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ROUGH SINGULAR INTEGRAL OPERATORS

WITH HARDY SPACE FUNCTION KERNELS

ON A PRODUCT DOMAIN

BY

YONG D ING (NANCHANG)

In this paper we introduce atomic Hardy spaces on the product domain
Sn−1 × Sm−1 and prove that rough singular integral operators with Hardy
space function kernels are Lp bounded on R

n ×R
m. This is an extension of

some well known results.

1. Introduction. Let Sn−1, Sm−1 be unit spheres in R
n, R

m (n ≥
2, m ≥ 2) respectively and Ω(x, y) be a function on the product domain
R

n × R
m satisfying

(1.1) Ω(λ1x
′, λ2y

′) = Ω(x′, y′) for any λ1, λ2 > 0

and

(1.2)

\
Sn−1

Ω(x′, y′) dx′ = 0 for any y′ ∈ Sm−1,\
Sm−1

Ω(x′, y′) dy′ = 0 for any x′ ∈ Sn−1.

A singular integral operator T on R
n × R

m is defined by

Tf(x, y) = p.v.
\\

Rn×Rm

Ω(u, v)

|u|n|v|m
f(x − u, y − v) du dv.

It is well known that T is an Lp(Rn × R
m) bounded operator (1 < p < ∞)

when Ω satisfies some regularity conditions [3]. Using the idea developed in
[2], J. Duoandikoetxea [1] proved the Lp(Rn×R

m) boundedness (1 < p < ∞)
of T with the rough condition Ω ∈ Lq(Sn−1 × Sm−1) instead of regularity.
Recently, Y. S. Jiang and S. Z. Lu improved the above results in [4]. They
set up a class of block-spaces Bφ

q (Sn−1 × Sm−1) (q > 1) on Sn−1 × Sm−1

and proved that T is L2(Rn × R
m) bounded if Ω ∈ Bφ

q (Sn−1 × Sm−1).
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Under inspiration from [5], in this paper we shall introduce the atomic
Hardy spaces H1

a (Sn−1 ×Sm−1) and prove that T is Lp(Rn ×R
m) bounded

(1 < p < ∞) if Ω ∈ H1
a (Sn−1 × Sm−1). This is an extension of the above

mentioned results.

Let us begin with the definition of (1,∞)-atoms on Sn−1 × Sm−1.

Definition 1. A function a(x′, y′) on Sn−1 × Sm−1 is called a (1,∞)-
atom if it satisfies the following conditions:\

Sn−1

a(x′, y′) dx′ = 0 for any y′ ∈ Sm−1,\
Sm−1

a(x′, y′) dy′ = 0 for any x′ ∈ Sn−1,
(i)

suppa ⊂ B, B = Bn × Bm,(ii)

where

Bn = {x′ ∈ Sn−1 : |x′ − x′
0| < α, x′

0 ∈ Sn−1},

Bm = {y′ ∈ Sm−1 : |y′ − y′
0| < β, y′

0 ∈ Sm−1}.

‖a‖∞ ≤ α−(n−1)β−(m−1).(iii)

Now, we may define the atomic Hardy space H1
a (Sn−1 × Sm−1).

Definition 2 . The atomic Hardy space H1
a (Sn−1×Sm−1) is defined by

H1
a (Sn−1 × Sm−1) =

{
f ∈ L1(Sn−1 × Sm−1) : f(x′, y′) =

∞∑

l=0

λlal(x
′, y′),

al(x
′, y′) is a (1,∞)-atom and

∞∑

l=0

|λl| < ∞
}

.

Moreover, we set ‖f‖H1
a (Sn−1×Sm−1) = inf

∑∞
l=0 |λl|, where the infimum is

taken over all decompositions f =
∑∞

l=0 λlal of f .

The main result of this paper is

Theorem 1. Suppose that Ω satisfies (1.1), (1.2) and Ω(x′, y′) ∈
H1

a (Sn−1 × Sm−1). Then T is Lp(Rn × R
m) bounded (1 < p < ∞).

In proving Theorem 1 we shall use a result of [1]:

Theorem A. Let {σj,k}j,k∈Z be a double sequence of uniformly bounded

Borel measures in R
n × R

m and

|σ̂j,k(ξ, η)| ≤ C|ajξ|±δ|bkη|±̺

for some a, b > 1, δ, ̺ > 0 and for all j, k ∈ Z. If σ∗(f) = supj,k ||σj,k| ∗ f |
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is bounded in Lq(Rn × R
m) for some q > 1, then

Tf(x, y) =
∑

j

∑

k

σj,k ∗ f(x, y)

is bounded in Lp(Rn × R
m) for |1/p − 1/2| < 1/(2q).

2. Proof of Theorem 1. By Definition 2, we may write Ω(x′, y′) =∑∞
l=0 λlΩl(x

′, y′), where Ωl(x
′, y′) is a (1,∞)-atom and

∑∞
l=0 |λl| < ∞.

Then Ωl satisfies the following conditions:\
Sn−1

Ωl(x
′, y′) dx′ = 0 for any y′ ∈ Sm−1,\

Sm−1

Ωl(x
′, y′) dy′ = 0 for any x′ ∈ Sn−1,

(2.1)

suppΩl ⊂ Bl, Bl = Bl
n × Bl

m,(2.2)

where

Bl
n = {x′ ∈ Sn−1 : |x′ − x′

0| < αl, x′
0 ∈ Sn−1},

Bl
m = {y′ ∈ Sm−1 : |y′ − y′

0| < βl, y′
0 ∈ Sm−1},

‖Ωl‖L∞(Sn−1×Sm−1) ≤ α
−(n−1)
l β

−(m−1)
l .(2.3)

First let us introduce some notation. For j, k ∈ Z,

Ej,k(x, y) = {(x, y) ∈ R
n × R

m : 2j−1 < |x| ≤ 2j , 2k−1 < |y| ≤ 2k},

Ec
j,k(x, y) = (Rn × R

m) \ Ej,k(x, y),

Kj,k(x, y) =

{
Ω(x, y)|x|−n|y|−m for (x, y) ∈ Ej,k(x, y),
0, for (x, y) ∈ Ec

j,k(x, y),

Kl
j,k(x, y) =

{
Ωl(x, y)|x|−n|y|−m for (x, y) ∈ Ej,k(x, y),
0, for (x, y) ∈ Ec

j,k(x, y).

Then we have

Kj,k(x, y) =
∞∑

l=0

λlK
l
j,k(x, y)

and

Tf(x, y) =
∑

j

∑

k

Kj,k ∗ f(x, y) =
∑

j

∑

k

∑

l≥0

λlK
l
j,k ∗ f(x, y).

Let jl, kl be integers such that

(2.4) 1 < 2jlαl ≤ 2 and 1 < 2klβl ≤ 2,

where αl, βl are determined by (2.2). Obviously, when l is fixed, jl, kl are
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unique. Then we may write

(2.5) Tf(x, y) =
∑

j

∑

k

σj,k ∗ f(x, y),

where

(2.6) σj,k(x, y) =

∞∑

l=0

λlK
l
j+jl,k+kl

(x, y).

We now give the Fourier transform estimates of Kl
j,k(x, y).

Lemma 1. For any δ with 0 < δ < 1/2, there are 0 < ε, θ < 1 and a

constant C = C(δ, ε, θ) such that

|K̂l
j,k(ξ, η)| ≤ C min{|2jαlξ|

1/2|2kβlη|
1/2, |2jαlξ|

−δ|2kβlη|
−δ,

|2jαlξ|
ε|2kβlη|

−θ, |2jαlξ|
−θ|2kβlη|

ε}.

P r o o f. By the cancellation condition (2.1), we have\
Sn−1

Ωl(x
′, y′)

2k\
2k−1

2j\
2j−1

e−2πi(rξ·x′

0+sη·y′) dr ds

rs
dx′ = 0.

Hence

(2.7)
\\

Sn−1×Sm−1

Ωl(x
′, y′)

2k\
2k−1

2j\
2j−1

e−2πi(rξ·x′

0+sη·y′) dr ds

rs
dx′dy′ = 0.

Again using (2.1) we get

(2.8)
\\

Sn−1×Sm−1

Ωl(x
′, y′)

2k\
2k−1

2j\
2j−1

e−2πi(rξ·x′+sη·y′

0) dr ds

rs
dx′dy′ = 0.

By (2.7),

|K̂l
j,k(ξ, η)| =

∣∣∣
\\

Rn×Rm

e−2πi(ξ·x+η·y)Kl
j,k(x, y) dx dy

∣∣∣

=

∣∣∣∣
\\

Ej,k(x,y)

e−2πi(ξ·x+η·y) Ωl(x
′, y′)

|x|n|y|m
dx dy

∣∣∣∣

=

∣∣∣∣
2k\

2k−1

2j\
2j−1

\\
Sn−1×Sm−1

Ωl(x
′, y′)e−2πi(rξ·x′+sη·y′) dx′dy′ dr ds

rs

∣∣∣∣
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=

∣∣∣∣
\\

Sn−1×Sm−1

Ωl(x
′, y′)

2k\
2k−1

2j\
2j−1

[e−2πi(rξ·x′+sη·y′)

−e−2πi(rξ·x′

0+sη·y′)]
dr ds

rs
dx′dy′

∣∣∣∣

≤
\\

Sn−1×Sm−1

|Ωl(x
′, y′)|

2k\
2k−1

2j\
2j−1

2π|rξ · (x′ − x′
0)|

dr ds

rs
dx′dy′

= C2j |ξ|
\\

Sn−1×Sm−1

|Ωl(x
′, y′)| · |x′ − x′

0| dx′ dy′ ≤ C|2jαlξ|,

where the last inequality follows from
TT

Sn−1×Sm−1 |Ωl(x
′, y′)| dx′ dy′ ≤ 1

(by (2.2) and (2.3)). From (2.8) and using the same method we can prove

|K̂l
j,k(ξ, η)| ≤ C|2kβlη|.

Thus we obtain

(2.9) |K̂l
j,k(ξ, η)| ≤ C min{|2jαlξ|, |2

kβlη|}.

On the other hand,

|K̂l
j,k(ξ, η)|2

=

∣∣∣∣
2k\

2k−1

2j\
2j−1

\\
Sn−1×Sm−1

Ωl(x
′, y′)e−2πi(rξ·x′+sη·y′) dx′dy′ dr ds

rs

∣∣∣∣
2

≤ C

2k\
2k−1

2j\
2j−1

∣∣∣
\\

Sn−1×Sm−1

Ωl(x
′, y′)e−2πi(rξ·x′+sη·y′) dx′dy′

∣∣∣
2 dr ds

rs

and
∣∣∣

\\
Sn−1×Sm−1

Ωl(x
′, y′)e−2πi(rξ·x′+sη·y′) dx′dy′

∣∣∣
2

=
\\

(Sn−1×Sm−1)2

Ωl(x
′, y′)Ωl(u′, v′)

× e−2πi(rξ·x′+sη·y′)e2πi(rξ·u′+sη·v′) dx′dy′du′dv′.

Set

I =

2k\
2k−1

2j\
2j−1

e−2πi[rξ·(x′−u′)+sη·(y′−v′)] dr ds

rs
.

Then we have |I| ≤ (log 2)2. Moreover, from [2] there is a constant C such
that
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|I| ≤ C
1

|2jξ · (x′ − u′)| · |2kη · (y′ − v′)|
.

Thus, for any 0 < σ < 1 we have

|I| ≤ Cσ
1

|2jξ · (x′ − u′)|σ|2kη · (y′ − v′)|σ
.

Hence

|K̂l
j,k(ξ, η)|2

≤ Cσ

\\
(Sn−1×Sm−1)2

|Ωl(x
′, y′)Ωl(u′, v′)|

dx′ dy′ du′ dv′

|2jξ · (x′ − u′)|σ|2kη · (y′ − v′)|σ

≤
Cσ

|Bl
n|

2|Bl
m|2

( \\
|x′−x′

0|<αl

|u′−x′

0|<αl

dx′ du′

|2jξ · (x′ − u′)|σ

)

×

( \\
|y′−y′

0|<βl

|v′−y′

0|<βl

dy′ dv′

|2kη · (y′ − v′)|σ

)
.

From [5] we know that

1

|Bl
n|

2

( \\
|x′−x′

0|<αl

|u′−x′

0|<αl

dx′ du′

|2jξ · (x′ − u′)|σ

)
≤

C

|2jαlξ|σ

and
1

|Bl
m|2

( \\
|y′−y′

0|<βl

|v′−y′

0|<βl

dy′ dv′

|2kη · (y′ − v′)|σ

)
≤

C

|2kβlη|σ
.

Thus, we obtain

(2.10) |K̂l
j,k(ξ, η)| ≤

Cσ

|2jαlξ|σ/2|2kβlη|σ/2
.

Combining (2.9) and (2.10), we see that

|K̂l
j,k(ξ, η)| ≤ Cσ min

{
|2jαlξ|, |2

kβlη|,
1

|2jαlξ|σ/2|2kβlη|σ/2

}
.

By interpolation we get

(2.11) |K̂l
j,k(ξ, η)| ≤ C min

{
|2jαlξ|

1/2|2kβlη|
1/2,

1

|2jαlξ|δ|2kβlη|δ
,

|2jαlξ|
ε|2kβlη|

−θ, |2jαlξ|
−θ|2kβlη|

ε

}
,

where 0 < δ = σ/2 < 1/2, 0 < ε, θ < 1.
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In fact, taking δ/(1 + δ) < τ < 1, we obtain

|K̂l
j,k(ξ, η)| = |K̂l

j,k(ξ, η)|τ |K̂l
j,k(ξ, η)|1−τ

≤ |2jαlξ|
τ{|2jαlξ|

−δ|2kβlη|
−δ}1−τ

= |2jαlξ|
τ−δ(1−τ)|2kβlη|

−δ(1−τ) = |2jαlξ|
ε|2kβlη|

−θ,

where ε = τ − δ(1 − τ) and θ = δ(1 − τ). Using the same method, we may
get

|K̂l
j,k(ξ, η)| ≤ |2jαlξ|

−θ|2kβlη|
ε.

This is the conclusion of Lemma 1.

Lemma 2. For σj,k as defined above in (2.6), the maximal operator σ∗

defined in Theorem A is bounded on Lp(Rn × R
m) for 1 < p < ∞.

P r o o f. For any j, k∈ Z, the measures {σj,k}j,k∈Z are uniformly bounded
Borel measures in R

n × R
m. Indeed,

‖σj,k‖ =
\\

Rn×Rm

|σj,k(x, y)| dx dy

≤
∞∑

j=0

|λl|
\\

Ej+jl,k+kl

|Kl
Ej+jl,k+kl

(x, y)| dx dy

=
∞∑

j=0

|λl|
\\

Sn−1×Sm−1

|Ωl(x
′, y′)|

2j+jl\
2j+jl−1

2k+kl\
2k+kl−1

dr ds

rs
dx′dy′

≤

∞∑

j=0

|λl|,

where we use again the fact that
TT

Sn−1×Sm−1 |Ωl(x
′, y′)| dx′ dy′ ≤ 1. More-

over, from (2.11), (2.4) and (2.6) we deduce immediately that σj,k(x, y)
satisfies the following Fourier transform estimates:

(2.12) |σ̂j,k(ξ, η)| ≤ C

∞∑

j=0

|λl| · min

{
|2jξ|1/2|2kη|1/2,

1

|2jξ|δ|2kη|δ
,

|2jξ|ε|2kη|−θ, |2jξ|−θ|2kη|ε
}

To complete the proof of Lemma 2 we need to introduce the following vari-
ances of maximal operators.

The maximal operator in direction θ is defined by

Mθf(x) = sup
r>0

1

r

r\
0

|f(x − tθ)| dt for θ ∈ Sn−1,
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and the maximal operator in directions (θ1, θ2) ∈ Sn−1 × Sm−1 is defined
by

Mθ1,θ2
f(x, y) = sup

r1,r2>0

1

r1r2

r2\
0

r1\
0

|f(x − t1θ1, y − t2θ2)| dt1 dt2.

Moreover, if Ω(x, y) is homogeneous of degree zero, i.e. (1.1) holds, then the
maximal operator MΩ on R

n × R
m is defined by

MΩf(x, y) = sup
r>0,s>0

1

rnsm

\\
|u|<r
|v|<s

|Ω(u, v)| · |f(x − u, y − v)| du dv.

From the above definitions of maximal operators we see that

(2.13) Mθ1,θ2
f(x, y) ≤ Mθ1

(Mθ2
f)(x, y)

and

(2.14) MΩl
f(x, y) ≤

\\
Sn−1×Sm−1

|Ωl(θ1, θ2)|Mθ1,θ2
f(x, y) dθ1 dθ2.

By the strong maximal theorem on R
1 × R

1 and Fubini’s theorem we find
that Mθ1

(Mθ2
) is uniformly bounded on Lp(Rn ×R

m) (1 < p < ∞) for any
(θ1, θ2) ∈ Sn−1 × Sm−1 and so is Mθ1,θ2

by (2.13).

Now, let us turn to the proof of the boundedness for σ∗ on Lp(Rn ×
R

m) (1 < p < ∞). Using the method of rotations and (2.14) we see that for
any j, k ∈ Z,

||Kl
j+jl,k+kl

| ∗ f(x, y)| ≤
\\

Sn−1×Sm−1

|Ωl(θ1, θ2)|Mθ1,θ2
f(x, y) dθ1 dθ2.

Thus, from (2.6) we have

||σj,k| ∗ f(x, y)| ≤
\\

Sn−1×Sm−1

( ∑

l≥0

|λl| · |Ωl(θ1, θ2)|
)
Mθ1,θ2

f(x, y) dθ1 dθ2,

uniformly in j, k, so the inequality still holds upon replacing the left side
with σ∗f(x, y). Since\\

Sn−1×Sm−1

∑

l≥0

|λl| · |Ωl(θ1, θ2)| dθ1 dθ2 ≤
∑

l≥0

|λl| < ∞.

The Lp(Rn × R
m) boundedness (1 < p < ∞) of σ∗ now follows from the

uniform Lp bounds for Mθ1,θ2
by the Minkowski integral formula, and the

proof of Lemma 2 is finished.

Now, the conclusion of Theorem 1 is a straightforward consequence of
Lemma 2 and Theorem A.
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