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SOME NONEXISTENCE THEOREMS

ON STABLE MINIMAL SUBMANIFOLDS

BY

HAIZHONG L I (BEIJING)

We prove that there exist no stable minimal submanifolds in some n-
dimensional ellipsoids, which generalizes J. Simons’ result about the unit
sphere and gives a partial answer to Lawson–Simons’ conjecture.

1. Introduction. In [S], J. Simons proved that there exist no stable
minimal submanifolds in the n-dimensional unit sphere Sn. In this paper,
we establish the following general results.

Theorem 1. Let Nn be an n-dimensional compact hypersurface in the

(n + 1)-dimensional Euclidean space R
n+1. If the sectional curvature K of

Nn satisfies

(1) 1/2 < K ≤ 1,

then there exist no stable m-dimensional minimal submanifolds in Nn for

each m with 1 ≤ m ≤ n − 1.

R e m a r k 1. If Nn is an n-dimensional unit hypersphere Sn in R
n+1,

then the sectional curvature K of Sn is 1, and from Theorem 1 we deduce
that there exist no stable m-dimensional minimal submanifolds in Sn for
each m with 1 ≤ m ≤ n − 1, which was proved by Simons [S].

Theorem 2. Let Nn be an n-dimensional (n ≥ 4) compact submanifold

in an (n + p)-dimensional Euclidean space R
n+p. Let R and H denote the

normalized scalar curvature and the mean curvature functions of Nn, re-

spectively. If R satisfies the following pointwise n(n − 2)/(n − 1)2-pinching

condition:

(2)
n(n − 2)

(n − 1)2
H2 < R ≤ H2,

then there exist no stable m-dimensional minimal submanifolds in Nn for

each m with 2 ≤ m ≤ n − 2.
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Corollary 1. Let Nn be an n-dimensional (n ≥ 4) compact hypersur-

face in R
n+1. If all the principal curvatures ka of Nn satisfy

(3) 0 < ka <

√

1

n(n − 1)

n
∑

b=1

kb, 1 ≤ a ≤ n,

then there exists no m-dimensional minimal submanifold in Nn for each m
with 2 ≤ m ≤ n − 2.

As direct applications of Theorem 1 and Corollary 1, we have

Proposition 1. Let Nn be the following n-dimensional (n ≥ 4) ellipsoid

in R
n+1:

(4) Nn :
x2

1

a2
1

+ . . . +
x2

n+1

a2
n+1

= 1, 0 < a1 ≤ a2 ≤ . . . ≤ an+1,

(1) If 1 ≤ an+1 < 3
√

2 and a1 ≥ √
an+1, then there exist no stable m-

dimensional minimal submanifolds of Nn for each m with 1 ≤ m ≤ n − 1.
(2) If an+1/a1 < 6

√

n/(n − 1), then there exist no stable m-dimensional

minimal submanifolds of Nn for each m with 2 ≤ m ≤ n − 2.

R e m a r k 2. It can be proved in a similar way that the above results
all keep valid for stable m-currents on Nn (for concepts of stable current ,
see Lawson–Simons [LS]). For example, we can state the counterpart of
Theorem 1 as follows:

Theorem 1′. Let Nn be an n-dimensional compact hypersurface in the

(n + 1)-dimensional Euclidean space R
n+1. If the sectional curvature K of

Nn satisfies

(5) 1/2 < K ≤ 1,

then there exist no stable m-currents on Nn for each m with 1 ≤ m ≤ n−1.

R e m a r k 3. Let Nn be an n-dimensional compact hypersurface in R
n+1

and suppose that every principal curvature ka of Nn satisfies
√

δ < ka ≤ 1
(a = 1, . . . , n). H. Mori [M] and Y. Ohnita [O] proved the conclusion of
Theorem 1′ under the stronger conditions δ > n/(n + 1) and δ > 1/2,
respectively. Our Theorem 1′ also gives a partial answer to the following
Lawson–Simons’ conjecture:

Conjecture ([LS]). Let Nn be a compact n-dimensional connected Rie-
mannian manifold with the sectional curvature K satisfying

(6) 1/4 < K ≤ 1.

Then there exist no stable m-currents on Nn for each m with 1 ≤ m ≤ n−1.

We are greatly indebted to P. F. Leung’s papers [L1, L2] which motivated
us to do this work.
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2. Basic formulas and notations. In this paper, we shall make use
of the following convention on the ranges of indices:

1 ≤ A,B,C, . . . ≤ n + p; 1 ≤ a, b, c, . . . ≤ n; n + 1 ≤ µ, ν, . . . ≤ n + p;

1 ≤ i, j, k . . . ≤ m; m + 1 ≤ α, β, γ . . . ≤ n.

Let Mm and Nn be Riemannian manifolds of dimension m and dimen-
sion n, respectively. Let Mm be an m-dimensional compact minimal sub-
manifold of Nn, n > m. For any normal variation vector field U =

∑

α uαeα

of Mm, the second variation of the volume is given by (see [S])

(7) I(U,U) =
\

Mm

[

∑

α,i

u2
αi −

∑

α,β

(σαβ + Rαβuαuβ)
]

dv,

where uαi are the covariant derivatives of uα,

σαβ =
∑

i,j

hα
ijh

β
ij ,(8)

Rαβ =
∑

i

Rαiβi,(9)

and hα
ij are the components of the second fundamental form h of Mm in

Nn.
Now let x : Nn → R

n+p be an n-dimensional submanifold in the (n+p)-
dimensional Euclidean space R

n+p. We choose a local field of orthonor-
mal frames e1, . . . , en, en+1, . . . , en+p in R

n+p such that, restricted to Nn,
the vectors e1, . . . , en are tangent to Nn. Their dual coframe fields are
ω1, . . . , ωn, ωn+1, . . . , ωn+p. Then we have

dx =
∑

a

ωaea,(10)

dea =
∑

b

ωabeb +
∑

µ,b

Bµ
abωbeµ,(11)

deµ = −
∑

a,b

Bµ
abωbea +

∑

ν

ωµνeν ,(12)

and the second fundamental form of Nn in R
n+p is

(13) B =
∑

a,b,µ

Bµ
abωa ⊗ ωb ⊗ eµ.

The Gauss equation of Nn in R
n+p is

(14) n(n − 1)R = n2H2 − S,

where R, H and S are the normalized scalar curvature, the mean curva-
ture and the length square of the second fundamental form of Nn in R

n+p,
respectively.
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3. An m-dimensional minimal submanifold in Nn. Let Mm be an
m-dimensional minimal submanifold in Nn, and Nn be an n-dimensional
submanifold in R

n+p. In this case we can choose a local orthonormal ba-
sis e1, . . . , em, em+1, . . . , en, en+1, . . . , en+p in R

n+p such that, restricted to
Mm, the vectors e1, . . . , em are tangent to Mm, e1, . . . , en are tangent to Nn,
en+1, . . . , en+p are normal to Nn. Their dual coframe fields are ω1, . . . , ωm,
ωm+1, . . . , ωn, ωn+1, . . . , ωn+p. From (10)–(12), restricted to Mm, we have

dx =
∑

i

ωiei,(15)

dei =
∑

j

ωijej +
∑

α,j

hα
ijωjeα +

∑

µ,j

Bµ
ijωjeµ,(16)

deα = −
∑

i,j

hα
ijωiej +

∑

β

ωαβeβ +
∑

µ,j

Bµ
αjωjeµ,(17)

deµ = −
∑

i,j

Bµ
ijωiej −

∑

α,j

Bµ
αjωjeα +

∑

ν

ωµνeν ,(18)

where h =
∑

i,j,α hα
ijωi ⊗ ωj ⊗ eα is the second fundamental form of Mm in

Nn and
∑

i hα
ii = 0 for any α, since Mm is a minimal submanifold in Nn.

We choose the following normal variation vector field of Mm in Nn:

(19) U =
∑

α

uαeα, uα = 〈Λ, eα〉,

where Λ is a constant vector in R
n+p.

Using (15)–(18), a straightforward computation shows

uαi = −
∑

k

hα
kiuk +

∑

µ

Bµ
αiuµ,(20)

∑

α,i

u2
αi =

∑

α,i

[

∑

j,k

hα
kih

α
ijukuj +

∑

µ,ν

Bµ
αiB

ν
αiuµuν − 2

∑

µ,k

hα
kiB

µ
αiukuµ

]

,(21)

where

(22) uj = 〈Λ, ej〉, uµ = 〈Λ, eµ〉.

Let E1, . . . , En+p be a fixed orthonormal basis of R
n+p, and UA =

∑

α〈EA, eα〉eα. Since

(23)

n+p
∑

A=1

〈EA, v〉〈EB , w〉 = 〈v,w〉

for any vectors v,w in R
n+p, putting (21) into (7) and using (22) and (23),
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we obtain

trace(I) ≡
n+p
∑

A=1

I(UA, UA)(24)

= −
\

Mm

[

−
∑

α,k,µ

(Bµ
αk)2 +

∑

α

Rαα

]

dv

= −
\

Mm

∑

α,k

[

−
∑

µ

(Bµ
αk)2 + Rαkαk

]

dv

= −
\

Mm

[

−
∑

α,µ,k

Bµ
ααBµ

kk + 2
∑

α,k

Rαkαk

]

dv

=
\

Mm

[

2
∑

µ,α,k

(Bµ
αk)2 −

∑

µ,α,k

Bµ
ααBµ

kk

]

dv.

Thus we obtain

Proposition 2. Let Nn be an n-dimensional compact submanifold in

R
n+p. Let Mm be an m-dimensional compact minimal submanifold of Nn.

If

(25) trace(I) =
\

Mm

[

2
∑

µ,α,k

(Bµ
αk)2 −

∑

µ,α,k

Bµ
ααBµ

kk

]

dv < 0,

then Mm is not a stable minimal submanifold of Nn.

4. The proof of Theorem 1. Let Nn be an n-dimensional hypersur-
face in R

n+1 and Mm be an m-dimensional compact minimal submanifold
in Nn. At a given point p ∈ Mm in Nn, we can choose a local orthonormal
frame field e∗1, . . . , e

∗

n, ~n in R
n+1 such that e∗1, . . . , e

∗

n are tangent to Nn and
at p ∈ Mm,

(26) B∗

ab = 〈B(e∗a, e∗b), ~n〉 = kaδab, 1 ≤ a, b ≤ n,

where the ka are the principal curvatures of Nn in R
n+1.

Since Mm is an m-dimensional compact minimal submanifold in Nn, at
a given point p ∈ Mm in Nn, we can also choose a local orthonormal frame
field e1, . . . , em, em+1, . . . , en in Nn such that e1, . . . , em are tangent to Mm.
Noting that e1, . . . , en and e∗1, . . . , e

∗

n are two local orthonormal frame fields
in a neighborhood of p ∈ Mm, we can set

ei =

n
∑

b=1

Ab
ie

∗

b , 1 ≤ i ≤ m,(27)

eα =

n
∑

b=1

Ab
αe∗b , m + 1 ≤ α ≤ n,(28)
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where (Ab
a) ∈ SO(n), i.e.

(29)
n

∑

a=1

Aa
bAa

c = δbc,
n

∑

a=1

Ab
aAc

a = δbc.

It is a direct verification that at p ∈ Mm, by use of (26)–(29) and (1),
∑

α,k

BααBkk =
∑

α,k

〈B(eα, eα), B(ek, ek)〉(30)

=
∑

α,k,a,b,c,d

Aa
αAb

αAc
kAd

k〈B(e∗a, e∗b), B(e∗c , e
∗

d)〉

=
∑

α,k,a,c

kakc(A
a
α)2(Ac

k)2

=
∑

a,c

Racac(A
a
α)2(Ac

k)2

≤
∑

a,c,α,k

(Aa
α)2(Ac

k)2 = m(n − m),

where Racac = kakc is the sectional curvature of Nn. From (1), we also have

(31) −2
∑

α,k

Rαkαk < −2 · 1

2
m(n − m) = −m(n − m).

Putting (30) and (31) into (24), we obtain trace(I) < 0. From Proposi-
tion 2, we infer that Mm is not a stable minimal submanifold of Nn.

5. The proof of Theorem 2. We first establish the following algebraic
lemma in order to prove our Theorem 2:

Lemma 1. Let

1 ≤ a, b ≤ n; 1 ≤ i, j ≤ m; m + 1 ≤ α, β ≤ n,

and consider the symmetric n × n matrix
[

Tij Tiα

Tβj Tβα

]

such that

(32)
m

∑

i=1

Tii +
n

∑

α=m+1

Tαα = D,
n

∑

a,b=1

T 2
ab = S.

Then:

(1) If m = 1 or m = n − 1, we have

(33)
(

∑

i

Tii

)2

− D
∑

i

Tii + 2
∑

i,α

(Tiα)2 ≤ S +
n − 5

2
D2.
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(2) If 2 ≤ m ≤ n − 2, we have

(34)
(

∑

i

Tii

)2

− D
∑

i

Tii + 2
∑

i,α

(Tiα)2

≤ m(n − m)

n
S +

|(2m − n)D|
n2

√

m(n − m)(Sn − D2) − 2m(n − m)D2

n2
.

P r o o f. We apply the Lagrange multiplier method to the problem (cf.
P. F. Leung [L1, L2])

(35)
(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2 = max!

subject to the constraints

(36)
∑

i

Xii +
∑

α

Xαα = D

and

(37)
∑

i

(Xii)
2+

∑

α

(Xαα)2+2
∑

i<j

(Xij)
2+2

∑

α<β

(Xαβ)2+2
∑

i,α

(Xiα)2 = S,

where S =
∑

a,b(Tab)
2 and the Xab form a symmetric n × n matrix

[

Xij Xiα

Xβj Xβα

]

.

We consider the function

f =
(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2

+ λ
(

∑

i

Xii +
∑

α

Xαα − D
)

+ µ
[

∑

i

(Xii)
2 +

∑

α

(Xαα)2

+ 2
∑

i<j

(Xij)
2 + 2

∑

α<β

(Xαβ)2 + 2
∑

i,α

(Xiα)2 − S
]

,

where λ, µ are the Lagrange multipliers.

Differentiating with respect to each variable and equating to zero, we
obtain

2
∑

j

Xjj − D + λ + 2µXii = 0,(38)

λ + 2µXαα = 0,(39)

4Xiα + 4µXiα = 0,(40)

4µXij = 0, i < j,(41)

4µXαβ = 0, α < β.(42)
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Hence (with the numbers standing for the corresponding left hand sides)
∑

i

Xii(38) +
∑

α

Xαα(39) +
∑

i,α

Xiα(40) +
∑

i<j

Xij(41) +
∑

α<β

Xαβ(42) = 0

gives

(43) 2
(

∑

i

Xii

)2

− D
∑

i

Xii + 4
∑

i,α

(Xiα)2 = −(λD + 2µS).

(1) C a s e µ = 0. It is easy to see in this case

(44)
(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2 = −D2

4
.

(2) C a s e µ = −1. First we suppose m(n − m) > n, and putting
Xαα = λ/2,

∑

i Xii = D − (n − m)λ/2 into (38), we have

λ =
(m − 2)D

m(n − m) − n
, Xii =

(n − m − 2)D

2[m(n − m) − n]
,

(45)

Xαα =
(m − 2)D

2[m(n − m) − n]
,

and

(46)
(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2 = S − m(n − m) − 4

4[m(n − m) − n]
D2

is another critical value.

Now suppose m(n − m) = n, i.e. n = 4,m = 2. If µ = −1, then

Xii =
1

2
(D − λ), Xαα =

λ

2
,(47)

(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2 = S − D2

2
,(48)

that is, equality holds in (34) in this case.

(3) C a s e µ 6= 0,−1. Let X =
∑

i Xii. Then

Xαα = − λ

2µ
, 2µ(X − D) = (n − m)λ,(49)

λ = D − 2

(

1 +
µ

m

)

X.(50)

Substituting (50) into the second formula of (49), we get

(51) µ =
m(n − m)(D − 2X)

2(nX − mD)
,

λ

µ
=

2

n − m
(X − D).



MINIMAL SUBMANIFOLDS 9

From (43), we have

(52)
X(D − 2X)

µ
=

λ

µ
D + 2S.

Putting (51) into (52), we get

X2 − 2mD

n
X −

(

m(n − m)

n
S − m

n
D2

)

= 0,

that is,

(53) X =
m

n
D ±

√

m(n − m)

n

(

S − D2

n

)

.

The critical value is

(54)
(

∑

i

Xii

)2

− D
∑

i

Xii + 2
∑

i,α

(Xiα)2

=
m(n − m)

n
S +

|(2m − n)D|
n2

√

m(n − m)(Sn − D2) − 2m(n − m)D2

n2
.

Hence, the critical values are

−D2

4
, S − m(n − m) − 4

4[m(n − m) − n]
D2,

m(n − m)

n
S +

|(2m − n)D|
n2

√

m(n − m)(Sn − D2) − 2m(n − m)D2

n2
.

It can be verified directly by calculation that if m = 1 or m = n − 1,
then m(n−m) = n− 1 and the maximum is S + n−5

4
D2; if 2 ≤ m ≤ n− 2,

the maximum is (cf. [L1])

m(n − m)

n
S +

|(2m − n)D|
n2

√

m(n − m)(Sn − D2) − 2m(n − m)D2

n2
.

This completes the proof of Lemma 1.

Proposition 3. Let Nn be an n-dimensional (n ≥ 4) compact subman-

ifold in R
n+p. Let S be the length square of the second fundamental form.

If

(55) S < 2nH2 − |(2m − n)H|
√

n

m(n − m)
(SH − nH2),

then there exist no stable m-dimensional minimal submanifolds of Nn for

each m with 2 ≤ m ≤ n − 2, where SH is the length square of the second

fundamental form in the direction of the mean curvature vector of Nn.

P r o o f. We choose a local orthonormal frame field e1, . . . , en+p in R
n+p

with e1, . . . , en tangent to Nn and en+1, . . . , en+p normal to Nn. Let en+1
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be parallel to the mean curvature vector
−→
H and

(56) B(X,Y ) =

n+p
∑

µ=n+1

Bµ(X,Y )eµ,

then

(57)
∑

a

Bn+1(ea, ea) = nH,
∑

a

Bµ(ea, ea) = 0, n + 2 ≤ µ ≤ n + p.

Moreover,

(58)
∑

i,α

[2‖B(ei, eα)‖2 − 〈B(ei, ei), B(eα, eα)〉]

=
(

∑

i

Bn+1(ei, ei)
)2

+ 2
∑

i,α

(Bn+1(ei, eα))2 − nH
∑

i

Bn+1(ei, ei)

+

n+p
∑

µ=n+2

[(

∑

i

Bµ(ei, ei)
)2

+ 2
∑

i,α

(Bµ(ei, eα))2
]

.

For each symmetric n×n-matrix (Bn+1(ea, eb)) and (Bµ(ea, eb)), 1 ≤ a, b ≤
n, n + 1 ≤ µ ≤ n + p, applying Lemma 1, we have

(59)
(

∑

i

Bn+1(ei, ei)
)2

+ 2
∑

i,α

(Bn+1(ei, eα))2 − nH
∑

i

Bn+1(ei, ei)

≤ m(n − m)

n
SH + |(2m − n)H|

√

m(n − m)

n
(SH − nH2) − 2m(n − m)H2

and

(60)
(

∑

i

Bµ(ei, ei)
)2

+ 2
∑

i,α

(Bµ(ei, eα))2 ≤ m(n − m)

n

∑

a,b

(Bµ(ea, eb))
2.

Combining (58), (59) with (60), from assumption (55) we get

(61)
∑

i,α

[2‖B(ei, eα)‖2 − 〈B(ei, ei), B(eα, eα)〉]

≤ m(n − m)

n
S−2m(n−m)H2 + |(2m−n)H|

√

m(n − m)

n
(SH − nH2) < 0.

This completes the proof of Proposition 3.

P r o o f o f T h e o r e m 2. Let Nn be an n-dimensional (n ≥ 4) compact
submanifold in R

n+p. By the Gauss equation (14) and the fact that S ≥
nH2, we know that condition (2) is equivalent to

(62) S <
n2H2

n − 1
.
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But (62) is equivalent to

(63)
√

S − nH2 <

√

n

n − 1
|H| =

1

2

√

n

n − 1
n|H| − 1

2
(n − 2)

√

n

n − 1
|H|.

Now (63) is equivalent to

(64)

(

√

S − nH2 +
1

2
(n − 2)

√

n

n − 1
|H|

)2

<

(

1

2

√

n

n − 1
n|H|

)2

,

that is,

(65) S < 2nH2 − (n − 2)

√

n

n − 1
|H|

√

S − nH2.

Since |2m−n|
√

n/(m(n − m)) ≤ (n−2)
√

n/(n − 1) and SH ≤ S, we see
that (65) implies (55) for each m with 2 ≤ m ≤ n−2. Therefore, Theorem 2
follows from Proposition 3 directly.

6. The proof of Corollary 1 and Proposition 1

P r o o f o f C o r o l l a r y 1. Let Nn be an n-dimensional compact hy-
persurface in R

n+1 and let the principal curvatures be ka, 1 ≤ a ≤ n. By
assumption (3), we have

(66) S =
∑

i

k2
i <

n2H2

n − 1
.

By the Gauss equation (14) and the fact S ≥ nH2, (66) is equivalent to
(2). Now Corollary 1 follows from Theorem 2 directly.

P r o o f o f P r o p o s i t i o n 1. Let Nn be the following n-dimensional
(n ≥ 4) ellipsoid in R

n+1:

Nn :
x2

1

a2
1

+ . . . +
x2

n+1

a2
n+1

= 1, 0 < a1 ≤ a2 ≤ . . . ≤ an+1.

It is not difficult to verify by a direct computation that the maximum
and minimum of the principal curvatures are

kmax =
an+1

a2
1

, kmin =
a1

a2
n+1

,

respectively.
(1) If 1 ≤ an+1 < 3

√
2 and a1 ≥ √

an+1, then the sectional curvature K
of Nn satisfies

1

2
<

a2
1

a4
n+1

= k2
min ≤ K ≤ k2

max =
a2

n+1

a4
1

≤ 1.

Thus the conclusion of Proposition 1 follows from Theorem 1.
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(2) If an+1/a1 < 6

√

n/(n − 1), then

ka −
√

1

n(n − 1)

n
∑

b=1

kb ≤
an+1

a2
1

−
√

n

n − 1

a1

a2
n+1

< 0.

Thus the conclusion of Proposition 1 follows from Corollary 1.

7. Some remarks. Let Nn be an n-dimensional compact submanifold
in an (n + p)-dimensional unit sphere Sn+p and B the second fundamental
form of Nn. By a reduction as in the proof of (24) (cf. (2.11) of Pan–Shen
[PS]) we have

trace(I) = −
\

Mm

[

−
∑

α,k,µ

(Bµ
αk)2 +

∑

α

Rαα

]

dv(67)

=
\

Mm

[

− m(n − m) + 2
∑

µ,α,k

(Bµ
αk)2 −

∑

µ,α,k

Bµ
ααBµ

kk

]

dv.

We can prove the following counterparts of Theorems 1 and 2 by making
use of (67):

Theorem 3. Let Nn be an n-dimensional compact hypersurface in an

(n + 1)-dimensional unit sphere Sn+1. If the sectional curvature K of Nn

satisfies

(68) 1/2 < K ≤ 1,

then there exist no stable m-dimensional minimal submanifolds in Nn for

each m with 1 ≤ m ≤ n − 1.

Theorem 4. Let Nn be an n-dimensional (n ≥ 4) compact submanifold

in an (n + p)-dimensional Euclidean sphere Sn+p. Let S and H be the

length square of the second fundamental form and the mean curvature of

Nn, respectively. If

(69) S < n +
n3

2(n − 1)
H2 − n(n − 2)

2(n − 1)

√

n2H4 + 4(n − 1)H2,

then there exist no stable m-dimensional minimal submanifolds in Nn for

each m with 2 ≤ m ≤ n − 2.

R e m a r k 4. From the main theorem of [L2], we can prove that condition
(2) or (69) implies Ric(Nn) > 0.

R e m a r k 5. These conclusions keep valid for stable currents (see
Lawson–Simons [LS] or Federer–Fleming [FF]).
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