SOME NONEXISTENCE THEOREMS
 on STABLE MINIMAL SUBMANIFOLDS

BY

HAIZHONG LI (BEIJING)

We prove that there exist no stable minimal submanifolds in some n dimensional ellipsoids, which generalizes J. Simons' result about the unit sphere and gives a partial answer to Lawson-Simons' conjecture.

1. Introduction. In [S], J. Simons proved that there exist no stable minimal submanifolds in the n-dimensional unit sphere S^{n}. In this paper, we establish the following general results.

Theorem 1. Let N^{n} be an n-dimensional compact hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. If the sectional curvature \bar{K} of N^{n} satisfies

$$
\begin{equation*}
1 / 2<\bar{K} \leq 1, \tag{1}
\end{equation*}
$$

then there exist no stable m-dimensional minimal submanifolds in N^{n} for each m with $1 \leq m \leq n-1$.

Remark 1. If N^{n} is an n-dimensional unit hypersphere S^{n} in \mathbb{R}^{n+1}, then the sectional curvature \bar{K} of S^{n} is 1 , and from Theorem 1 we deduce that there exist no stable m-dimensional minimal submanifolds in S^{n} for each m with $1 \leq m \leq n-1$, which was proved by Simons $[\mathrm{S}]$.

Theorem 2. Let N^{n} be an n-dimensional ($n \geq 4$) compact submanifold in an $(n+p)$-dimensional Euclidean space \mathbb{R}^{n+p}. Let R and H denote the normalized scalar curvature and the mean curvature functions of N^{n}, respectively. If R satisfies the following pointwise $n(n-2) /(n-1)^{2}$-pinching condition:

$$
\begin{equation*}
\frac{n(n-2)}{(n-1)^{2}} H^{2}<R \leq H^{2} \tag{2}
\end{equation*}
$$

then there exist no stable m-dimensional minimal submanifolds in N^{n} for each m with $2 \leq m \leq n-2$.

[^0]Corollary 1. Let N^{n} be an n-dimensional ($n \geq 4$) compact hypersurface in \mathbb{R}^{n+1}. If all the principal curvatures k_{a} of N^{n} satisfy

$$
\begin{equation*}
0<k_{a}<\sqrt{\frac{1}{n(n-1)}} \sum_{b=1}^{n} k_{b}, \quad 1 \leq a \leq n, \tag{3}
\end{equation*}
$$

then there exists no m-dimensional minimal submanifold in N^{n} for each m with $2 \leq m \leq n-2$.

As direct applications of Theorem 1 and Corollary 1, we have
Proposition 1. Let N^{n} be the following n-dimensional ($n \geq 4$) ellipsoid in \mathbb{R}^{n+1} :

$$
\begin{equation*}
N^{n}: \quad \frac{x_{1}^{2}}{a_{1}^{2}}+\ldots+\frac{x_{n+1}^{2}}{a_{n+1}^{2}}=1, \quad 0<a_{1} \leq a_{2} \leq \ldots \leq a_{n+1}, \tag{4}
\end{equation*}
$$

(1) If $1 \leq a_{n+1}<\sqrt[3]{2}$ and $a_{1} \geq \sqrt{a_{n+1}}$, then there exist no stable m dimensional minimal submanifolds of N^{n} for each m with $1 \leq m \leq n-1$.
(2) If $a_{n+1} / a_{1}<\sqrt[6]{n /(n-1)}$, then there exist no stable m-dimensional minimal submanifolds of N^{n} for each m with $2 \leq m \leq n-2$.

Remark 2. It can be proved in a similar way that the above results all keep valid for stable m-currents on N^{n} (for concepts of stable current, see Lawson-Simons [LS]). For example, we can state the counterpart of Theorem 1 as follows:

Theorem 1^{\prime}. Let N^{n} be an n-dimensional compact hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. If the sectional curvature \bar{K} of N^{n} satisfies

$$
\begin{equation*}
1 / 2<\bar{K} \leq 1, \tag{5}
\end{equation*}
$$

then there exist no stable m-currents on N^{n} for each m with $1 \leq m \leq n-1$.
Remark 3. Let N^{n} be an n-dimensional compact hypersurface in \mathbb{R}^{n+1} and suppose that every principal curvature k_{a} of N^{n} satisfies $\sqrt{\delta}<k_{a} \leq 1$ $(a=1, \ldots, n)$. H. Mori $[\mathrm{M}]$ and Y. Ohnita $[\mathrm{O}]$ proved the conclusion of Theorem 1^{\prime} under the stronger conditions $\delta>n /(n+1)$ and $\delta>1 / 2$, respectively. Our Theorem 1^{\prime} also gives a partial answer to the following Lawson-Simons' conjecture:

Conjecture ([LS]). Let N^{n} be a compact n-dimensional connected Riemannian manifold with the sectional curvature \bar{K} satisfying

$$
\begin{equation*}
1 / 4<\bar{K} \leq 1 . \tag{6}
\end{equation*}
$$

Then there exist no stable m-currents on N^{n} for each m with $1 \leq m \leq n-1$.
We are greatly indebted to P. F. Leung's papers [L1, L2] which motivated us to do this work.
2. Basic formulas and notations. In this paper, we shall make use of the following convention on the ranges of indices:

$$
\begin{gathered}
1 \leq A, B, C, \ldots \leq n+p ; \quad 1 \leq a, b, c, \ldots \leq n ; \quad n+1 \leq \mu, \nu, \ldots \leq n+p \\
1 \leq i, j, k \ldots \leq m ; \quad m+1 \leq \alpha, \beta, \gamma \ldots \leq n
\end{gathered}
$$

Let M^{m} and N^{n} be Riemannian manifolds of dimension m and dimension n, respectively. Let M^{m} be an m-dimensional compact minimal submanifold of $N^{n}, n>m$. For any normal variation vector field $U=\sum_{\alpha} u_{\alpha} e_{\alpha}$ of M^{m}, the second variation of the volume is given by (see $[\mathrm{S}]$)

$$
\begin{equation*}
I(U, U)=\int_{M^{m}}\left[\sum_{\alpha, i} u_{\alpha i}^{2}-\sum_{\alpha, \beta}\left(\sigma_{\alpha \beta}+\bar{R}_{\alpha \beta} u_{\alpha} u_{\beta}\right)\right] d v \tag{7}
\end{equation*}
$$

where $u_{\alpha i}$ are the covariant derivatives of u_{α},

$$
\begin{align*}
\sigma_{\alpha \beta} & =\sum_{i, j} h_{i j}^{\alpha} h_{i j}^{\beta} \tag{8}\\
\bar{R}_{\alpha \beta} & =\sum_{i} \bar{R}_{\alpha i \beta i} \tag{9}
\end{align*}
$$

and $h_{i j}^{\alpha}$ are the components of the second fundamental form h of M^{m} in N^{n}.

Now let $x: N^{n} \rightarrow \mathbb{R}^{n+p}$ be an n-dimensional submanifold in the $(n+p)$ dimensional Euclidean space \mathbb{R}^{n+p}. We choose a local field of orthonormal frames $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}$ in \mathbb{R}^{n+p} such that, restricted to N^{n}, the vectors e_{1}, \ldots, e_{n} are tangent to N^{n}. Their dual coframe fields are $\omega_{1}, \ldots, \omega_{n}, \omega_{n+1}, \ldots, \omega_{n+p}$. Then we have

$$
\begin{align*}
d x & =\sum_{a} \omega_{a} e_{a} \tag{10}\\
d e_{a} & =\sum_{b} \omega_{a b} e_{b}+\sum_{\mu, b} B_{a b}^{\mu} \omega_{b} e_{\mu} \tag{11}\\
d e_{\mu} & =-\sum_{a, b} B_{a b}^{\mu} \omega_{b} e_{a}+\sum_{\nu} \omega_{\mu \nu} e_{\nu} \tag{12}
\end{align*}
$$

and the second fundamental form of N^{n} in \mathbb{R}^{n+p} is

$$
\begin{equation*}
B=\sum_{a, b, \mu} B_{a b}^{\mu} \omega_{a} \otimes \omega_{b} \otimes e_{\mu} \tag{13}
\end{equation*}
$$

The Gauss equation of N^{n} in \mathbb{R}^{n+p} is

$$
\begin{equation*}
n(n-1) R=n^{2} H^{2}-S \tag{14}
\end{equation*}
$$

where R, H and S are the normalized scalar curvature, the mean curvature and the length square of the second fundamental form of N^{n} in \mathbb{R}^{n+p}, respectively.
3. An m-dimensional minimal submanifold in N^{n}. Let M^{m} be an m-dimensional minimal submanifold in N^{n}, and N^{n} be an n-dimensional submanifold in \mathbb{R}^{n+p}. In this case we can choose a local orthonormal basis $e_{1}, \ldots, e_{m}, e_{m+1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}$ in \mathbb{R}^{n+p} such that, restricted to M^{m}, the vectors e_{1}, \ldots, e_{m} are tangent to $M^{m}, e_{1}, \ldots, e_{n}$ are tangent to N^{n}, e_{n+1}, \ldots, e_{n+p} are normal to N^{n}. Their dual coframe fields are $\omega_{1}, \ldots, \omega_{m}$, $\omega_{m+1}, \ldots, \omega_{n}, \omega_{n+1}, \ldots, \omega_{n+p}$. From (10)-(12), restricted to M^{m}, we have

$$
\begin{align*}
d x & =\sum_{i} \omega_{i} e_{i}, \tag{15}\\
d e_{i} & =\sum_{j} \omega_{i j} e_{j}+\sum_{\alpha, j} h_{i j}^{\alpha} \omega_{j} e_{\alpha}+\sum_{\mu, j} B_{i j}^{\mu} \omega_{j} e_{\mu} \tag{16}\\
d e_{\alpha} & =-\sum_{i, j} h_{i j}^{\alpha} \omega_{i} e_{j}+\sum_{\beta} \omega_{\alpha \beta} e_{\beta}+\sum_{\mu, j} B_{\alpha j}^{\mu} \omega_{j} e_{\mu}, \tag{17}\\
d e_{\mu} & =-\sum_{i, j} B_{i j}^{\mu} \omega_{i} e_{j}-\sum_{\alpha, j} B_{\alpha j}^{\mu} \omega_{j} e_{\alpha}+\sum_{\nu} \omega_{\mu \nu} e_{\nu}, \tag{18}
\end{align*}
$$

where $h=\sum_{i, j, \alpha} h_{i j}^{\alpha} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha}$ is the second fundamental form of M^{m} in N^{n} and $\sum_{i} h_{i i}^{\alpha}=0$ for any α, since M^{m} is a minimal submanifold in N^{n}.

We choose the following normal variation vector field of M^{m} in N^{n} :

$$
\begin{equation*}
U=\sum_{\alpha} u_{\alpha} e_{\alpha}, \quad u_{\alpha}=\left\langle\Lambda, e_{\alpha}\right\rangle \tag{19}
\end{equation*}
$$

where Λ is a constant vector in \mathbb{R}^{n+p}.
Using (15)-(18), a straightforward computation shows

$$
\begin{equation*}
u_{\alpha i}=-\sum_{k} h_{k i}^{\alpha} u_{k}+\sum_{\mu} B_{\alpha i}^{\mu} u_{\mu} \tag{20}
\end{equation*}
$$

(21) $\sum_{\alpha, i} u_{\alpha i}^{2}=\sum_{\alpha, i}\left[\sum_{j, k} h_{k i}^{\alpha} h_{i j}^{\alpha} u_{k} u_{j}+\sum_{\mu, \nu} B_{\alpha i}^{\mu} B_{\alpha i}^{\nu} u_{\mu} u_{\nu}-2 \sum_{\mu, k} h_{k i}^{\alpha} B_{\alpha i}^{\mu} u_{k} u_{\mu}\right]$,
where

$$
\begin{equation*}
u_{j}=\left\langle\Lambda, e_{j}\right\rangle, \quad u_{\mu}=\left\langle\Lambda, e_{\mu}\right\rangle \tag{22}
\end{equation*}
$$

Let E_{1}, \ldots, E_{n+p} be a fixed orthonormal basis of \mathbb{R}^{n+p}, and $U_{A}=$ $\sum_{\alpha}\left\langle E_{A}, e_{\alpha}\right\rangle e_{\alpha}$. Since

$$
\begin{equation*}
\sum_{A=1}^{n+p}\left\langle E_{A}, v\right\rangle\left\langle E_{B}, w\right\rangle=\langle v, w\rangle \tag{23}
\end{equation*}
$$

for any vectors v, w in \mathbb{R}^{n+p}, putting (21) into (7) and using (22) and (23),
we obtain

$$
\begin{align*}
\operatorname{trace}(I) & \equiv \sum_{A=1}^{n+p} I\left(U_{A}, U_{A}\right) \tag{24}\\
& =-\int_{M^{m}}\left[-\sum_{\alpha, k, \mu}\left(B_{\alpha k}^{\mu}\right)^{2}+\sum_{\alpha} \bar{R}_{\alpha \alpha}\right] d v \\
& =-\int_{M^{m}} \sum_{\alpha, k}\left[-\sum_{\mu}\left(B_{\alpha k}^{\mu}\right)^{2}+\bar{R}_{\alpha k \alpha k}\right] d v \\
& =-\int_{M^{m}}\left[-\sum_{\alpha, \mu, k} B_{\alpha \alpha}^{\mu} B_{k k}^{\mu}+2 \sum_{\alpha, k} \bar{R}_{\alpha k \alpha k}\right] d v \\
& =\int_{M^{m}}\left[2 \sum_{\mu, \alpha, k}\left(B_{\alpha k}^{\mu}\right)^{2}-\sum_{\mu, \alpha, k} B_{\alpha \alpha}^{\mu} B_{k k}^{\mu}\right] d v
\end{align*}
$$

Thus we obtain
Proposition 2. Let N^{n} be an n-dimensional compact submanifold in \mathbb{R}^{n+p}. Let M^{m} be an m-dimensional compact minimal submanifold of N^{n}. If

$$
\begin{equation*}
\operatorname{trace}(I)=\int_{M^{m}}\left[2 \sum_{\mu, \alpha, k}\left(B_{\alpha k}^{\mu}\right)^{2}-\sum_{\mu, \alpha, k} B_{\alpha \alpha}^{\mu} B_{k k}^{\mu}\right] d v<0 \tag{25}
\end{equation*}
$$

then M^{m} is not a stable minimal submanifold of N^{n}.
4. The proof of Theorem 1. Let N^{n} be an n-dimensional hypersurface in \mathbb{R}^{n+1} and M^{m} be an m-dimensional compact minimal submanifold in N^{n}. At a given point $p \in M^{m}$ in N^{n}, we can choose a local orthonormal frame field $e_{1}^{*}, \ldots, e_{n}^{*}, \vec{n}$ in \mathbb{R}^{n+1} such that $e_{1}^{*}, \ldots, e_{n}^{*}$ are tangent to N^{n} and at $p \in M^{m}$,

$$
\begin{equation*}
B_{a b}^{*}=\left\langle B\left(e_{a}^{*}, e_{b}^{*}\right), \vec{n}\right\rangle=k_{a} \delta_{a b}, \quad 1 \leq a, b \leq n \tag{26}
\end{equation*}
$$

where the k_{a} are the principal curvatures of N^{n} in \mathbb{R}^{n+1}.
Since M^{m} is an m-dimensional compact minimal submanifold in N^{n}, at a given point $p \in M^{m}$ in N^{n}, we can also choose a local orthonormal frame field $e_{1}, \ldots, e_{m}, e_{m+1}, \ldots, e_{n}$ in N^{n} such that e_{1}, \ldots, e_{m} are tangent to M^{m}. Noting that e_{1}, \ldots, e_{n} and $e_{1}^{*}, \ldots, e_{n}^{*}$ are two local orthonormal frame fields in a neighborhood of $p \in M^{m}$, we can set

$$
\begin{align*}
& e_{i}=\sum_{b=1}^{n} A_{i}^{b} e_{b}^{*}, \quad 1 \leq i \leq m, \tag{27}\\
& e_{\alpha}=\sum_{b=1}^{n} A_{\alpha}^{b} e_{b}^{*}, \quad m+1 \leq \alpha \leq n, \tag{28}
\end{align*}
$$

where $\left(A_{a}^{b}\right) \in S O(n)$, i.e.

$$
\begin{equation*}
\sum_{a=1}^{n} A_{b}^{a} A_{c}^{a}=\delta_{b c}, \quad \sum_{a=1}^{n} A_{a}^{b} A_{a}^{c}=\delta^{b c} . \tag{29}
\end{equation*}
$$

It is a direct verification that at $p \in M^{m}$, by use of (26)-(29) and (1),

$$
\begin{align*}
\sum_{\alpha, k} B_{\alpha \alpha} B_{k k} & =\sum_{\alpha, k}\left\langle B\left(e_{\alpha}, e_{\alpha}\right), B\left(e_{k}, e_{k}\right)\right\rangle \tag{30}\\
& =\sum_{\alpha, k, a, b, c, d} A_{\alpha}^{a} A_{\alpha}^{b} A_{k}^{c} A_{k}^{d}\left\langle B\left(e_{a}^{*}, e_{b}^{*}\right), B\left(e_{c}^{*}, e_{d}^{*}\right)\right\rangle \\
& =\sum_{\alpha, k, a, c} k_{a} k_{c}\left(A_{\alpha}^{a}\right)^{2}\left(A_{k}^{c}\right)^{2} \\
& =\sum_{a, c} \bar{R}_{a c a c}\left(A_{\alpha}^{a}\right)^{2}\left(A_{k}^{c}\right)^{2} \\
& \leq \sum_{a, c, \alpha, k}\left(A_{\alpha}^{a}\right)^{2}\left(A_{k}^{c}\right)^{2}=m(n-m),
\end{align*}
$$

where $\bar{R}_{a c a c}=k_{a} k_{c}$ is the sectional curvature of N^{n}. From (1), we also have

$$
\begin{equation*}
-2 \sum_{\alpha, k} \bar{R}_{\alpha k \alpha k}<-2 \cdot \frac{1}{2} m(n-m)=-m(n-m) . \tag{31}
\end{equation*}
$$

Putting (30) and (31) into (24), we obtain trace $(I)<0$. From Proposition 2, we infer that M^{m} is not a stable minimal submanifold of N^{n}.
5. The proof of Theorem 2 . We first establish the following algebraic lemma in order to prove our Theorem 2:

Lemma 1. Let

$$
1 \leq a, b \leq n ; \quad 1 \leq i, j \leq m ; \quad m+1 \leq \alpha, \beta \leq n,
$$

and consider the symmetric $n \times n$ matrix

$$
\left[\begin{array}{cc}
T_{i j} & T_{i \alpha} \\
T_{\beta j} & T_{\beta \alpha}
\end{array}\right]
$$

such that

$$
\begin{equation*}
\sum_{i=1}^{m} T_{i i}+\sum_{\alpha=m+1}^{n} T_{\alpha \alpha}=D, \quad \sum_{a, b=1}^{n} T_{a b}^{2}=S . \tag{32}
\end{equation*}
$$

Then:
(1) If $m=1$ or $m=n-1$, we have

$$
\begin{equation*}
\left(\sum_{i} T_{i i}\right)^{2}-D \sum_{i} T_{i i}+2 \sum_{i, \alpha}\left(T_{i \alpha}\right)^{2} \leq S+\frac{n-5}{2} D^{2} . \tag{33}
\end{equation*}
$$

(2) If $2 \leq m \leq n-2$, we have

$$
\begin{align*}
& \left(\sum_{i} T_{i i}\right)^{2}-D \sum_{i} T_{i i}+2 \sum_{i, \alpha}\left(T_{i \alpha}\right)^{2} \tag{34}\\
\leq & \frac{m(n-m)}{n} S+\frac{|(2 m-n) D|}{n^{2}} \sqrt{m(n-m)\left(S n-D^{2}\right)}-\frac{2 m(n-m) D^{2}}{n^{2}} .
\end{align*}
$$

Proof. We apply the Lagrange multiplier method to the problem (cf. P. F. Leung [L1, L2])

$$
\begin{equation*}
\left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=\max ! \tag{35}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
\sum_{i} X_{i i}+\sum_{\alpha} X_{\alpha \alpha}=D \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i}\left(X_{i i}\right)^{2}+\sum_{\alpha}\left(X_{\alpha \alpha}\right)^{2}+2 \sum_{i<j}\left(X_{i j}\right)^{2}+2 \sum_{\alpha<\beta}\left(X_{\alpha \beta}\right)^{2}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=S, \tag{37}
\end{equation*}
$$

where $S=\sum_{a, b}\left(T_{a b}\right)^{2}$ and the $X_{a b}$ form a symmetric $n \times n$ matrix

$$
\left[\begin{array}{ll}
X_{i j} & X_{i \alpha} \\
X_{\beta j} & X_{\beta \alpha}
\end{array}\right] .
$$

We consider the function

$$
\begin{aligned}
f= & \left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2} \\
& +\lambda\left(\sum_{i} X_{i i}+\sum_{\alpha} X_{\alpha \alpha}-D\right)+\mu\left[\sum_{i}\left(X_{i i}\right)^{2}+\sum_{\alpha}\left(X_{\alpha \alpha}\right)^{2}\right. \\
& \left.+2 \sum_{i<j}\left(X_{i j}\right)^{2}+2 \sum_{\alpha<\beta}\left(X_{\alpha \beta}\right)^{2}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}-S\right],
\end{aligned}
$$

where λ, μ are the Lagrange multipliers.
Differentiating with respect to each variable and equating to zero, we obtain

$$
\begin{gather*}
2 \sum_{j} X_{j j}-D+\lambda+2 \mu X_{i i}=0, \tag{38}\\
\lambda+2 \mu X_{\alpha \alpha}=0, \tag{39}\\
4 X_{i \alpha}+4 \mu X_{i \alpha}=0, \tag{40}\\
4 \mu X_{i j}=0, \quad i<j, \tag{41}\\
4 \mu X_{\alpha \beta}=0, \quad \alpha<\beta . \tag{42}
\end{gather*}
$$

Hence (with the numbers standing for the corresponding left hand sides)

$$
\sum_{i} X_{i i}(38)+\sum_{\alpha} X_{\alpha \alpha}(39)+\sum_{i, \alpha} X_{i \alpha}(40)+\sum_{i<j} X_{i j}(41)+\sum_{\alpha<\beta} X_{\alpha \beta}(42)=0
$$

gives

$$
\begin{equation*}
2\left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+4 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=-(\lambda D+2 \mu S) \tag{43}
\end{equation*}
$$

(1) Case $\mu=0$. It is easy to see in this case

$$
\begin{equation*}
\left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=-\frac{D^{2}}{4} \tag{44}
\end{equation*}
$$

(2) Case $\mu=-1$. First we suppose $m(n-m)>n$, and putting $X_{\alpha \alpha}=\lambda / 2, \sum_{i} X_{i i}=D-(n-m) \lambda / 2$ into (38), we have

$$
\begin{gather*}
\lambda=\frac{(m-2) D}{m(n-m)-n}, \quad X_{i i}=\frac{(n-m-2) D}{2[m(n-m)-n]}, \\
X_{\alpha \alpha}=\frac{(m-2) D}{2[m(n-m)-n]}, \tag{45}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=S-\frac{m(n-m)-4}{4[m(n-m)-n]} D^{2} \tag{46}
\end{equation*}
$$

is another critical value.
Now suppose $m(n-m)=n$, i.e. $n=4, m=2$. If $\mu=-1$, then

$$
\begin{gather*}
X_{i i}=\frac{1}{2}(D-\lambda), \quad X_{\alpha \alpha}=\frac{\lambda}{2} \tag{47}\\
\left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2}=S-\frac{D^{2}}{2} \tag{48}
\end{gather*}
$$

that is, equality holds in (34) in this case.
(3) Case $\mu \neq 0,-1$. Let $X=\sum_{i} X_{i i}$. Then

$$
\begin{gather*}
X_{\alpha \alpha}=-\frac{\lambda}{2 \mu}, \quad 2 \mu(X-D)=(n-m) \lambda \tag{49}\\
\lambda=D-2\left(1+\frac{\mu}{m}\right) X \tag{50}
\end{gather*}
$$

Substituting (50) into the second formula of (49), we get

$$
\begin{equation*}
\mu=\frac{m(n-m)(D-2 X)}{2(n X-m D)}, \quad \frac{\lambda}{\mu}=\frac{2}{n-m}(X-D) . \tag{51}
\end{equation*}
$$

From (43), we have

$$
\begin{equation*}
\frac{X(D-2 X)}{\mu}=\frac{\lambda}{\mu} D+2 S . \tag{52}
\end{equation*}
$$

Putting (51) into (52), we get

$$
X^{2}-\frac{2 m D}{n} X-\left(\frac{m(n-m)}{n} S-\frac{m}{n} D^{2}\right)=0
$$

that is,

$$
\begin{equation*}
X=\frac{m}{n} D \pm \sqrt{\frac{m(n-m)}{n}\left(S-\frac{D^{2}}{n}\right)} . \tag{53}
\end{equation*}
$$

The critical value is

$$
\begin{align*}
& \left(\sum_{i} X_{i i}\right)^{2}-D \sum_{i} X_{i i}+2 \sum_{i, \alpha}\left(X_{i \alpha}\right)^{2} \tag{54}\\
= & \frac{m(n-m)}{n} S+\frac{|(2 m-n) D|}{n^{2}} \sqrt{m(n-m)\left(S n-D^{2}\right)}-\frac{2 m(n-m) D^{2}}{n^{2}} .
\end{align*}
$$

Hence, the critical values are

$$
\begin{gathered}
-\frac{D^{2}}{4}, \quad S-\frac{m(n-m)-4}{4[m(n-m)-n]} D^{2} \\
\frac{m(n-m)}{n} S+\frac{|(2 m-n) D|}{n^{2}} \sqrt{m(n-m)\left(S n-D^{2}\right)}-\frac{2 m(n-m) D^{2}}{n^{2}} .
\end{gathered}
$$

It can be verified directly by calculation that if $m=1$ or $m=n-1$, then $m(n-m)=n-1$ and the maximum is $S+\frac{n-5}{4} D^{2}$; if $2 \leq m \leq n-2$, the maximum is (cf. [L1])

$$
\frac{m(n-m)}{n} S+\frac{|(2 m-n) D|}{n^{2}} \sqrt{m(n-m)\left(S n-D^{2}\right)}-\frac{2 m(n-m) D^{2}}{n^{2}} .
$$

This completes the proof of Lemma 1.
Proposition 3. Let N^{n} be an n-dimensional $(n \geq 4)$ compact submanifold in \mathbb{R}^{n+p}. Let S be the length square of the second fundamental form. If

$$
\begin{equation*}
S<2 n H^{2}-|(2 m-n) H| \sqrt{\frac{n}{m(n-m)}\left(S_{H}-n H^{2}\right)}, \tag{55}
\end{equation*}
$$

then there exist no stable m-dimensional minimal submanifolds of N^{n} for each m with $2 \leq m \leq n-2$, where S_{H} is the length square of the second fundamental form in the direction of the mean curvature vector of N^{n}.

Proof. We choose a local orthonormal frame field e_{1}, \ldots, e_{n+p} in \mathbb{R}^{n+p} with e_{1}, \ldots, e_{n} tangent to N^{n} and e_{n+1}, \ldots, e_{n+p} normal to N^{n}. Let e_{n+1}
be parallel to the mean curvature vector \vec{H} and

$$
\begin{equation*}
B(X, Y)=\sum_{\mu=n+1}^{n+p} B^{\mu}(X, Y) e_{\mu} \tag{56}
\end{equation*}
$$

then
(57) $\quad \sum_{a} B^{n+1}\left(e_{a}, e_{a}\right)=n H, \quad \sum_{a} B^{\mu}\left(e_{a}, e_{a}\right)=0, \quad n+2 \leq \mu \leq n+p$.

Moreover,

$$
\begin{align*}
& \sum_{i, \alpha}\left[2\left\|B\left(e_{i}, e_{\alpha}\right)\right\|^{2}-\left\langle B\left(e_{i}, e_{i}\right), B\left(e_{\alpha}, e_{\alpha}\right)\right\rangle\right] \tag{58}\\
= & \left(\sum_{i} B^{n+1}\left(e_{i}, e_{i}\right)\right)^{2}+2 \sum_{i, \alpha}\left(B^{n+1}\left(e_{i}, e_{\alpha}\right)\right)^{2}-n H \sum_{i} B^{n+1}\left(e_{i}, e_{i}\right) \\
& +\sum_{\mu=n+2}^{n+p}\left[\left(\sum_{i} B^{\mu}\left(e_{i}, e_{i}\right)\right)^{2}+2 \sum_{i, \alpha}\left(B^{\mu}\left(e_{i}, e_{\alpha}\right)\right)^{2}\right] .
\end{align*}
$$

For each symmetric $n \times n$-matrix $\left(B^{n+1}\left(e_{a}, e_{b}\right)\right)$ and $\left(B^{\mu}\left(e_{a}, e_{b}\right)\right), 1 \leq a, b \leq$ $n, n+1 \leq \mu \leq n+p$, applying Lemma 1 , we have
(59) $\quad\left(\sum_{i} B^{n+1}\left(e_{i}, e_{i}\right)\right)^{2}+2 \sum_{i, \alpha}\left(B^{n+1}\left(e_{i}, e_{\alpha}\right)\right)^{2}-n H \sum_{i} B^{n+1}\left(e_{i}, e_{i}\right)$

$$
\leq \frac{m(n-m)}{n} S_{H}+|(2 m-n) H| \sqrt{\frac{m(n-m)}{n}\left(S_{H}-n H^{2}\right)}-2 m(n-m) H^{2}
$$

and
(60) $\left(\sum_{i} B^{\mu}\left(e_{i}, e_{i}\right)\right)^{2}+2 \sum_{i, \alpha}\left(B^{\mu}\left(e_{i}, e_{\alpha}\right)\right)^{2} \leq \frac{m(n-m)}{n} \sum_{a, b}\left(B^{\mu}\left(e_{a}, e_{b}\right)\right)^{2}$.

Combining (58), (59) with (60), from assumption (55) we get
$\sum_{i, \alpha}\left[2\left\|B\left(e_{i}, e_{\alpha}\right)\right\|^{2}-\left\langle B\left(e_{i}, e_{i}\right), B\left(e_{\alpha}, e_{\alpha}\right)\right\rangle\right]$
$\leq \frac{m(n-m)}{n} S-2 m(n-m) H^{2}+|(2 m-n) H| \sqrt{\frac{m(n-m)}{n}\left(S_{H}-n H^{2}\right)}<0$.
This completes the proof of Proposition 3.
Proof of Theorem 2 . Let N^{n} be an n-dimensional ($n \geq 4$) compact submanifold in \mathbb{R}^{n+p}. By the Gauss equation (14) and the fact that $S \geq$ $n H^{2}$, we know that condition (2) is equivalent to

$$
\begin{equation*}
S<\frac{n^{2} H^{2}}{n-1} \tag{62}
\end{equation*}
$$

But (62) is equivalent to

$$
\begin{equation*}
\sqrt{S-n H^{2}}<\sqrt{\frac{n}{n-1}}|H|=\frac{1}{2} \sqrt{\frac{n}{n-1}} n|H|-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}}|H| . \tag{63}
\end{equation*}
$$

Now (63) is equivalent to

$$
\begin{equation*}
\left(\sqrt{S-n H^{2}}+\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}}|H|\right)^{2}<\left(\frac{1}{2} \sqrt{\frac{n}{n-1}} n|H|\right)^{2} \tag{64}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S<2 n H^{2}-(n-2) \sqrt{\frac{n}{n-1}}|H| \sqrt{S-n H^{2}} \tag{65}
\end{equation*}
$$

Since $|2 m-n| \sqrt{n /(m(n-m))} \leq(n-2) \sqrt{n /(n-1)}$ and $S_{H} \leq S$, we see that (65) implies (55) for each m with $2 \leq m \leq n-2$. Therefore, Theorem 2 follows from Proposition 3 directly.

6. The proof of Corollary 1 and Proposition 1

Proof of Corollary 1. Let N^{n} be an n-dimensional compact hypersurface in \mathbb{R}^{n+1} and let the principal curvatures be $k_{a}, 1 \leq a \leq n$. By assumption (3), we have

$$
\begin{equation*}
S=\sum_{i} k_{i}^{2}<\frac{n^{2} H^{2}}{n-1} \tag{66}
\end{equation*}
$$

By the Gauss equation (14) and the fact $S \geq n H^{2}$, (66) is equivalent to (2). Now Corollary 1 follows from Theorem 2 directly.

Proof of Proposition 1 . Let N^{n} be the following n-dimensional $(n \geq 4)$ ellipsoid in \mathbb{R}^{n+1} :

$$
N^{n}: \quad \frac{x_{1}^{2}}{a_{1}^{2}}+\ldots+\frac{x_{n+1}^{2}}{a_{n+1}^{2}}=1, \quad 0<a_{1} \leq a_{2} \leq \ldots \leq a_{n+1}
$$

It is not difficult to verify by a direct computation that the maximum and minimum of the principal curvatures are

$$
k_{\max }=\frac{a_{n+1}}{a_{1}^{2}}, \quad k_{\min }=\frac{a_{1}}{a_{n+1}^{2}}
$$

respectively.
(1) If $1 \leq a_{n+1}<\sqrt[3]{2}$ and $a_{1} \geq \sqrt{a_{n+1}}$, then the sectional curvature \bar{K} of N^{n} satisfies

$$
\frac{1}{2}<\frac{a_{1}^{2}}{a_{n+1}^{4}}=k_{\min }^{2} \leq \bar{K} \leq k_{\max }^{2}=\frac{a_{n+1}^{2}}{a_{1}^{4}} \leq 1
$$

Thus the conclusion of Proposition 1 follows from Theorem 1.
(2) If $a_{n+1} / a_{1}<\sqrt[6]{n /(n-1)}$, then

$$
k_{a}-\sqrt{\frac{1}{n(n-1)}} \sum_{b=1}^{n} k_{b} \leq \frac{a_{n+1}}{a_{1}^{2}}-\sqrt{\frac{n}{n-1}} \frac{a_{1}}{a_{n+1}^{2}}<0 .
$$

Thus the conclusion of Proposition 1 follows from Corollary 1.
7. Some remarks. Let N^{n} be an n-dimensional compact submanifold in an $(n+p)$-dimensional unit sphere S^{n+p} and B the second fundamental form of N^{n}. By a reduction as in the proof of (24) (cf. (2.11) of Pan-Shen [PS]) we have

$$
\begin{align*}
\operatorname{trace}(I) & =-\int_{M^{m}}\left[-\sum_{\alpha, k, \mu}\left(B_{\alpha k}^{\mu}\right)^{2}+\sum_{\alpha} \bar{R}_{\alpha \alpha}\right] d v \tag{67}\\
& =\int_{M^{m}}\left[-m(n-m)+2 \sum_{\mu, \alpha, k}\left(B_{\alpha k}^{\mu}\right)^{2}-\sum_{\mu, \alpha, k} B_{\alpha \alpha}^{\mu} B_{k k}^{\mu}\right] d v .
\end{align*}
$$

We can prove the following counterparts of Theorems 1 and 2 by making use of (67):

Theorem 3. Let N^{n} be an n-dimensional compact hypersurface in an $(n+1)$-dimensional unit sphere S^{n+1}. If the sectional curvature \bar{K} of N^{n} satisfies

$$
\begin{equation*}
1 / 2<\bar{K} \leq 1, \tag{68}
\end{equation*}
$$

then there exist no stable m-dimensional minimal submanifolds in N^{n} for each m with $1 \leq m \leq n-1$.

Theorem 4. Let N^{n} be an n-dimensional ($n \geq 4$) compact submanifold in an $(n+p)$-dimensional Euclidean sphere S^{n+p}. Let S and H be the length square of the second fundamental form and the mean curvature of N^{n}, respectively. If

$$
\begin{equation*}
S<n+\frac{n^{3}}{2(n-1)} H^{2}-\frac{n(n-2)}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}}, \tag{69}
\end{equation*}
$$

then there exist no stable m-dimensional minimal submanifolds in N^{n} for each m with $2 \leq m \leq n-2$.

Remark 4. From the main theorem of [L2], we can prove that condition (2) or (69) implies $\operatorname{Ric}\left(N^{n}\right)>0$.

Remark 5. These conclusions keep valid for stable currents (see Lawson-Simons [LS] or Federer-Fleming [FF]).

REFERENCES

[FF] H. Federer and W. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.
[LS] H. B. Lawson Jr. and J. Simons, On stable currents and their applications in real and complex projective space, ibid. 98 (1973), 427-450.
[L1] P. F. Leung, Minimal submanifolds in a sphere, Math. Z. 183 (1983), 75-86.
[L2] -, An estimate on the Ricci curvature on a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), 1051-1061.
[M] H. Mori, Notes on stable currents, Pacific J. Math. 61 (1975), 235-240.
[O] Y. Ohnita, Stable minimal submanifolds in compact rank one symmetric spaces, Tôhoku Math. J. 38 (1986), 199-217.
[PS] Y. L. Pan and Y. B. Shen, Stability of harmonic maps and minimal immersions, Proc. Amer. Math. Soc. 93 (1985), 111-117.
[S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.

Department of Applied Mathematics
Tsinghua University
Beijing, 100084
People's Republic of China

[^0]: 1991 Mathematics Subject Classification: Primary 53C42.
 This work is supported by Postdoctoral Foundation of China.

