2 Z(J) and
Z(J) is an s-set. Then

(T, u) = (T,t(ru)), forall T € J* and u € A(G).
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It follows that ||A(T)| = |T|| for all T € J+, i.e. A is a linear isometry of
J+ into I%°(X). =

COROLLARY 4.6. Let G be a non-discrete locally compact group and J
a closed ideal of A(G). If Z(J) is a compact s-set satisfying condition (x),
then A(G)/J is ENAR.

Proof. Since Z(J) is compact, there exists a compactly generated open
subgroup Gy of G such that Z(J) C Gy (see [15, (5.14)]). It follows from
Theorem 4.5 that A(G)/J is ENAR. =

Remark 4.7. Let d(G) denote the smallest cardinality of a covering
of G by compact sets. It can be seen that d(G) < b(G) implies D(A(G)) =
b(G). Therefore, 4.1 and 4.2 remain true if D(A(G)) = b(G) is replaced by
d(G) < b(G). Also, 4.3, 4.4, and 4.5 hold true if the o-compactness of M is
replaced by d(M) < b(M), where M = G, H, and G, respectively.
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