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ROUGH SINGULAR INTEGRAL OPERATORS
WITH HARDY SPACE FUNCTION KERNELS
ON A PRODUCT DOMAIN

BY

YONG DING (NANCHANG)

In this paper we introduce atomic Hardy spaces on the product domain
Sn=1 x §m~1 and prove that rough singular integral operators with Hardy
space function kernels are LP bounded on R™ x R™. This is an extension of
some well known results.

1. Introduction. Let S"~!, S™~! be unit spheres in R", R™ (n >

2, m > 2) respectively and 2(x,y) be a function on the product domain
R™ x R™ satisfying
(1.1) Qx', Xoy) = 2(2',y')  for any Ay, A >0
and

S Q2(z',y)dr' =0 for any v/ € ™1,
Snfl

S Q',y)dy' =0 for any 2’ € S"L.
Smfl

(1.2)

A singular integral operator T" on R™ x R™ is defined by
2(u,v
Tfey) =pv. || et

N e
It is well known that 7" is an LP(R™ x R™) bounded operator (1 < p < 00)
when (2 satisfies some regularity conditions [3]. Using the idea developed in
[2], J. Duoandikoetxea [1] proved the LP (R"™ xR™) boundedness (1 < p < 00)
of T with the rough condition 2 € L4(S"~1 x S™~1) instead of regularity.
Recently, Y. S. Jiang and S. Z. Lu improved the above results in [4]. They
set up a class of block-spaces BY(S"™1 x §™~1) (¢ > 1) on §7~1 x §m~1
and proved that T is L*(R™ x R™) bounded if £2 € BY(S™~! x §™~1).

flx —u,y —v)dudv.
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16 Y. DING

Under inspiration from [5], in this paper we shall introduce the atomic
Hardy spaces H}(S"~! x §™~1) and prove that T is L?(R" x R™) bounded
(1 <p<oo)if 2e€ HY(S" ! x §™~1). This is an extension of the above
mentioned results.

Let us begin with the definition of (1, 00)-atoms on S™"~1 x ™1,

DEFINITION 1. A function a(2’,y’) on S"~1 x §™~1 is called a (1, 00)-
atom if it satisfies the following conditions:

S a(z’,y')dx’ =0 for any y/ € S™71,
. Sn—1
(i)

S a(z’,y)dy =0 for any 2’ € "1,

m—1
(ii) ’ suppa C B, B = B, x B,
where
B, ={2' € S" |2/ — x| <a, x),c S},
By ={y' € 5™ |y —yol < B, yo€ S}
(iii) laflee < a0 g=0m=D),

Now, we may define the atomic Hardy space H}(S"~! x §™m~1).
DEFINITION 2 . The atomic Hardy space H}(S™"~1xS™~1) is defined by

HA(S™ s 5™ = {f € LIS x ™) s £l y) = 3 han@!, ),
=0

a;(z’,y') is a (1, 00)-atom and Z || < oo}.
1=0

Moreover, we set || f[|f1(sn-1x5m-1) = inf > 2o IAi], where the infimum is
taken over all decompositions f =Y~  Na; of f.

The main result of this paper is

THEOREM 1. Suppose that 2 satisfies (1.1), (1.2) and 2(z',y') €
HI(S" 1 x 8™, Then T is LP(R™ x R™) bounded (1 < p < 00).

In proving Theorem 1 we shall use a result of [1]:

THEOREM A. Let {0} 1} rez be a double sequence of uniformly bounded
Borel measures in R™ x R™ and

155,68 m)| < Cla? €= [bFn|
for some a,b > 1, 0,0 > 0 and for all j,k € Z. If o*(f) = sup; j, l|oj k| * f|
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is bounded in LI(R™ x R™) for some q > 1, then
2,y) =D ik fla,y)
ik
is bounded in LP(R™ x R™) for |1/p —1/2| < 1/(2q).

2. Proof of Theorem 1. By Definition 2, we may write 2(z’,y’) =
Yoo NS2i(2,y'), where 2(2,y’) is a (1,00)-atom and Y2, |N| < oo.
Then 2, satisfies the following conditions:

S (2", y)dx’ =0 for any ¢/ € ™1,

n—1
(2.1) 5
S (', Ydy =0 for any 2’ € S"1,
Sm—1
(2.2) supp %, ¢ B!, B'=B! x B!,
where
={z' e S" |2 — )| <y, xSV,
={y e S" Y —yol < B yo € 5™,
(23) HQlHLoo(Sn 1><S7n 1) <Ozl (n 1)/3 (Tn 1)

First let us introduce some notation. For j, k € Z,
Ejx(z,y) = {(z,y) € R" x R™ : 2771 < Ja| < 27,2871 < Jy| < 2%},
ESp(z,y) = (R" X R™)\ Ej (2, 9),

Oz, y)le[~"y|m™ for (z,y) € Ejr(z,y),
Kjr(,y) = {O, ! ! for (z,y) € EC:(az z)
Ky (ay) = {gz(:v,y)lwlnlylm EEE : ;E?Zg zy/g

Then we have

K;i(z,y) Z/\l
and

zy) =D > Kinsfl@y)=>_ > Y MK} *f(z,y).
ik

ik 1>0
Let j;, k; be integers such that
(2.4) 1<2io; <2 and 1<2Mp <2,
where oy, 5 are determined by (2.2). Obviously, when [ is fixed, j;, k; are
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unique. Then we may write
(2.5) Tf(z,y)=>_ > o+ fla,y),
ik

where
(26) gy, k €T y ZAI J+i, k+kl x y)

We now give the Fourier transform estimates of K jl BT, ).

LEMMA 1. For any ¢ with 0 < § < 1/2, there are 0 < €,0 < 1 and a
constant C = C(,¢,0) such that

KL (&) < Cmin{[27rg] /2 (25 Bim 2, |27 cr] 0125 Bim| =,
|2 |12 Bim| 7, |27 cu| 712" B )
Proof. By the cancellation condition (2.1), we have

2k 27

| 26y | e-mitreairon ) LD gr g
. s
Sn—1 2k—192j—1
Hence
ok 97 drd
(27) SS Ql(xl,y/) S S e—27ri(r§~1‘6+s77~y’) 2 dflfldy, -0
Sn—lXSm—l Qk—l 2j71 rs
Again using (2.1) we get
ok 9J drd
(2.8) SS Ql(l’,,y,) S S —2mi(ré-a’+snyg) :SS dx 'dy' —0.
Sn—1x gm—1 ok—19j—1
By (2.7),
KL eml=| ) e @Kl @ y) dady
R” xR™
= “ o~ 2mi(E z+ny) (', y') da dy‘
2 ey
ok 9J
; / / drd
[ ey gy

2k—1 2i—1 Sn—l ><Sm_1
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ok 2d
= “ Q2 y) S S [e—2mitrEa +ony’)
Sn—1x gm—1 2k—19j—1
_e—2wi(r£~r6+sn-y/)]w da' dy’
rs
2k 97
drd
< N0 l2ey)l | 2rlne (@ - ap)| == daldy’
gn—1x gm—1 ok—19j—1
=2l N} 126y — aplda’ dy < C127 ],

Sn—1yx gm—1

where the last inequality follows from {{g, . ¢t [£20(2',9')d2" dy’ < 1
(by (2.2) and (2.3)). From (2.8) and using the same method we can prove

K L (&m)| < C12Bim).

Thus we obtain
(2.9) \Kévk(f,n)] < C'min{|27a;€],|2%Bim|}.
On the other hand,

K} (&)

2k 27 drd 2
- S S “ Ql(x/ay,)e*%i(rg'x,“”'y/)dm'dy'—r °
2k—19j—1 Gn—1y gm—1 rs
2k 97 2drd
<C S S ‘ “ Ql(xl,y/)e_zﬂ(rém/“"'y,) dx' dy’ oo
rSs

2k—192j—1 Gn—-1ygm-—1

and

L e ) autay |
Sn—lxgm-1
= SS Q2 y )2 (! 0"
(Sn—l XSm—1)2

« 6727ri(r£-x'+sv7-y')e27ri(r§-u'+sv7-v') d:E'dy'du'dv’.

Set
2k 27
= | | o= 2milré(a’ —u sy —v)) 4T A5

; rs
ok—19j—1

Then we have |I| < (log2)2. Moreover, from [2] there is a constant C such
that
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1
27¢ - (2" — /)| - 25 - (v —0')|
Thus, for any 0 < o < 1 we have

I <C

1
’23‘5 . (x/ _ ul)’a’2kn . (y/ _ ,U/)‘a'

11l < Cs

Hence

‘K]l,k(fan)F
dz’ dy’ du’ dv’

< CO' SS ‘Ql(z’I’yl)Ql(u/’Q}’)’
(Sn—l Xsnz—l)Q

Csy dx' du’
<~
B |B%|2|Bfﬂ|2< 1} |2j€'(33’—u’)|">

z’' —zj|<oy
|u' —x(| <oy

X< ) |%J%%?w>

ly' —yo1<Bi
o' —y41<B

27 @ — W)l (v —

From [5] we know that

BIE\ BE- (v - w7 ) = Pkl

z’' —x(|<oy
v —x)| <oy

1 < SS dy/ dUI > < C
| B}, 2 260 - (y' = )17 )~ |12%Bml°

and

1y’ —yol<B

[v" —yo| <Bi
Thus, we obtain

— C,
(2.10) KL (6m)] <

127 0,€7/2|2k Bim[o /2
Combining (2.9) and (2.10), we see that

—_— ‘ 1
l i J k

By interpolation we get
1
"[29 g€ |28 Bim|®

127 |71 2% Bim| =7, \2jal§\9’2kﬂm\e},

where 0 <0 =0/2<1/2,0<¢,0 < 1.

(211)  |KG, (& m)l < Umin{|2jaz£|1/2l2kﬁmll/2
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In fact, taking 6/(1 4+ 0) < 7 < 1, we obtain

KL (&) = 1K (&I ()T
< (27 €| {|27 €] 0|28 By 0T
= [P | 28 B 00T = (27 (2% B Y,

where e =7 — §(1 — 7) and 6 = 6(1 — 7). Using the same method, we may
get

KL (&m)] < 127ang| 70128 Bl
This is the conclusion of Lemma 1.

LEMMA 2. For o}, as defined above in (2.6), the mazimal operator o*
defined in Theorem A is bounded on LP(R™ x R™) for 1 < p < co.

Proof. For any j, k€ Z, the measures {0} 1 } ; kez are uniformly bounded
Borel measures in R” x R™. Indeed,

lojill= V| lojule,y)l dody
R’VLXR'VYL

<> In 1Ky, (@ 9) dzdy
j=0

Ejtj) ktk
2j+jz 2k+kl

:Z‘)\l‘ SS ‘Ql(xij/)’ S S dr ds da:’dy’

Jj=0 Sn—lxgm-—1 9d+ip—1 gk+k;—1

where we use again the fact that {{¢, ., gn_1 [92/(2',9')| d2’ dy’ < 1. More-
over, from (2.11), (2.4) and (2.6) we deduce immediately that o;.(x,y)
satisfies the following Fourier transform estimates:

1

~ ol - i e11/210k,1/2
212) (G50l < O3 Inl-min {22121

j=0
el |24, rszrzknra}

To complete the proof of Lemma 2 we need to introduce the following vari-
ances of maximal operators.
The maximal operator in direction 6 is defined by

T

Myf(x) = Sup%“f(x —th)|dt for § e S,

r>0 0
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and the maximal operator in directions (;,6;) € S"~1 x §™~! is defined
by
T2 T1

Mo, 0, f(z,y) = sup — S S |f(z = t161,y — t262)| dty dis.
r1,r2>0 172 5 o

Moreover, if £2(z,y) is homogeneous of degree zero, i.e. (1.1) holds, then the
maximal operator M on R™ x R™ is defined by

1
Mqof(z,y) = sup
f( y) r>0,5>0 r"s™

I\ 1200l 1f (@ = uy —v)| dudo.

|lu|<r
lv|<s

From the above definitions of maximal operators we see that

(2.13) Mo, 0, f (,y) < Mg, (Mg, f)(z,y)

and

(2.14) Mo f(x,y) < N} 19(61,62)[My, 0, f (2, y) db dB;.
Sn—lxgm-1

By the strong maximal theorem on R! x R! and Fubini’s theorem we find
that My, (Mp,) is uniformly bounded on LP(R™ x R™) (1 < p < oo) for any
(01,02) € S"1 x S™~1 and so is My, g, by (2.13).

Now, let us turn to the proof of the boundedness for ¢* on LP(R™ X
R™) (1 < p < 00). Using the method of rotations and (2.14) we see that for
any j, k € Z,

"Ké-‘,—jl,k-‘,-kl’*f(xay)’ < SS "Ql(91792)‘M91,92f(‘T7y) del d02
Sn—1yx gm—1
Thus, from (2.6) we have
ol f@)l < 18 (D0 Il 1920601,02)1) Moy g F (2 ) b b,
Sn—1y gm-—1 >0

uniformly in j, k, so the inequality still holds upon replacing the left side
with o* f(z,y). Since

W D Il 1920(01,605) | dby dby < || < oo
Sn—1lx Sm—1[>0 >0

The LP(R™ x R™) boundedness (1 < p < o0) of ¢* now follows from the
uniform LP bounds for Mpy, ¢, by the Minkowski integral formula, and the
proof of Lemma, 2 is finished.

Now, the conclusion of Theorem 1 is a straightforward consequence of
Lemma 2 and Theorem A.
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