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1. Introduction. Let A be a Banach algebra. As is well known, on
the second dual A∗∗ of A there exist two Banach algebra multiplications
extending that of A (see [1]). When these two multiplications coincide on
A∗∗, the algebra A is said to be Arens regular . Let WAP(A∗) denote the
space of all weakly almost periodic functionals on A. Then the equality
WAP(A∗) = A∗ is equivalent to the Arens regularity of A (cf. [21]). Re-
cently, Granirer introduced the concept “extreme non-Arens regularity”. A
is called extremely non-Arens regular (or ENAR for short) if A∗/WAP(A∗)
is as big as A∗, namely if A∗/WAP(A∗) contains a closed subspace which
has A∗ as a continuous linear image (see [13]).

Let G be a locally compact group and A(G) the Fourier algebra of G.
Lau proved that if G is amenable then A(G) is Arens regular if and only if G
is finite (see [18, Proposition 3.3]). Generally, Forrest showed that if A(G)
is Arens regular then G is discrete ([8, Theorem 3.2]). He further showed in
[9] that A(G) is not Arens regular if G contains an infinite abelian subgroup.
Lately, Granirer investigated the non-Arens regularity of quotients of A(G).
Let J be a closed ideal of A(G) with zero set Z(J) = F . Granirer proved
that A(G)/J is not Arens regular if there exist a, b ∈ G such that one of the
following conditions holds:

(1) intaHb(F ) 6= ∅ for some non-discrete subgroup H of G;
(2) G contains R (or T) as a closed subgroup and there is a symmetric

set S ⊂ R (or T) satisfying aSb ⊆ F ([14, Corollary 8]).

Furthermore, if G is second countable, Granirer showed that A(G)/J is
ENAR ([13, Corollaries 6 and 7]). He asked if this is the case when G is not
second countable.

In this paper, we attempt to deal with non-second countable groups.
Some conditions on G and Z(J) are proposed which guarantee the extreme
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non-Arens regularity of A(G)/J . In particular, we show that A(G)/J is
ENAR if G is any σ-compact non-discrete locally compact group and J is a
closed ideal of A(G) such that

(∗) Z(J) contains a non-empty intersection B of ℵ many open subsets of
G with ℵ < b(G),

where b(G) denotes the smallest cardinality of an open basis at the unit e
of G (condition (∗) is satisfied if intZ(J) 6= ∅).

It is worth noting that our discussion on the extreme non-Arens regu-
larity of A(G)/J is primarily based on our understanding of the extreme
non-ergodicity of (A(G)/J)∗. Let V N(G) be the von Neumann algebra
generated by the left regular representation of G. Let P = J⊥ = {T ∈
VN(G) : 〈T, u〉 = 0 if u ∈ J}. Then P is linear isometric to (A(G)/J)∗ .
For x ∈ G, let EP(x) be the norm closure of {T ∈ P : x 6∈ suppT} and
let WP(x) = Cδx + EP(x). Denote by µ the first ordinal with |µ| = b(G)
and let X = {α : α < µ}. We show that if G is any non-discrete lo-
cally compact group and J is a closed ideal of A(G) such that Z(J) satis-
fies condition (∗), then P is extremely non-ergodic at each x ∈ B, namely
P/WP(x) has l∞(X) as a continuous linear image and TIMP(x) contains
F(X), where TIMP(x) = {φ ∈ P∗; ‖φ‖ = 〈φ, δx〉 = 1 and φ = 0 on EP(x)}
and F(X) = {φ ∈ l∞(X)∗ : ‖φ‖ = φ(1) = 1 and φ(f) = 0 if f ∈ l∞(X) and
limα∈X f(α) = 0}. Moreover, if G is non-metrizable, then P/WP(x) contains
an isomorphic copy of l∞(X) for each x ∈ B (Theorem 3.4 combined with
Remark 3.5(iii)). These results extend and improve some of those in [13]
and [17].

It is our pleasure to thank Professor E. E. Granirer for his valuable
comments and also for providing the preprint of his paper [14].

2. Preliminaries and notations. Let G be a locally compact group
with identity e and a fixed left Haar measure λ = dx, and let L2(G) be
the usual Hilbert space with the inner product (f, g) =

T
G
f(x)g(x) dx, for

f, g ∈ L2(G).

Let VN(G) denote the von Neumann algebra generated by the left regular
representation of G, i.e. the closure of the linear span of {̺(a) : a ∈ G} in the
weak operator topology, where [̺(a)f ](x) = f(a−1x), for x ∈ G, f ∈ L2(G).
Let A(G) denote the subalgebra of C0(G) (bounded continuous complex-
valued functions on G vanishing at infinity) consisting of all functions of the
form f ∗ g̃, where f, g ∈ L2(G) and g̃(x) = g(x−1). Then each φ = f ∗ g̃ in
A(G) can be regarded as an ultraweakly continuous functional on VN(G)
defined by φ(T ) = (Tf, g) for T ∈ VN(G). Furthermore, as shown by
P. Eymard in [6, pp. 210 and 218], each ultraweakly continuous functional
on VN(G) is of the form f ∗ g̃ with f , g ∈ L2(G). Also, A(G) with pointwise
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multiplication and the norm ‖φ‖ = sup{|φ(T )| : T ∈ VN(G) and ‖T‖ ≤ 1}
forms a commutative Banach algebra called the Fourier algebra of G.

There is a natural action of A(G) on VN(G) given by

〈u · T, v〉 = 〈T, uv〉, for u, v ∈ A(G), T ∈ VN(G).

Under this action, VN(G) becomes a Banach A(G)-module. Let T ∈ VN(G).
We say that x ∈ G is in the support of T , denoted by suppT , if ̺(x) is the
ultraweak limit of operators of the form u · T , u ∈ A(G).

An m ∈ VN(G)∗ is called a topologically invariant mean on VN(G) if

(i) ‖m‖ = 〈m, I〉 = 1, where I = ̺(e) denotes the identity operator,

(ii) 〈m,u·T 〉 = 〈m,T 〉 for T ∈ VN(G) and u ∈ A(G) with ‖u‖ = u(e) = 1.

Let TIM(Ĝ) be the set of topologically invariant means on VN(G). De-

note by F (Ĝ) the space of all T ∈ VN(G) such that m(T ) equals a fixed

constant d(T ) as m runs through TIM(Ĝ). Then F (Ĝ) is a norm closed
self-adjoint A(G)-submodule of VN(G).

The space {T ∈ VN(G) : u 7→ u · T is a weakly compact operator of
A(G) into VN(G)} is called the space of weakly almost periodic functionals

on A(G) and denoted by W (Ĝ). It turns out that W (Ĝ) is a self-adjoint

closed A(G)-submodule of VN(G). Also, it is known that W (Ĝ) ⊆ F (Ĝ)
(see [5] and [10]).

Let M(G) denote the algebra of finite regular Borel measures on G with
convolution as multiplication. M(G) can be considered as a subspace of
VN(G) by virtue of

〈µ, u〉 =
\
G

u dµ, for u ∈ A(G).

In particular, 〈δx, u〉 = u(x), x ∈ G, u ∈ A(G), where δx denotes the point
measure at x.

Let P be a norm closed A(G)-submodule of VN(G) and x ∈ G. Following
notations and definitions of Granirer [12], we put

σ(P) = {z ∈ G : δz ∈ P},

Pc = the norm closure of {T ∈ P : suppT is compact},

EP(x) = the norm closure of {T ∈ P : x 6∈ suppT},

WP(x) = Cδx + EP(x).

It is shown that EP(x) is the norm closure of {T − u · T : T ∈ P, u ∈ A(G)
and ‖u‖ = u(x) = 1} (see Granirer [12, Proposition 1]). Furthermore, if
x ∈ σ(P), let TIMP(x) denote the set of all topologically invariant means on
P at x, i.e.
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TIMP(x) = {φ ∈ P∗ : ‖φ‖ = φ(δx) = 1 and φ = 0 on EP(x)}.

When P = VN(G), WP(e) = F (Ĝ) and TIMP(e) = TIM(Ĝ).
For a closed ideal J of A(G), Z(J) denotes the set {x ∈ G : u(x) = 0 for

all u ∈ J}. If F is a closed subset of G, let I(F ) = {u ∈ A(G) : u = 0 on F}.
F is called a set of spectral synthesis, or simply an s-set , if I(F ) is the only
closed ideal I of A(G) with Z(I) = F .

Let E1 and E2 be two Banach spaces. We say that E2 contains an
isomorphic (isometric) copy of E1 if there is a linear mapping L : E1 → E2

and some positive constants γ1, γ2 (γ1 = γ2 = 1) such that γ1‖x‖ ≤ ‖Lx‖ ≤
γ2‖x‖ for all x ∈ E1; further, E2 has E1 as a quotient if there is a bounded
linear mapping from E2 onto E1. Also, for a Banach space Y , we denote
by D(Y ) the density character of Y , i.e. the smallest cardinality such that
there exists a norm dense subset of Y having that cardinality.

For any set A, |A| denotes the cardinality of A. If µ is an ordinal, then
|µ| denotes the cardinality of the set {α : α < µ}. For a locally compact
group G with identity e, we denote by b(G) the smallest cardinality of an
open basis at e.

Let A be a Banach algebra. It is well known that there exist two Banach
algebra multiplications on A∗∗ extending that of A. When these two mul-
tiplications coincide on A∗∗, A is said to be Arens regular . Details of the
construction of these multiplications can be found in many places, including
the pioneering paper [1], the book [2] and the survey article [4]. T ∈ A∗

is called weakly almost periodic if the set {u · T : u ∈ A and ‖u‖ ≤ 1} is
a relatively weakly compact subset of A∗, where u · T ∈ A∗ is defined by
〈u ·T, v〉 = 〈T, uv〉, v ∈ A. The space of all weakly almost periodic function-
als on A is denoted by WAP(A∗). Then WAP(A∗) = A∗ if and only if A is
Arens regular ([21]). A is called extremely non-Arens regular (or ENAR for
short) if A∗/WAP(A∗) is as big as A∗, namely if A∗/WAP(A∗) contains a
closed subspace which has A∗ as a quotient. The definition of ENAR was
made by Granirer in [13] where he first investigated the extreme non-Arens
regularity for quotients of A(G).

Lemma 2.1. Let A be a Banach algebra and Γ be a set. If l∞(Γ ) contains

an isomorphic copy of A∗ (in particular , if D(A) ≤ |Γ |) and A∗/WAP(A∗)
has l∞(Γ ) as a quotient , then A is ENAR.

P r o o f. Let t be a linear isomorphism of A∗ into l∞(Γ ) and r a bounded
linear map of A∗/WAP(A∗) onto l∞(Γ ). Let Y = r−1[t(A∗)]. Then Y
(⊆ A∗/WAP(A∗)) has A∗ as a quotient. Therefore, A is ENAR. If D(A) ≤
|Γ |, then there exists a subset Γ0 of Γ such that D(A) = |Γ0|. Let {xγ}γ∈Γ0

be norm dense in the unit ball of A. Define h : A∗ → l∞(Γ0) by (hΦ)(γ) =
〈Φ, xγ〉, Φ ∈ A∗, γ ∈ Γ0. Then h is a linear isometry of A∗ into l∞(Γ0) ⊆
l∞(Γ ).
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3. Extreme non-ergodicity of A(G)-submodules of VN(G). This
section is partially motivated by Granirer [12] and [13]. The basic idea used
in the proof of our main theorem (Theorem 3.4) is similar to that used in
[17]. Let G be a locally compact group with identity e. We begin this section
with the following property of A(G)-submodules of VN(G), which is needed
in the proof of Theorem 3.4.

Proposition 3.1. Let P be a norm closed A(G)-submodule of VN(G)

and e ∈ σ(P). Then WP(e) = F (Ĝ) ∩ P.

P r o o f. Since e ∈ σ(P), WP(e) ⊆ P. Let S = {u ∈ A(G) : ‖u‖ = u(e)
= 1}. By [12, Proposition 1], EP(e) equals the norm closure of {T − u · T :

T ∈ P and u ∈ S}. So WP(e) = CI + EP(e) ⊆ F (Ĝ). Therefore, WP(e) ⊆

F (Ĝ) ∩ P.

Conversely, let T ∈ F (Ĝ) ∩ P. Then there exists a constant a such that

m(T ) = a for all m ∈ TIM(Ĝ). We now follow an argument of Granirer [14,
Proposition 3] to show that T −aI ∈ EP(e). If T −aI 6∈ EP(e), then, by the
Hahn–Banach theorem, there exists a φ ∈ VN(G)∗ such that 〈φ, T−aI〉 6= 0,
but 〈φ,Φ − u · Φ〉 = 0 for all Φ ∈ P and u ∈ S. Note that the pointwise
multiplication in A(G) makes S into an abelian semigroup. Let M ∈ l∞(S)∗

be a translation invariant mean. Define ψ ∈ VN(G)∗ by

〈ψ,Φ〉 = 〈M,φ(u · Φ)〉, Φ ∈ VN(G),

where φ(u·Φ) is considered as a bounded function on S (i.e. it is in l∞(S)). It
is easy to check that ψ extends φ, and 〈ψ, v ·Φ〉 = 〈ψ,Φ〉 for all Φ ∈ VN(G)
and v ∈ S. Therefore, ψ is topologically invariant and 〈ψ, T − aI〉 6= 0.

According to Chou [3, Lemma 4.2], there exists an m0 ∈ TIM(Ĝ) such that
〈m0, T − aI〉 6= 0, or 〈m0, T 〉 6= a. We have thus reached a contradiction. It
follows that T − aI ∈ EP(e) and hence T ∈WP(e).

In the following, G is always a non-discrete locally compact group. Recall
that b(G) denotes the smallest cardinality of an open basis at e. Let µ be
the initial ordinal with |µ| = b(G) and let X = {α : α is an ordinal and
α < µ}. Let l∞(X) be the Banach space of all bounded complex-valued
functions on X with the supremum norm and c(X) the subspace of l∞(X)
consisting of all f ∈ l∞(X) such that limα∈X f(α) exists. In [16], we defined
a subset of l∞(X)∗ as follows

F(X) = {φ ∈ l∞(X)∗ : ‖φ‖ = φ(1) = 1 and φ(f) = 0 if lim
α∈X

f(α) = 0}.

It is shown that |F(X)| = 22
|X|

(see [16, Proposition 3.3]). If Y is a Banach
space andK ⊆ Y ∗, we say that K contains F(X) if there is an onto bounded
linear map t : Y → l∞(X) such that t∗ : l∞(X)∗ → Y ∗ satisfies t∗(F(X)) ⊆
K (it is easily seen that t∗ is a w∗-w∗ continuous norm isomorphism into).
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Definition 3.2. Let ℵ > 0 be a cardinal. A non-empty subset B of G
is called a Gℵ-set if B is an intersection of ℵ many open subsets of G.

Theorem 3.3. Let G be a non-discrete locally compact group. Let P

and Q be A(G)-submodules of VN(G) such that P is w∗-closed , Q is norm

closed , Pc ⊆ Q ⊆ P, and σ(P) = F . Assume that

(∗) F contains a Gℵ-set B with ℵ < b(G),

and e ∈ B. Then Q/WQ(e) has l∞(X) as a quotient.

If G is further assumed to be non-metrizable, then Q/WQ(e) contains an

isomorphic copy of l∞(X).

P r o o f. By the definition, B is a non-empty intersection of ℵ many open
subsets of G. If G is metrizable, then B is open and e ∈ B ⊆ int(F ). By
Granirer [13, Corollary 7], Q/WQ(e) has l∞ as a quotient.

We now assume that G is non-metrizable. By the injectivity of l∞(X)
(see [19, p. 105]), we only need to show that Q/WQ(e) contains an isomorphic
copy of l∞(X). We may also assume that ℵ is infinite and ν is the initial
ordinal satisfying |ν| = ℵ. Then ν < µ.

Suppose first that G is compactly generated. Let (Nα)0<α≤µ be the
decreasing net of compact normal subgroups of G as in [16, Proposition
4.3]. According to the construction of (Nα)0<α≤µ, this net can be chosen
so that Nν ⊆ B ⊆ F (see [16]). Let λα be the normalized Haar measure
of Nα. Let Q0 = λ1 and Qα = λα+1 − λα (0 < α < µ). Then (Qα)α<µ is
an orthogonal net of projections in VN(G) (see [16]). For each ν ≤ α < µ,
Qα ∈ P (since P = (⊥P)⊥ and 〈Qα, u〉 =

T
G
u d(λα+1 − λα) = 0 if u ∈ A(G)

and u = 0 on F ). Also, suppQα(⊆ Nα) is compact. Therefore, Qα ∈ Pc ⊆ Q

for all ν ≤ α < µ. If f ∈ l∞(X), let
∑

α<µ f(α)Qν+α denote the w∗-limit of
{
∑

α∈Λ f(α)Qν+α : Λ ⊂ X is finite} in VN(G). Then
∑

α<µ f(α)Qν+α ∈ P

(since P is w∗-closed) and supp[
∑

α<µ f(α)Qν+α] (⊆ Nν) is compact. So∑
α<µ f(α)Qν+α ∈ Pc ⊆ Q for all f ∈ l∞(X). Define τ : l∞(X) → Q by

τ(f) =
∑

α<µ

f(α)Qν+α, f ∈ l∞(X).

By [17, Lemmas 4.4 and 4.5], τ is a linear isometry of l∞(X) into Q and

τ(c(X)) ⊆ F (Ĝ) ∩ Q = WQ(e) (Proposition 3.1 above). For f ∈ l∞(X),

define f̃ ∈ l∞(X) by

f̃(α) =

{
0 if α < ν,
f(β) if α = ν + β.

Then τ(f) =
∑

α<µ f̃(α)Qα. By [17, Lemma 5.8], ‖f̃ + c(X)‖ = ‖τ(f) +
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F (Ĝ)‖. Also, notice that ‖f + c(X)‖ = ‖f̃ + c(X)‖. It follows that

‖f̃ + c(X)‖ = ‖τ(f) + F (Ĝ)‖

≤ ‖τ(f) +WQ(e)‖ (by Proposition 3.1)

≤ ‖f + c(X)‖ (since τ(c(X)) ⊆WQ(e))

= ‖f̃ + c(X)‖,

i.e. ‖τ(f) +WQ(e)‖ = ‖f + c(X)‖ for all f ∈ l∞(X). Therefore, Q/WQ(e)
contains an isometric copy of l∞(X)/c(X).But l∞(X) can be isomorphically
embedded into l∞(X)/c(X) ([17, Lemma 3.2]). Consequently, Q/WQ(e)
contains an isomorphic copy of l∞(X).

Generally, let G0 be a compactly generated open subgroup of G. We may
assume that B ⊆ G0 (since we may assume that the closure of B is compact).
Now G0 is also non-metrizable with b(G0) = b(G). Let r : A(G) → A(G0)
be the restriction map. Then r∗ is isometric (see Eymard [6]). Granirer

showed that r∗[TIM(Ĝ)] = TIM(Ĝ0) (see [10]) and hence r∗[F (Ĝ0)] ⊆ F (Ĝ).
Let Q0 = {T ∈ VN(G0) : suppT ⊆ B}. Then Q0 is a w∗-closed A(G0)-
submodule of VN(G0) with σ(Q0) = B. Let τ : l∞(X) → Q0 be the same
linear isometry as in the previous paragraph. We claim that r∗ ◦τ [l∞(X)] ⊆
Q. In fact, let f ∈ l∞(X), then supp[r∗ ◦ τ(f)] (⊆ supp[τ(f)] ⊆ Nν)
is compact and r∗ ◦ τ(f) ∈ P = (⊥P)⊥ (by the definitions of r and τ ,
〈r∗ ◦ τ(f), u〉 = 〈τ(f), r(u)〉 = 0 if u ∈ ⊥P). Therefore, r∗ ◦ τ(f) ∈ Pc ⊆ Q.

Also, since r∗[τ(c(X))] ⊆ r∗[F (Ĝ0)] ⊆ F (Ĝ), we have r∗◦τ(c(X)) ⊆ F (Ĝ)∩
Q = WQ(e) (Proposition 3.1). Consequently,

‖f + c(X)‖ = ‖f̃ + c(X)‖

= ‖τ(f) + F (Ĝ0)‖ (by [17, Lemma 5.8])

= ‖r∗[τ(f)] + F (Ĝ)‖ (by [17, Lemma 5.9])

≤ ‖r∗[τ(f)] +WQ(e)‖ (by Proposition 3.1)

≤ ‖f + c(X)‖ (since r∗ ◦ τ(c(X)) ⊆WQ(e)),

i.e. ‖r∗[τ(f)] + WQ(e)‖ = ‖f + c(X)‖ for all f ∈ l∞(X). It follows that
Q/WQ(e) contains an isometric copy of l∞(X)/c(X) and hence it contains
an isomorphic copy of l∞(X) (by [17, Lemma 3.2]).

The main result of this section is Theorem 3.4. The crux of its proof is
actually contained in the proof of Theorem 3.3.

Theorem 3.4. With assumptions on P and Q as in Theorem 3.3, if

(∗) F contains a Gℵ-set B with ℵ < b(G),

then Q/WQ(x) has l∞(X) as a quotient for all x ∈ B.



244 Z. HU

Furthermore, if G is non-metrizable, then Q/WQ(x) contains an isomor-

phic copy of l∞(X) for all x ∈ B.

P r o o f. Let x ∈ B and y = x−1. Let Ly be the left translation on
A(G) by y (i.e. u 7→ yu, u ∈ A(G)). Then L∗

y is a w∗-w∗ continuous linear
isometry of VN(G) onto itself. Define P′ = L∗

y(P), Q′ = L∗
y(Q), F ′ = yF

and B′ = yB. Then P′ and Q′ are A(G)-submodules of VN(G) such that P′

is w∗-closed and Q′ is norm closed.

Also, B′ is a Gℵ-set with e ∈ B′ ⊆ F ′ and F ′ = σ(P′). It is easy
to check that [P′]c = L∗

y(Pc) and hence [P′]c ⊆ Q′ ⊆ P′. But L∗
y[WQ(x)]

= WQ′(e). Therefore, Q/WQ(x) is linear isometric to Q′/WQ′(e). It fol-
lows that Q/WQ(x) has l∞(X) as a quotient (or contains an isomorphic
copy of l∞(X) when G is non-metrizable) because so does Q′/WQ′(e) (by
Theorem 3.3).

R e m a r k 3.5. (i) Theorem 3.3 improves [17, Theorem 6.9]. In [17],
we only considered the case when P = {T ∈ VN(G) : suppT ⊆ F} and

Q = {T ∈ UCB(Ĝ) : suppT ⊆ F} for some closed subset F of G satisfying

condition (∗), where UCB(Ĝ) is the norm closure of {T ∈ VN(G) : suppT
is compact}.

(ii) Note that if D(A(G)) = b(G) (e.g. if G is non-discrete and σ-
compact) then VN(G) is isometric to a subspace of l∞(X). Hence the asser-
tion “Q/WQ(x) has l∞(X) as a quotient” means that the space Q/WQ(x)
is as big as it can be.

(iii) Let G be non-metrizable and let π : VN(G) → l∞(X) be the
bounded onto linear mapping as in [17, Theorem 5.1]. With the assumptions
of Theorem 3.3, if we define π′ : Q → l∞(X) by

π′(T )(α) = π(T )(ν + α), T ∈ Q, α ∈ X,

where ν is the first ordinal with |ν| = ℵ (we may assume that ℵ is infi-
nite), then it can be seen that π′ is onto, (π′)∗ is a linear isometry into,
π′(WQ(e)) ⊆ c(X) and (π′)∗(F(X)) ⊆ TIMQ(e). Also, L∗∗

y (TIMQ′(e)) =
TIMQ(y−1), where Ly is the left translation on A(G) by y and Q′ = L∗

y(Q).
Therefore, we can add to the conclusion of Theorem 3.4 that TIMQ(x) con-
tains F(X) for all x ∈ B (this is also true if G is metrizable and non-discrete,

see the following (iv)). In this situation, we have |TIMQ(x)| = 22
b(G)

because

|F(X)| = 22
b(G)

= |TIM(Ĝ)| (see [16]) and |TIMQ(x)| ≤ |TIM(Ĝ)| (see [14,
Corollary 4]).

(iv) Granirer in [12]–[14] investigated operators in PMp(G) (1 < p <∞)
with thin support. In particular, under the same assumptions on P and Q

as in our Theorem 3.4, he showed that |TIMQ(x)| ≥ 2c if there exist a, b ∈ G
such that one of the following two conditions is satisfied:
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(1) R (or T) is a closed subgroup of G and there is a symmetric set S ⊂ R

(or T) such that x ∈ aSb ⊆ F ;
(2) x ∈ intaHb(F ) for some non-discrete subgroup of G

(see [14,Theorems 6 and 7]). Furthermore, if F is first countable, then it is
proved that Q/WQ(x) has l∞ as a quotient and TIMQ(x) contains F(N) (see
Granirer [13, Corollaries 6 and 7]). In this case, Granirer called Q extremely

non-ergodic at x ∈ σ(Q) = F . Notice that if G is metrizable, then condition
(∗) of Theorem 3.4 implies that B ⊆ int(F ); if G is non-metrizable and F
satisfies (∗), then condition (2) holds for all x ∈ B but F is not first countable
at each x∈B. Therefore, Theorem 3.4 combined with the above (iii) extends
Granirer’s results on extreme non-ergodicity of Q to non-metrizable σ(Q)
with l∞ replaced by l∞(X) and condition (2) by condition (∗).

Recall that a Banach space Y is said to have the weak Radon–Nikodym

property (or WRNP for short) if every Y -valued measure ξ on a finite com-
plete measure space (S, Σ, η) which is η-continuous and of σ-finite variation
has a Pettis-integrable derivative f : S → Y (i.e. ξ(E) = P -

T
E
f dη for each

E ∈ Σ). See [20] for more information on the WRNP. It is known that if
Y has the WRNP then Y does not contain any isomorphic copy of l∞ ([20,
Proposition 4]). So, our isomorphic embedding results yield the following

Corollary 3.6. Let G be a non-discrete locally compact group. Then

(i) VN(G) does not have the WRNP ;
(ii) Q and Q/WQ(x) do not have the WRNP if G is non-metrizable and

Q and x are the same as in Theorem 3.4.

P r o o f. By [17, Theorem 5.1], VN(G) contains an isometric copy of
l∞(X). Also, according to Theorems 3.3–3.4 and their proofs, Q and
Q/WQ(x) contain an isomorphic copy of l∞(X) if G is non-metrizable and
Q and x are the same as in Theorem 3.4. Consequently, all the spaces con-
sidered in Corollary 3.6 contain an isomorphic copy of l∞. It follows that
they do not have the WRNP.

R e m a r k 3.7. (a) Corollary 3.6(i) is included in Granirer [11, Theorem
5(a)], where he showed that if G in non-discrete then any nonzero ideal of
Ap(G) contains an isomorphic copy of l1 and hence PMp(G) does not have
the WRNP.

(b) A particular case of Granirer [12, Theorem 1], namely p = 2, implies
that P does not have the WRNP if G is amenable as a discrete group, P

is a w∗-closed A(G)-submodule of VN(G) and σ(P) contains some compact
perfect metrizable set.

4. Extreme non-Arens regularity of quotients of A(G). Let G be
a locally compact group. For a closed ideal J of A(G), let A = A(G)/J and
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let q : A(G) → A be the quotient map. Then A is a commutative Banach
algebra and q∗ : A∗ → VN(G) is a linear isometry of A∗ onto J⊥ = {T ∈
VN(G) : 〈T, u〉 = 0 for all u ∈ J}. In the following, we will identify A∗ with

J⊥. It is easily seen that WAP(A∗) = W (Ĝ) ∩ J⊥ ⊆ F (Ĝ) ∩ J⊥.
Granirer in [14,Corollary 8] showed that if F =Z(J) satisfies (1) or (2) of

Remark 3.4(iv) then A(G)/J is not Arens regular. If G is further assumed to
be second countable, then A(G)/J is extremely non-Arens regular (ENAR)
(see Granirer [13, Corollaries 6 and 7]). Granirer asked if this is the case
when G is not second countable (see [14]). In this section, we will propose
some conditions on G and Z(J) which guarantee that A(G)/J is ENAR.

Let µ be the first ordinal satisfying |µ| = b(G) and let X = {α : α < µ}.
Also, recall that for a Banach space Y , D(Y ) denotes the density character
of Y , i.e. the smallest cardinality of a norm dense subset of Y .

Theorem 4.1. Let G be a non-discrete locally compact group with

D(A(G)) = b(G). If J is is a closed ideal of A(G) such that

(∗) Z(J) contains a Gℵ-set with ℵ < b(G),

then A(G)/J is ENAR.

P r o o f. Let A = A(G)/J . Then D(A) ≤ D(A(G)) = b(G) = |X|.
By Lemma 2.1, we only need to show that A∗/WAP(A∗) has l∞(X) as a
quotient.

For x ∈ G, let Lx be the left translation on A(G) by x. Then Lx is an
isometric algebra isomorphism of A(G) and Z(Lx(J)) = x−1Z(J). So we
may assume that e ∈ B ⊆ Z(J) for some Gℵ-set B.

Let P = J⊥. Then P is a w∗-closed A(G)-submodule of VN(G) with
σ(P) = Z(J). By Theorem 3.3, P/WP(e) has l∞(X) as a quotient. But

A∗ = J⊥ = P and WAP(A∗) ⊆ F (Ĝ) ∩ P = WP(e) (Proposition 3.1).
It follows that the quotient Banach space A∗/WAP(A∗) has l∞(X) as a
quotient.

In Theorem 4.1, if int(Z(J)) 6= ∅, then condition (∗) is automatically
satisfied. In particular, we have

Corollary 4.2. Let G be a non-discrete locally compact group with

D(A(G)) = b(G). Then A(G) is ENAR.

Corollary 4.3. Let G be a σ-compact non-discrete locally compact

group. Let J be a closed ideal of A(G) such that Z(J) satisfies condition

(∗). Then A(G)/J is ENAR.

In particular , A(G) is ENAR for any σ-compact non-discrete locally

compact group G.

P r o o f. According to Theorem 4.1, it suffices to prove that D(A(G)) =
b(G).
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If G is metrizable, then G is second countable (since G is σ-compact)
and hence A(G) is norm separable. In this situation, D(A(G)) = ℵ0 = b(G).

If G is non-metrizable, from [16, Lemma 5.2] we deduce that there exist
b(G) many elements in A(G) such that the distance between any two of
them is 2. So, D(A(G)) ≥ b(G). On the other hand, D(L2(G)) ≤ b(G)
because G is σ-compact. Therefore, D(A(G)) ≤ b(G).

Recall that, for a closed subset F of G, I(F ) denotes the closed ideal of
A(G) consisting of all u ∈ A(G) such that u = 0 on F . When F = H is a
closed subgroup of G, we have the following

Corollary 4.4. Let G be a locally compact group and H a σ-compact

non-discrete closed subgroup of G. Then A(G)/I(H) is ENAR.

P r o o f. This follows from Corollary 4.3 because A(G)/I(H) is isomet-
rically algebra-isomorphic to A(H) (see [9, Lemma 3.8]).

For any non-discrete locally compact group G, let G0 be a compactly
generated open subgroup of G. Since A(G0) can be isometrically embedded
into A(G), D(A(G)) ≥ D(A(G0)). From the proof of Corollary 4.3 we see
that D(A(G0)) = b(G0) = b(G). Therefore, D(A(G)) ≥ b(G) for any locally
compact group G. It is natural to ask whether Theorem 4.1 holds when
D(A(G)) > b(G). We will see that the answer to this question is positive
for some closed ideals of A(G), such as those ideals J with Z(J) being a
compact s-set. In this case, J = I(Z(J)) = {u ∈ A(G) : u = 0 on Z(J)}.

Theorem 4.5. Let G be a non-discrete locally compact group and J
a closed ideal of A(G). If Z(J) is an s-set satisfying condition (∗) and

is contained in some σ-compact open subgroup G0 of G, then A(G)/J is

ENAR.

P r o o f. Let A = A(G)/J . An analogous argument to the proof of
Theorem 4.1 yields that A∗/WAP(A∗) has l∞(X) as a quotient. So, to
complete the present proof, it suffices to establish a linear isometry of J⊥

into l∞(X) (by Lemma 2.1).
Let r : A(G) → A(G0) be the restriction map and let t : A(G0) → A(G)

be the extension map defined by tv = v
◦
, where v

◦
= v on G0 and 0 outsideG0.

Then t is a linear isometry of A(G0) into A(G) and ‖r‖ ≤ 1 (see [6]). Notice
that D(A(G0)) = b(G0) = b(G) = |X| (see the proof of Corollary 4.3). Let
{uα}α∈X be norm dense in the unit ball of A(G0). Define Λ : J⊥ → l∞(X)
by

Λ(T )(α) = 〈T, tuα〉, T ∈ J⊥, α ∈ X.

For each u ∈ A(G), u− t(ru) ∈ J because u− t(ru) = 0 on G0 ⊇ Z(J) and
Z(J) is an s-set. Then

〈T, u〉 = 〈T, t(ru)〉, for all T ∈ J⊥ and u ∈ A(G).
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It follows that ‖Λ(T )‖ = ‖T‖ for all T ∈ J⊥, i.e. Λ is a linear isometry of
J⊥ into l∞(X).

Corollary 4.6. Let G be a non-discrete locally compact group and J
a closed ideal of A(G). If Z(J) is a compact s-set satisfying condition (∗),
then A(G)/J is ENAR.

P r o o f. Since Z(J) is compact, there exists a compactly generated open
subgroup G0 of G such that Z(J) ⊆ G0 (see [15, (5.14)]). It follows from
Theorem 4.5 that A(G)/J is ENAR.

R e m a r k 4.7. Let d(G) denote the smallest cardinality of a covering
of G by compact sets. It can be seen that d(G) ≤ b(G) implies D(A(G)) =
b(G). Therefore, 4.1 and 4.2 remain true if D(A(G)) = b(G) is replaced by
d(G) ≤ b(G). Also, 4.3, 4.4, and 4.5 hold true if the σ-compactness of M is
replaced by d(M) ≤ b(M), where M = G, H, and G0, respectively.
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