WILD TILTED ALGEBRAS REVISITED

BY

OTTO KERNER (DÜSSELDORF)

In this paper wild tilted algebras are studied. Following [6] an algebra B is called tilted (of type A) if there exists a finite-dimensional hereditary algebra A over some field k and a tilting module T in the category A-mod of finite-dimensional left A-modules with $B = \operatorname{End}_A(T)$. The tilting module T has a structure as an (A, B)-bimodule and induces in B-mod a splitting torsion pair $(\mathcal{X}, \mathcal{Y})$, where the torsion-free class \mathcal{Y} is the full subcategory of B-mod, defined by the objects M with $\operatorname{Tor}_B^1(T, M) = 0$, whereas the torsion class \mathcal{X} is defined by the objects N with $T \otimes_B N = 0$.

A tilted algebra B of type A is only wild if A is wild hereditary. It was shown in [9] that the study of \mathcal{Y} (respectively, \mathcal{X}) can be reduced to the case of tilting modules without nonzero direct summands in the preinjective component $\mathcal{I}(A)$ (respectively, preprojective component $\mathcal{P}(A)$). Only this case will be considered here, and it was shown in [9] that in this situation B is wild if and only if A is wild. In this paper the torsion-free class \mathcal{Y} is studied, dual results hold for \mathcal{X} . For basic terminology and general results we refer to [6, 16]. The main result of this paper is:

THEOREM 1. Let A be connected wild hereditary, T a tilting module in A-mod without indecomposable preinjective direct summand and $B = \operatorname{End}_A(T)$. If $F = \operatorname{Hom}_A(T, -)$ denotes the tilting functor and $(\mathcal{Y}, \mathcal{X})$ the torsion pair in B-mod induced by T, we have:

- 1. The Auslander-Reiten quiver $\Gamma(B)$ of B has exactly one preprojective component $\mathcal{P}(B)$.
 - (a) $C = B/\operatorname{ann}\mathcal{P}(B)$ is connected wild concealed.
 - (b) If T_0 is a preprojective direct summand of T, then $F(T_0)$ is preprojective in B-mod.
- 2. If $X \in \mathcal{Y}$ is indecomposable and not in the connecting component, then:
 - (a) $\tau_B^{-m} X$ is in C-mod for $m \gg 0$.

- (b) $\tau_B^{-m}X = \tau_C \tau_B^{-m-1}X$ for $m \gg 0$. (c) If X is not in $\mathcal{P}(B)$, then $\tau_B^{-m}X$ is a regular C-module for $m \gg 0$.
- 3. All regular C-modules are in \mathcal{Y} . If X is a regular C-module, then $\tau_C^{-m}X = \tau_B\tau_C^{-m-1}X$ for $m \gg 0$.

The first part of the theorem was the main result in the paper [17] of Strauss. The remaining parts had been first shown in [11].

The original proofs are quite complicated. A unified, shorter and more conceptual proof will be given here. Many of the ideas for this proof can be found in [2, 11, 17].

Additionally it turned out that rather similar results hold for some classes of quasi-tilted algebras (see for example [13, 14], and [4] for the concept of quasi-tilted algebras).

It should also be mentioned that by parts 2 and 3 of the theorem there is a bijection between the set $\Omega(C)$ of regular components of the Auslander-Reiten quiver of C and the set $\Omega(\mathcal{Y})$ of those components of $\Gamma(B)$ which are completely contained in \mathcal{Y} and are different from the preprojective component. In particular, no component in $\Omega(\mathcal{Y})$ has empty stable part. Hence by [9] there is a bijection between $\Omega(\mathcal{Y})$ and the set $\Omega(A)$ of regular components of the Auslander–Reiten quiver of A, too. For more details see [2, 9, 11].

In order to make the proof less technical, the theorem will be reformulated. The tilting module T defines in A-mod a torsion pair $(\mathcal{G}, \mathcal{F})$ where the torsion class \mathcal{G} consists of the A-modules generated by the tilting module T. The torsion-free class \mathcal{F} is defined by the modules Y with $\operatorname{Hom}(T,Y)=0$. The torsion class \mathcal{G} is equivalent to \mathcal{Y} under the functor F. In \mathcal{G} there exist relative Auslander–Reiten sequences; the relative Auslander–Reiten translation in \mathcal{G} will be denoted by $\tau_{\mathcal{G}}$. If t is the torsion-radical associated with \mathcal{G} , then $\tau_{\mathcal{G}} = t\tau_A$, and $\tau_{\mathcal{G}}$ is a full functor. Moreover, one has $F\tau_{\mathcal{G}} = \tau_B F$. The relative Auslander–Reiten quiver of $\mathcal G$ is denoted by $\varGamma(\mathcal G)$ and its preprojective component or components by $\mathcal{P}_{\mathcal{G}}$. The image of $\mathcal{P}_{\mathcal{G}}$ under the tilting functor F is $\mathcal{P}(B)$.

If A is hereditary with n simple modules and U is a partial tilting module with m pairwise nonisomorphic indecomposable direct summands, we denote by U^{\perp} the full subcategory of A-mod defined by the objects Y with $\operatorname{Hom}(U,Y) = 0$ and $\operatorname{Ext}(U,Y) = 0$. In this case U^{\perp} is an exact abelian subcategory of A-mod which is closed under extensions. Moreover, $U^{\perp} \cong H$ -mod, where H is a hereditary algebra with n-m simple modules (see [3, 5, 18]). Hence the Auslander-Reiten translations in U^{\perp} , denoted by $\tau_{U^{\perp}}, \tau_{U^{\perp}}^{-}$ or τ_{H}, τ_{H}^{-} , are full functors in U^{\perp} .

In terms of the torsion class $\mathcal G$ in A-mod, Theorem 1 reads as follows.

THEOREM 2. Let A be connected wild hereditary, T a tilting module in A-mod without indecomposable preinjective direct summands, \mathcal{G} the class of A-modules generated by T and $\Gamma(\mathcal{G})$ its relative Auslander–Reiten quiver.

- 1. There exists exactly one preprojective component $\mathcal{P}_{\mathcal{G}}$ in $\Gamma(\mathcal{G})$. If T_1 is the direct sum of all indecomposable direct summands X of T contained in $\mathcal{P}_{\mathcal{G}}$ and $T = T_1 \oplus T_2$ then:
 - (a) $C = \text{End}_A(T_1)$ is connected wild concealed.
 - (b) T_2 is regular in A-mod.
 - (c) T_1 is a preprojective tilting module in T_2^{\perp} .
- 2. Denote by $\widetilde{\mathcal{G}}$ the torsion class $\mathcal{G} \cap T_2^{\perp}$ in T_2^{\perp} . If $X \in \mathcal{G}$ is indecomposable and not preinjective in A-mod, then:

 - (a) $\tau_{\mathcal{G}}^{-m}X$ is in T_2^{\perp} for $m \gg 0$. (b) $\tau_{\mathcal{G}}^{-m}X = \tau_{\widetilde{\mathcal{G}}}\tau_{\mathcal{G}}^{-m-1}X$ for $m \gg 0$.
 - (c) If X is not in $\mathcal{P}_{\mathcal{G}}$, then $\tau_{\mathcal{G}}^{-m}X$ is a regular T_2^{\perp} -module for $m \gg 0$.
- 3. If X is regular in T_2^{\perp} , then $\tau_{T_2^{\perp}}^{-m}X = \tau_{\mathcal{G}}\tau_{T_2^{\perp}}^{-m-1}X$ for $m \gg 0$.

If M is regular in T_2^{\perp} , then $M \in \widetilde{\mathcal{G}}$ with $\tau_{\widetilde{\mathcal{G}}}M = \tau_{T_2^{\perp}}M$ by 1(c). It should be mentioned that the theorem trivially holds if T is a preprojective tilting module, in particular, if A has only two simple modules. Therefore, we assume that T is not preprojective and A has n > 2 simple modules. The proof will be by induction on n.

1. The Strauss decomposition of T. We assume that T is a squarefree tilting module with n pairwise nonisomorphic indecomposable direct summands, none of them preinjective and not all of them preprojective in A-mod. By $\mathcal{P}_{\mathcal{G}}$ we denote the preprojective component or components of the relative Auslander–Reiten quiver $\Gamma(\mathcal{G})$. Then T has a decomposition, usually called the Strauss decomposition,

$$T = T_1 \oplus T_2$$

where T_1 is the sum of all indecomposable direct summands of T which are \mathcal{G} -preprojective, that is, which are in $\mathcal{P}_{\mathcal{G}}$. It has to be shown that $T_1 \neq 0$, that $\operatorname{End}_A(T_1)$ is a connected wild concealed algebra and that all A-preprojective direct summands of T are in T_1 . The second summand T_2 has a decomposition $T_2 = P \oplus R$ where P is preprojective and R is regular in A-mod. It is easy to show

LEMMA 1.1.
$$T_1 \in T_2^{\perp}$$
 and $T_1 \oplus P \in R^{\perp}$.

In the sequel the summand R will be studied in detail.

Lemma 1.2. $R \neq 0$.

Proof. The statement is obvious if $T_1 = 0$, since T has regular direct summands by assumption. Suppose $T_1 \neq 0$ but R = 0. Since $\operatorname{End}(T)$ is not concealed one has $P \neq 0$. The algebra $\operatorname{End}(T)$ is connected and $T_1 \in T_2^{\perp}$ by 1.1. Consequently, there exist indecomposable direct summands X of T_1 and Y of P with $\operatorname{Hom}(X,Y) \neq 0$. Since only X is in $\mathcal{P}_{\mathcal{G}}$, each nonzero homomorphism $f: X \to Y$ has an arbitrary long factorisation through \mathcal{G} -preprojectives, that is, there exist infinitely many indecomposable modules M with $\operatorname{Hom}(M,Y) \neq 0$, an absurdity.

An indecomposable regular A-module Y is uniquely determined by its quasi-length r and its quasi-socle X (respectively, quasi-top Z) (see [15]). We write Y = X(r) (respectively, Y = [r]Z) in this case. If Y is quasi-simple we have Y = Y(1) = [1]Y with this convention.

If Y = X(r) is an indecomposable regular A-module of quasi-length r and with quasi-socle X, the wing $\mathcal{W}(Y)$ with top Y and length r is the mesh complete full subquiver of the regular component \mathcal{C} containing Y, which consists of the vertices $\{\tau_A^{-i}X(j) \mid 1 \leq j \leq r, 1 \leq i+j \leq r\}$ (see [16]).

If X = X(r) is a direct summand of R, the wing W(Y) contains exactly r indecomposable direct summands of T (see [16, 17]). Since these r summands are connected by \mathcal{G} -irreducible maps, all of them are direct summands of R. We therefore get a decomposition

$$R = \bigoplus_{i=1}^{l} W_i$$

where all r_i indecomposable direct summands of W_i are contained in the same wing $\mathcal{W}(S_i(r_i))$ with S_i quasi-simple and $\mathcal{W}(S_i(r_i)) \cap \mathcal{W}(S_j(r_j)) = \emptyset$ for $i \neq j$ (see for example [11]). The tops $S_i(r_i)$ of the wings $\mathcal{W}(S_i(r_i))$ are summands of R. The class \mathcal{G} and the relative Auslander–Reiten quiver $\Gamma(\mathcal{G})$ remain unchanged outside the wings $\mathcal{W}(S_i(r_i))$ if we additionally assume that W_i is $\mathcal{W}(S_i(r_i))$ -projective, that is, $W_i = \bigoplus_{j=1}^{r_i} S_i(j)$ (see [11], 2.5). In particular, $\mathcal{P}_{\mathcal{G}}$ remains unchanged.

We therefore assume $W_i = \bigoplus_{j=1}^{r_i} S_i(j)$ for the rest of the paper. In [11] this was called the *normalised form* of T.

We will frequently use

LEMMA 1.3. (a) For X, Y regular in A-mod we have $\operatorname{Hom}_A(X, \tau^{-m}Y) = 0$ for $m \gg 0$.

(b)
$$\text{Hom}_A(S_i, \tau_A^{-m} S_i) = 0 \text{ for all } m > 0.$$

Proof. (a) was shown in [9] and (b) follows from [11], 1.2, since the S_i are quasi-simple bricks.

2. The wing quiver $\mathcal{Q}_{\mathcal{W}}(T)$. We call the decomposition

$$T = T_1 \oplus P \oplus \left(\bigoplus_{i=1}^l W_i\right)$$

with $W_i = \bigoplus_{j=1}^{r_i} S_i(j)$ and S_i quasi-simple regular the (normalised) wing decomposition of T. Moreover, we decompose $P = \bigoplus_{j=1}^{t} P_j$ with P_j indecomposable preprojective in A-mod. This decomposition will be used throughout the paper.

The wing quiver $\mathcal{Q}_{\mathcal{W}}(T)$ of T has $\{1,\ldots,l\}$ as set of vertices and no loops. For $1 \leq i \neq j \leq l$ there exists an arrow $i \to j$ exactly if we have $\operatorname{Hom}_A(S_i, \tau_A^{-m}S_j) \neq 0$ for some $m \geq 0$. Let $m(i,j) \geq 0$ be in this case the smallest natural number m with $\operatorname{Hom}_A(S_i, \tau_A^{-m}S_j) \neq 0$.

LEMMA 2.1. $Q_{\mathcal{W}}(T)$ has no oriented cycles. Therefore it has sinks.

Proof. Suppose, first, $\mathcal{Q}_{\mathcal{W}}(T)$ has an oriented cycle $i \to j \to i$ of length 2. Since $\operatorname{Hom}(S_r, \tau_A S_t) = 0$ for all $1 \le r, t \le l$, all nonzero maps $f \in \operatorname{Hom}(S_i, \tau^{-m(i,j)}S_j)$ and $g \in \operatorname{Hom}(S_j, \tau^{-m(j,i)}S_i)$ are injective or surjective (see [6], 4.1). If f is surjective, then $f\tau^{-m(i,j)}g: S_i \to \tau^{-(m(i,j)+m(j,i))}S_i$ is nonzero. From 1.3(b), m(i,j)+m(j,i)=0 follows and f therefore is a split mono, hence an isomorphism, a contradiction to $i \ne j$. A similar argument works for f injective.

Suppose next that $Q_{\mathcal{W}}(T)$ has an oriented cycle, say

$$i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_r \rightarrow i_1$$

of minimal length r>2, therefore with $i_x\neq i_y$ for $1\leq x\neq y\leq r$. Again we use [6], 4.1. If $0\neq f\in \operatorname{Hom}(S_{i_1},\tau^{-m(i_1,i_2)}S_{i_2})$ is surjective, we get $\operatorname{Hom}(S_{i_1},\tau^{-(m(i_1,i_2)+m(i_2,i_3))}S_{i_3})\neq 0$. Then $i_1\to i_3\to\ldots\to i_r\to i_1$ is a cycle of smaller length r-1, a contradiction. If f is injective, we construct a cycle $i_2\to\ldots\to i_r\to i_2$ of length r-1.

For the rest of the paper we assume that l is a sink of $\mathcal{Q}_{\mathcal{W}}(T)$.

Lemma 2.2. Let X(r) be indecomposable regular of quasi-length $r \geq 1$.

- (a) If Y is indecomposable and not in W(X(r)), then $\operatorname{Hom}_A(X(r), Y) = 0$ (respectively, $\operatorname{Hom}_A(Y, X(r)) = 0$) if and only if $\operatorname{Hom}_A(U, Y) = 0$ (respectively, $\operatorname{Hom}_A(Y, U) = 0$) for all $U \in \operatorname{add} W(X(r))$.
- (b) The wing W(X(r)) is a standard wing, that is, $\operatorname{rad}^{\infty}(U, V) = 0$ for all $U, V \in \operatorname{add} W(X(r))$, if and only if X(r) is a brick.

Proof. See [11], 1.4 and 1.6.

It should be mentioned that it is 2.2(a) which allows us to consider only the normalised form $W_i = \bigoplus_{j=1}^{r_i} S_i(j)$ $(1 \le i \le l)$ of T.

LEMMA 2.3. (a) $\text{Hom}(S_l, W_i) = 0 \text{ for } i < l.$

72

- (b) $\text{Hom}(W_l, W_i) = 0 \text{ for } i < l.$
- (c) $\operatorname{Hom}(W_l, \tau_A^{-j} W_i) = 0$ for i < l and $j \ge 0$.
- (d) $\operatorname{Hom}(W_l, \tau_A^{-j} W_l) = 0 \text{ for } j \geq r_l.$
- (e) If $T = W_l \oplus U$, then $U \in W_l^{\perp}$.
- (f) For $X \in \operatorname{add} T$ we have $\operatorname{rad}^{\infty}(W_l, X) = 0$.

Proof. (a) $\operatorname{Hom}(S_l, W_i) \neq 0$ for some i < l is equivalent to $\operatorname{Hom}(S_l, \tau_A^{-j} S_i) \neq 0$ for some j with $0 \leq j < r_i$ (see [11], 1.4). This cannot happen by definition of l.

- (b) Consider for $1 < j \le r_l$ the exact sequence $0 \to S_l \to S_l(j) \to \tau_A^- S_l(j-1) \to 0$. From $\operatorname{Hom}(\tau_A^- S_l(j-1), W_i) \cong \operatorname{Hom}(S_l(j-1), \tau_A W_i) = 0$ and $\operatorname{Hom}(S_l, W_i) = 0$ we get $\operatorname{Hom}(S_l(j), W_i) = 0$, hence $\operatorname{Hom}(W_l, W_i) = 0$.
- (c) From $\operatorname{Hom}(S_l, \tau_A^{-j}S_i) = 0$ for all $j \geq 0$ and i < l we get, again by [11], 1.4 or Lemma 2.2(a), $\operatorname{Hom}(S_l, \tau_A^{-j}W_i) = 0$ for all $j \geq 0$. Assume $\operatorname{Hom}(W_l, \tau_A^{-j}W_i) \neq 0$ for some j. Take j minimal with this property, hence j > 1 by (b). Let m > 1 be minimal with $\operatorname{Hom}(S_l(m), \tau_A^{-j}W_i) \neq 0$. As in (b) we get a contradiction if we apply $\operatorname{Hom}(-, \tau_A^{-j}W_i)$ to the short exact sequence $0 \to S_l \to S_l(m) \to \tau_A^- S_l(m-1) \to 0$.
- (d) follows from (1.3) and [11], 1.4, whereas (e) follows from 1.1 and part (b) of the lemma.
- (f) Let $X = X_1 \oplus X_2$ with $X_1 \in \operatorname{add} U$ and $X_2 \in \operatorname{add} W_l$. Since $\operatorname{Hom}(W_l, X_1) = 0$, we have $\operatorname{rad}^{\infty}(W_l, X) = \operatorname{rad}^{\infty}(W_l, X_2) = 0$ by 2.2.
- 3. Relative Auslander–Reiten translations. If \mathcal{T} is a torsion class in Λ -mod, where Λ is some finite-dimensional algebra and X is indecomposable in \mathcal{T} , not Ext-projective, then the relative Auslander–Reiten translate $\tau_{\mathcal{T}}X$ of X in \mathcal{T} is the \mathcal{T} -torsion submodule $t\tau_{\mathcal{A}}X$ of $\tau_{\mathcal{A}}X$ (see [1, 7]). If A is hereditary and \mathcal{T} a torsion-class, the cokernel of the embedding $\tau_{\mathcal{T}}X \to \tau_{\mathcal{A}}X$ is Ext-injective in the corresponding torsion-free class \mathcal{F} , see [10, 11]. If \mathcal{G} is a tilting torsion class induced by a tilting module this implies (see [11], 2.2):

LEMMA 3.1. Let A be hereditary and T a tilting module without preinjective direct summand. If X is in \mathcal{G} , not Ext-projective, then there is a short exact sequence $0 \to \tau_{\mathcal{G}} X \to \tau_{A} X \to F \to 0$ with $F \in \operatorname{add} \tau_{A} T$. If X is not in $\mathcal{P}_{\mathcal{G}}$, then F is in $\operatorname{add} \tau_{A} T_{2}$.

From 3.1 we deduce (see for example [12], 3.2):

LEMMA 3.2. Let $X \in \mathcal{G}$ be indecomposable and r > 0.

(a) If $\tau_G^r X \neq 0$ there is a short exact sequence

$$0 \to \tau_{\mathcal{G}}^r X \to \tau_{\mathcal{A}}^r X \xrightarrow{\pi} S \to 0$$

where S has a filtration $S = S_r \supset S_{r-1} \supset \ldots \supset S_1 \supset S_0 = 0$ with $S_i/S_{i-1} \in \operatorname{add} \tau_A^i T$, or even $S_i/S_{i-1} \in \operatorname{add} \tau_A^i T_2$ for all i if $X \notin \mathcal{P}_{\mathcal{G}}$.

(b) If $\tau_A^{-r}X \neq 0$ there is a short exact sequence

$$0 \to \tau_A^{-r} X \to \tau_G^{-r} X \xrightarrow{\pi} Q \to 0$$

where Q has a filtration $Q = Q_0 \supset Q_1 \supset ... \supset Q_{r-1} \supset Q_r = 0$ with $Q_i/Q_{i+1} \in \operatorname{add} \tau_A^{-i}T$, or even $Q_i/Q_{i+1} \in \operatorname{add} \tau_A^{-i}T_2$ for all i if $X \notin \mathcal{P}_{\mathcal{G}}$.

Note that 3.2(a) implies that for an indecomposable module $X \in \mathcal{G}$ and $r \gg 0$ either $\tau_{\mathcal{G}}^r X = 0$ or $\tau_{\mathcal{G}}^{r+1} X = \tau_A \tau_{\mathcal{G}}^r X$. Indeed, if $\tau_{\mathcal{G}}^r X$ is nonzero for all r > 0, consider the short exact sequences $0 \to \tau_{\mathcal{G}}^r X \to \tau_A^r X \to S \to 0$ and $0 \to \tau_{\mathcal{G}}^{r+1} X \to \tau_A \tau_{\mathcal{G}}^r X \to \tau \widetilde{T} \to 0$. They induce an infinite chain

$$X \supset \tau_A^{-1} \tau_{\mathcal{G}} X \supset \tau_A^{-2} \tau_{\mathcal{G}}^2 X \supset \dots \supset \tau_A^{-r} \tau_{\mathcal{G}}^r X \supset \dots$$

hence this chain becomes stationary [9, 2]. In particular, there are no regular tubes in $\Gamma(\mathcal{G})$.

Lemma 3.2 has the following application.

LEMMA 3.3. Let $X \in \mathcal{G}$ be indecomposable not in $\mathcal{P}_{\mathcal{G}}$, and s an integer with $\tau_{\mathcal{G}}^s X \neq 0$. Then $\operatorname{Hom}_A(S_l, \tau_A^s X) = 0$ implies $\operatorname{Hom}_A(S_l, \tau_{\mathcal{G}}^s X) = 0$.

Proof. For s > 0 the claim follows from 3.2(a), nothing is to show for s = 0.

Let s=-r<0. Assume $\operatorname{Hom}_A(S_l,\tau_A^{-r}X)=0$ but $\operatorname{Hom}_A(S_l,\tau_\mathcal{G}^{-r}X)\neq 0$. Take $0\neq f\in \operatorname{Hom}_A(S_l,\tau_\mathcal{G}^{-r}X)$. From $\operatorname{Hom}_A(S_l,\tau_A^{-r}X)=0$ we see by 3.2(b) that $f\pi:S_l\to Q$ is nonzero. Since $Q_i/Q_{i+1}\in\operatorname{add}\tau_A^{-i}T_2$ we deduce from the definition of l that $\operatorname{Hom}_A(S_l,Q_i/Q_{i+1})=0$ for i>0 and therefore $\operatorname{Hom}_A(S_l,Q_1)=0$. If $\pi_1:Q\to Q/Q_1$ denotes the canonical surjection, we therefore have $0\neq f\pi\pi_1:S_l\to Q/Q_1$. But $\operatorname{rad}^\infty(S_l,Q/Q_1)=0$ by 2.3(f), hence Q/Q_1 has a direct summand $Z\in\operatorname{add}W_l$ and the image of $f\pi\pi_1$ is contained in Z. Thus there exists a nonzero composition of maps $S_l\to\tau_\mathcal{G}^{-r}X\to S_l(i)$ for some $1\leq i\leq r_l$. But $\operatorname{Hom}_A(S_l,S_l(i))$ is one-dimensional as $\operatorname{End}_A(S_l)$ -module or $\operatorname{End}_A(S_l(i))$ -module, by 2.2(b) and $\tau_\mathcal{G}^{-r}X$ is indecomposable. Therefore $\tau_\mathcal{G}^{-r}X\cong S_l(j)$ for some $1\leq j\leq r_l$, which is impossible, since $r\geq 1$.

LEMMA 3.4. For X indecomposable in \mathcal{G} we have $\operatorname{Hom}_A(W_l, \tau_{\mathcal{G}}^{-r}X) = 0$ for $r \gg 0$.

Proof. Since $\operatorname{Hom}_A(W_l, \mathcal{P}_{\mathcal{G}}) = 0$, the statement trivially holds for $X \in \mathcal{P}_{\mathcal{G}}$. If X is preinjective in A-mod we have $\tau_{\mathcal{G}}^{-r}X = \tau_A^{-r}X = 0$ for $r \gg 0$.

Suppose that $X \notin \mathcal{P}_{\mathcal{G}} \cup \mathcal{I}(A)$. If X is preprojective in A-mod we have $\operatorname{Hom}_A(S_l, \tau_A^{-r}X) = 0$ for all integers r. If X is regular, there exists r' with $\operatorname{Hom}_A(S_l, \tau_A^{-j}X) = 0$ for all $j \geq r'$ (see 1.3(a)). Hence there exists in both cases an integer r such that $\operatorname{Hom}_A(S_l, \tau_A^{-j}X) = 0$ for all

74

 $j \geq r - r_l$. By 3.3 this implies $\operatorname{Hom}_A(S_l, \tau_{\mathcal{G}}^{-j}X) = 0$ for all $j \geq r - r_l$. We show by induction on $m \leq r_l$ that $\operatorname{Hom}_A(S_l(m), \tau_{\mathcal{G}}^{-j}X) = 0$ for all $j \geq r - r_l + m - 1$. Assume the statement holds for all $1 \leq m < r_l$. Consider the short exact sequence $0 \to S_l \to S_l(m+1) \to \tau_A^- S_l(m) \to 0$ and take $j \geq r - r_l + m$. We get $\operatorname{Hom}_A(S_l(m+1), \tau_{\mathcal{G}}^{-j}X) \cong \operatorname{Hom}_A(\tau_A^- S_l(m), \tau_{\mathcal{G}}^{-j}X)$. Take $f \in \operatorname{Hom}_A(\tau_A^- S_l(m), \tau_{\mathcal{G}}^{-j}X)$. Then $\tau_A f \in \operatorname{Hom}_A(S_l(m), \tau_A \tau_{\mathcal{G}}^{-j}X)$ has image in the torsion submodule $\tau_{\mathcal{G}}^{-j+1}X$ of $\tau_A \tau_{\mathcal{G}}^{-j}X$. Therefore $\tau_A f = 0$, by induction. Hence f is zero and the claim follows.

Recall that $P = \bigoplus_{j=1}^{t} P_j$ with P_j indecomposable preprojective.

COROLLARY 3.5. (a) $\operatorname{Hom}_A(W_l, \tau_{\mathcal{G}}^{-r} S_i) = 0$ for all i < l and all $r \ge 0$.

- (b) $\operatorname{Hom}_A(W_l, \tau_{\mathcal{G}}^{-r} P_j) = 0$ for all $1 \leq j \leq t$ and all $r \geq 0$.
- (c) $\operatorname{Hom}_A(W_l, \tau_{\mathcal{G}}^{-r} S_l) = 0 \text{ for all } r \geq r_l.$

Proof. Since $\operatorname{Hom}(W_l, \tau_A^{-j}W_i) = 0$ for all i < l and all $j \ge -1$ by 2.3, we get $\operatorname{Hom}(S_l, \tau_A^{-j}S_i) = 0$ for all $j \ge -r_l$ by 2.2(a), and (a) follows from 3.4. (b) immediately follows from 3.4 and for (c) we use $\operatorname{Hom}_A(S_l, \tau_A^{-j}S_l) = 0$ for all j > 0 (see 1.3).

4. Comparison of relative Auslander–Reiten translations. The tilting module T has a decomposition $T = W_l \oplus U$ with $U \in W_l^{\perp}$ (see 2.3). If $W_l^{\perp} \cong A'$ -mod, then A' is a wild connected hereditary algebra by [17] and we identify W_l^{\perp} with A'-mod. In particular, we write $\tau_{A'}$ for the Auslander–Reiten translation in W_l^{\perp} . Moreover, we have $\tau_{\mathcal{G}}^{-r}X \in W_l^{\perp}$ for $X \in \mathcal{G}$ and $r \gg 0$ by 3.4. Notice that $\mathcal{P}_{\mathcal{G}}$ is in W_l^{\perp} , too.

The module U is a tilting module in A'-mod, so it defines a torsion pair $(\overline{\mathcal{G}}, \overline{\mathcal{F}})$ in A'-mod by $\overline{\mathcal{G}} = \{Y \in W_l^{\perp} \mid \operatorname{Ext}_{A'}(U, Y) = 0\}$ and $\overline{\mathcal{F}} = \{Y \in W_l^{\perp} \mid \operatorname{Hom}_{A'}(U, Y) = 0\}$. The Auslander–Reiten translation $\tau_{A'}$ in A'-mod induces a relative Auslander–Reiten translation $\tau_{\overline{\mathcal{G}}}$ in $\overline{\mathcal{G}}$.

The torsion class $\overline{\mathcal{G}}$ in A'-mod is a full, exact and extension-closed subcategory of A-mod, but it is not closed under factors in A-mod, hence it is not a torsion class in A-mod. The following can be shown easily.

LEMMA 4.1. (a)
$$\overline{\mathcal{G}} \subset \mathcal{G}$$
.
(b) $\overline{\mathcal{G}} = \{Y \in \mathcal{G} \mid \operatorname{Hom}_A(W_l, Y) = 0\}$.

The aim of this part is to describe for $X \in \overline{\mathcal{G}}$ the relation between $\tau_{\mathcal{G}}X$ and $\tau_{\overline{\mathcal{G}}}X$. For this Lemma 2 of [2] is used.

Let G be the minimal projective generator in W_l^{\perp} . Then $T' = W_l \oplus G$ is a tilting module. If \mathcal{G}' denotes the torsion class of A-modules generated by T', as in [2] one has $\mathcal{G}' = \{Y \mid \operatorname{Ext}_A(W_l, Y) = 0\}$ thus $\mathcal{G} \subset \mathcal{G}'$ and A'-mod $= W_l^{\perp} \subset \mathcal{G}'$.

It is easy to check that $G \oplus \bigoplus_{i=1}^{r_l-1} S_l(i)$ is the minimal projective generator in $S_l(r_l)^{\perp}$ and $S_l(r_l)^{\perp} = W_l^{\perp} \times \operatorname{add} \mathcal{W}(S_l(r_l-1))$ (see for example [17], 4.5).

LEMMA 4.2. If M is an indecomposable A'-module, not projective, then $\tau_{A'}M$ is the middle term of the universal sequence

$$0 \to \tau_A S_l(r_l) \otimes_{\operatorname{End}(\tau_A S_l(r_l))} D\operatorname{Ext}(\tau_{\mathcal{G}'} M, \tau_A S_l(r_l)) \to \tau_{A'} M \to \tau_{\mathcal{G}'} M \to 0.$$

Proof. It follows from $S_l(r_l)^{\perp} = W_l^{\perp} \times \operatorname{add} \mathcal{W}(S_l(r_l-1))$, for $M \in A'$ -mod that $\tau_{A'}M = \tau_{S_l(r_l)^{\perp}}M$. Since $G \oplus (\bigoplus_{i=1}^{r_l-1} S_l(i))$ is the minimal projective generator in $S_l(r_l)^{\perp}$, the claim follows from [2], Lemma 2.

LEMMA 4.3. Let M be indecomposable in $\overline{\mathcal{G}} \subset A'$ -mod, not Ext-projective. Then $\tau_{\overline{G}}M$ is the middle term V of the universal sequence

$$0 \to \tau_A S_l(r_l) \otimes_{\operatorname{End}(\tau_A S_l(r_l))} D\operatorname{Ext}(\tau_{\mathcal{G}} M, \tau_A S_l(r_l)) \to V \to \tau_{\mathcal{G}} M \to 0.$$

Proof. Consider the universal sequence

$$0 \to \tau_A S_l(r_l)^t \to \tau_{A'} M \to \tau_{G'} M \to 0$$

with $t = \dim_{\operatorname{End}(\tau_A S_l(r_l))} \operatorname{Ext}(\tau_{\mathcal{G}'} M, \tau_A S_l(r_l))$, given in 4.2.

Since $\tau_{\mathcal{G}}M$ and $\tau_{\mathcal{G}'}M$ are the torsion submodules of τ_AM with respect to the torsion classes \mathcal{G} and, respectively, \mathcal{G}' , we get from $\mathcal{G} \subset \mathcal{G}'$ a short exact sequence

$$0 \to \tau_{\mathcal{G}} M \xrightarrow{\varepsilon} \tau_{\mathcal{G}'} M \to F \to 0$$

with $F \in \mathcal{F} = \mathcal{F}(T)$. But F is a factor module of $\tau_{\mathcal{G}'}M$, hence in \mathcal{G}' . Therefore $F \in W_L^{\perp}$, that is, $F \in \overline{\mathcal{F}}$.

Consider the following pullback along ε :

Since $\tau_{A'}M$ and F are in W_l^{\perp} , also $V \in W_l^{\perp}$. Applying $\operatorname{Hom}(U, -)$ to the first row of the diagram, we get $0 = \operatorname{Ext}_A(U, V) = \operatorname{Ext}_{A'}(U, V)$, hence

 $V \in \overline{\mathcal{G}}$. Applying $\operatorname{Hom}_A(-, \tau_A S_l(r_l))$ to the same exact sequence, we get

$$0 \to \operatorname{Hom}_A(\tau_A S_l(r_l)^t, \tau_A S_l(r_l)) \stackrel{\cong}{\to} \operatorname{Ext}_A(\tau_{\mathcal{G}} M, \tau_A S_l(r_l)) \to 0.$$

Hence

$$0 \to \tau_A S_l(r_l)^t \to V \to \tau_{\mathcal{G}} M \to 0$$

is a universal short exact sequence.

Since $V \in \overline{\mathcal{G}}$ and $F \in \overline{\mathcal{F}}$, the module V is the $\overline{\mathcal{G}}$ -torsion submodule of $\tau_{A'}M$, that is, $V = \tau_{\overline{\mathcal{G}}}M$.

LEMMA 4.4. For
$$X \in \mathcal{G}$$
 one has $\tau_{\mathcal{G}}^{-m}X = \tau_{\bar{\mathcal{G}}}\tau_{\mathcal{G}}^{-m-1}X$ for $m \gg 0$.

Proof. By 3.4 there exists m_0 with $\operatorname{Hom}_A(W_l, \tau_{\mathcal{G}}^{-r}X) = 0$ for all $r \geq m_0$, that is, $\tau_{\mathcal{G}}^{-r}X \in W_l^{\perp}$ for all $r \geq m_0$.

Therefore, $D\operatorname{Ext}_A(\tau_{\mathcal{G}}^{-m}X, \tau_A S_l(r_l)) \cong \operatorname{Hom}_A(S_l(r_l), \tau_{\mathcal{G}}^{-m}X) = 0$ for all $m \geq m_0$, and the claim follows from 4.3.

5. The inductive setting

LEMMA 5.1. The tilting module U in A'-mod has no nonzero A'-preinjective direct summands.

Proof. We have $U = T_1 \oplus (\bigoplus_{j=1}^t P_j) \oplus (\bigoplus_{j< l} W_j)$. For an indecomposable module $X \in \mathcal{G}$ one has $\tau_{\mathcal{G}}^{-r}X = 0$ for some $r \geq 0$ if and only if X is A-preinjective. Therefore for each indecomposable direct summand X of U one has $\tau_{\mathcal{G}}^{-r}X \neq 0$ for all $r \geq 0$.

If X is a summand of T_1 , one has $\tau_{\mathcal{G}}^{-r}X \in W_l^{\perp}$ for all r, since $\mathcal{P}_{\mathcal{G}} \in W_l^{\perp}$. For $X \in \{S_i, P_j \mid i < l, j \leq t\}$ one gets $\tau_{\mathcal{G}}^{-r}X \in W_l^{\perp}$ for all $r \geq 0$ by 3.5. If $0 \to \tau_{\mathcal{G}}^{-r}X \to E \to \tau_{\mathcal{G}}^{-r-1}X \to 0$ for $r \geq 0$ is the relative Auslander–Reiten sequence in \mathcal{G} , then also $E \in W_l^{\perp}$, since W_l^{\perp} is closed under extensions.

Hence each indecomposable direct summand of T_1 and each of the modules P_j with $1 \leq j \leq t$ and S_i with i < l has infinitely many successors in A'-mod. Consequently, it is not A'-preinjective.

The irreducible maps $S_i(j) \to S_i(j+1)$ for $1 \le j < r_i$ and i < l remain irreducible in A'-mod. Therefore the claim follows.

In the notation of [17] this means that W_l is a special summand of T.

Let $Z \to S_l(r_l)$ be the irreducible epimorphism in A-mod. If Y is the quasi-top of $S_l(r_l)$ we have $Z = [r_l + 1]Y$. Let m_l be such that $[m_l]Y$ is a brick with self-extensions (see [8, 11]).

LEMMA 5.2. (a) $Z = \tau_{\overline{\mathcal{G}}} \tau_{\mathcal{G}}^{-r_l} S_l$.

- (b) $\tau_{\mathcal{G}}^{i}Z = \tau_{A}^{i+1}S_{l} \text{ for } i > 0.$
- (c) $[i]Y \in \mathcal{G} \text{ for all } i \geq 1.$
- (d) $[j]Y \in \overline{\mathcal{G}} \text{ for } r_l + 1 \leq j \leq m_l.$

Proof. (a) We have $\tau_{\mathcal{G}}^{-r_l+1}S_l=\tau_A^{-r_l+1}S_l=Y$ and $\tau_{\mathcal{G}}^{-r_l}S_l\in\overline{\mathcal{G}}$ by 3.5. By 4.3 there is a universal exact sequence

$$0 \to \tau_A S_l(r_l) \otimes D\text{Ext}(Y, \tau_A S_l(r_l) \to \tau_{\overline{G}} \tau_G^{-r_l} S_l \to Y \to 0.$$

By the Auslander–Reiten formula it follows from 2.2 that $\operatorname{Ext}_A(Y, \tau_A S_l(r_l))$ is one-dimensional as $\operatorname{End}_A(S_l(r_l))$ -module with basis $0 \to \tau_A S_l(r_l) \to Z \to Y \to 0$.

(b) We first consider i=1. We get $D\operatorname{Ext}_A(T, \tau_A^2S_l) \cong \operatorname{Hom}_A(S_l, \tau_A^-T_1)$ from the Auslander–Reiten formula, since $\operatorname{Hom}_A(S_l, \tau_A^-T_2) = 0$ by definition of l (see 2.3). If $\operatorname{Hom}_A(S_l, \tau_A^-T_1) \neq 0$, then $\operatorname{Hom}_A(S_l, \tau_G^-T_1) \neq 0$ by 3.2, which is impossible, since $\tau_{\mathcal{G}}^-T_1 \in \mathcal{P}_{\mathcal{G}}$. Therefore $\tau_A^2S_l \in \mathcal{G}$. The relative Auslander–Reiten sequence ending in Z is $0 \to \operatorname{tr}_A Z \to \operatorname{t}[r_l + 2]Y \to Z \to 0$. The first term $\tau_A^2S_l$ of the short exact sequence $0 \to \tau_A^2S_l \to \tau_A Z \to \tau_A S_l(r_l) \to 0$ is torsion and the last term is torsion free. Therefore $\tau_A^2S_l \to \operatorname{tr}_A Z$, which also implies $[r_l + 2]Y \in \mathcal{G}$.

By induction on $i \geq 2$ one shows $\tau_A^i S_l \in \mathcal{G}$. If $\tau_A^i S_l$ is in \mathcal{G} , consider the universal sequence $0 \to \tau_{\mathcal{G}} \tau_A^i S_l \to \tau_A^{i+1} S_l \to \tau \widetilde{T} \to 0$ with $\widetilde{T} \in \operatorname{add} T_2$. The definition of l and 1.3 imply $\widetilde{T} = 0$, that is, $\tau_A^{i+1} S_l \in \mathcal{G}$.

- (c) From $\tau_A^{1+i}S_l \in \mathcal{G}$ for i > 0 and $Z \in \overline{\mathcal{G}}$ it follows by induction that the middle term $[r_l + 1 + i]Y$ of the short exact sequence $0 \to \tau_A^{1+i}S_l \to [r_l + 1 + i]Y \to [r_l + i]Y \to 0$ is in \mathcal{G} . Clearly $[j]Y \in \mathcal{G}$ for $j \leq r_l$, which proves (c).
 - (d) By [17] the modules $Z = [r_l + 1]Y, \dots, [m_l]Y$ are in W_l^{\perp} .

Lemma 5.2 also implies that the stable part of the relative component in $\Gamma(\mathcal{G})$ containing W_l is of type $\mathbb{Z}A_{\infty}$. A picture of this component is given in [11], Fig. 1.

- **6.** The inductive step. The tilting module U in A'-mod has no A'-preinjective direct summand by 5.1. By induction on the number of nonisomorphic indecomposable direct summands of the tilting module, we get for the torsion class $\bar{\mathcal{G}}$ in A'-mod defined by U,
- (ind1) There exists exactly one preprojective component $\mathcal{P}_{\overline{\mathcal{G}}}$ in $\Gamma(\overline{\mathcal{G}})$. If U_1 is the direct sum of all indecomposable direct summands X of U contained in $\mathcal{P}_{\overline{\mathcal{G}}}$ and $U = U_1 \oplus U_2$ then:
 - (a) $C = \text{End}(U_1)$ is connected wild concealed.
 - (b) U_2 is regular in A'-mod.
 - (c) U_1 is a preprojective tilting module in $U_2^{\perp} \subset A'$ -mod.
- (ind2) Denote by $\widehat{\mathcal{G}}$ the torsion class of U_1 in U_2^{\perp} . If $X \in \overline{\mathcal{G}}$ is indecomposable and not preinjective in A'-mod, then: (a) $\tau_{\overline{\mathcal{G}}}^{-m}X$ is in U_2^{\perp} for $m \gg 0$.

(b) $\tau_{\bar{g}}^{-m}X = \tau_{\hat{g}}\tau_{\bar{g}}^{-m-1}X$ for $m \gg 0$.

(c) If X is not in $\mathcal{P}_{\overline{\mathcal{G}}}$, then $\tau_{\overline{\mathcal{G}}}^{-m}X$ is a regular U_2^{\perp} -module for $m \gg 0$.

(ind3) If X is regular in
$$U_2^{\perp}$$
, then $\tau_{U_2^{\perp}}^{-m}X = \tau_{\overline{\mathcal{G}}}\tau_{U_2^{\perp}}^{-m-1}X$ for $m \gg 0$.

LEMMA 6.1. If \mathcal{P} is a preprojective component in $\Gamma(\mathcal{G})$, then it is a preprojective component in $\Gamma(\overline{\mathcal{G}})$.

Proof. If X is in \mathcal{P} , then it is in W_l^{\perp} , hence in $\overline{\mathcal{G}}$.

First we consider the module $Z = [r_l + 1]Y \in \overline{\mathcal{G}}$, where Y is the quasitop of $S_l(r_l)$. It was shown already in [17] that Z is quasi-simple regular in A'-mod. We keep the notation of 5.2.

LEMMA 6.2. The module Z is neither in $\mathcal{P}_{\overline{G}}$ nor preinjective in A'-mod.

Proof. The modules $[r_l + 1]Y, \ldots, [m_l]Y$, where $[m_l]Y$ is a brick with self-extensions, are in $\overline{\mathcal{G}}$ by 5.2. Therefore the chain of irreducible epimorphisms in A-mod

$$[m_l]Y \to [m_l - 1]Y \to \ldots \to Z$$

is also a chain of irreducible epimorphisms in \mathcal{G} and $\overline{\mathcal{G}}$. Since $[m_l]Y$ has self-extensions, Z is neither in $\mathcal{P}_{\overline{\mathcal{G}}}$ nor in $\mathcal{I}(A')$.

LEMMA 6.3. $\mathcal{P}_{\overline{\mathcal{G}}}$ is a full component in the relative Auslander–Reiten quiver $\Gamma(\mathcal{G})$. It is the unique preprojective component in $\Gamma(\mathcal{G})$.

Proof. We show that $\tau_{\mathcal{G}}$ and $\tau_{\overline{\mathcal{G}}}$ coincide on $\mathcal{P}_{\overline{\mathcal{G}}}$. Let M be in $\mathcal{P}_{\overline{\mathcal{G}}}$, not Ext-projective. By 4.3 it has to be shown that $0 = D\operatorname{Ext}_A(\tau_{\mathcal{G}}M, \tau S_l(r_l)) \cong \operatorname{Hom}_A(S_l(r_l), \tau_{\mathcal{G}}M) = \operatorname{Hom}_A(S_l(r_l), \tau_{\mathcal{A}}M)$.

From $M \in W_l^{\perp}$ we deduce $\operatorname{Hom}_A(\tau_A W_l, \tau_A M) = 0$. Considering the Auslander–Reiten sequences

$$0 \to \tau_A S_l \to \tau_A S_l(2) \to S_l \to 0$$

and

$$0 \to \tau_A S_l(i) \to \tau_A S_l(i+1) \oplus S_l(i-1) \to S_l(i) \to 0$$

for $1 < i < r_l$ we get by induction $\operatorname{Hom}_A(S_l(i), \tau_A M) = 0$ for $1 \le i < r_l$. Since $Z \notin \mathcal{P}_{\overline{\mathcal{G}}}$ we get $0 = \operatorname{Ext}_{A'}(M, Z) = \operatorname{Ext}_A(M, Z)$. Using, finally, the Auslander–Reiten sequence $0 \to \tau_A S_l(r_l) \to Z \oplus S_l(r_l - 1) \to S_l(r_l) \to 0$ we get $0 = \operatorname{Ext}_A(\tau_{\mathcal{G}}M, \tau S_l(r_l))$, hence $\tau_{\mathcal{G}}M = \tau_{\overline{\mathcal{G}}}M$ for all $M \in \mathcal{P}_{\overline{\mathcal{G}}}$ and the claim follows.

The second statement follows from 6.1.

LEMMA 6.4.
$$T_1 = U_1$$
 and $\widetilde{\mathcal{G}} = \widehat{\mathcal{G}}$.

Proof. The first claim follows from 6.3. Since $T_2 = U_2 \oplus W_l$, we get

$$T_2^{\perp} = \{ X \in A \text{-mod} \mid \text{Hom}(T_2, X) = 0 = \text{Ext}(T_2, X) \}$$

= $\{ X \in A' \text{-mod} = W_l^{\perp} \mid \text{Hom}(U_2, X) = 0 = \text{Ext}(U_2, X) \}.$

This gives

$$\widetilde{\mathcal{G}} = \{ X \in \mathcal{G} \mid \operatorname{Hom}(T_2, X) = 0 = \operatorname{Ext}(T_2, X) \}$$

= $\{ X \in \overline{\mathcal{G}} \mid \operatorname{Hom}(U_2, X) = 0 = \operatorname{Ext}(U_2, X) \} = \widehat{\mathcal{G}}.$

Lemma 6.5. T_2 is regular in A-mod.

Proof. By (ind1) the module U_2 is regular in A'-mod, and consequently it is regular in A-mod. Since $T_2 = U_2 \oplus W_l$, by 6.4, it is regular in \hat{A} -mod. In particular, P = 0 and $T_2 = \bigoplus_{i=1}^l W_i$.

LEMMA 6.6. If $X \in \mathcal{G}$ is indecomposable and not preinjective in A-mod, then:

- (a) $\tau_{\mathcal{G}}^{-m}X$ is in $\widetilde{\mathcal{G}}$ for $m \gg 0$. (b) $\tau_{\mathcal{G}}^{-m}X = \tau_{\widetilde{\mathcal{G}}}\tau_{\mathcal{G}}^{-m-1}X$ for $m \gg 0$.
- (c) If X is not in $\mathcal{P}_{\mathcal{G}}$, then $\tau_{\mathcal{G}}^{-m}X$ is a regular T_2^{\perp} -module for $m \gg 0$.

Proof. Take $X \in \mathcal{G}$ indecomposable and not preinjective in A-mod. Then $\tau_{\mathcal{G}}^{-m}X \neq 0$ for all $m \geq 0$ and by 3.4 there is an m_0 with $\tau_{\mathcal{G}}^{-m}X \in W_l^{\perp}$ hence in $\overline{\mathcal{G}}$ for all $m \geq m_0$. Let $Y = \tau_{\mathcal{G}}^{-m_0} X$. By 4.3, we have $\tau_{\mathcal{G}}^{g^{-t}} Y = \tau_{\overline{\mathcal{G}}}^{-t} Y$ for all $t \geq 0$ and Y is not preinjective in A'-mod since $\tau_{\bar{c}}^{-t}Y \neq 0$ for all $t \geq 0$. The claim now follows from 6.4 and (ind2).

LEMMA 6.7. For $X_1, X_2 \in \mathcal{G}$, not in $\mathcal{P}_{\mathcal{G}}$, we have $\operatorname{Hom}_A(X_1, \tau_{\mathcal{G}}^{-m} X_2) = 0$ for $m \gg 0$.

Proof. It is enough to consider X_1 , X_2 not preinjective in A-mod. By 6.6(b,c) there is an integer s>0 with $\tau_{\mathcal{G}}^{-r}X_i$ a regular T_2^{\perp} -module for i=1,2 and all $r\geq s$ such that $\tau_{\mathcal{G}}^{-r}X_i=\tau_{\widetilde{\mathcal{G}}}^{s-r}\tau_{\mathcal{G}}^{-s}X_i=\tau_{T_{\underline{J}}^{\perp}}^{s-r}\tau_{\mathcal{G}}^{-s}X_i$. By 1.3(a) we therefore get $\operatorname{Hom}(\tau_{\mathcal{C}}^{-s}X_1,\tau_{\mathcal{C}}^{-s-m}X_2)=0$ for $m\gg 0$. Since $\tau_{\mathcal{C}}$ is a full functor, the claim follows.

The third statement of Theorem 2 is shown by induction on l. We start with the case l=1.

Lemma 6.8. Let $T = T_1 \oplus W_l$. If X is a regular module in W_l^{\perp} , then $\tau_{W_l^{\perp}}^{-m} X = \tau_{\mathcal{G}} \tau_{W_l^{\perp}}^{-m-1} X$ for $m \gg 0$.

Proof. Since T_1 is a preprojective tilting module in W_l^{\perp} , all regular W_l^{\perp} -modules are in $\mathcal{G} = \overline{\mathcal{G}}$ and $\tau_{W_l^{\perp}} X = \tau_{\overline{\mathcal{G}}} X$, for all X regular in W_l^{\perp} .

Choose m_0 with $\operatorname{Hom}(Z, \tau_{W_{,\perp}}^{-m} X) = 0$ for all $m \geq m_0$ (see 1.3). By 4.3, we have a universal sequence

$$0 \to \tau_A S_l(r_l) \otimes D\mathrm{Ext}(\tau_{\mathcal{G}} \tau_{W_l^{\perp}}^{-m-1} X, \tau_A S_l(r_l)) \xrightarrow{f} \tau_{W_l^{\perp}}^{-m} X \xrightarrow{g} \tau_{\mathcal{G}} \tau_{W_l^{\perp}}^{-m-1} X \to 0.$$

We show $\operatorname{Hom}(\tau_A S_l(r_l), \tau_{W_l^{\perp}}^{-m} X) = 0$, for $m \geq m_0$, which implies f = 0. Therefore g is an isomorphism.

Consider the Auslander–Reiten sequence

$$0 \to \tau_A S_l(r_l) \to Z \oplus S_l(r_l - 1) \to S_l(r_l) \to 0.$$

Applying $\operatorname{Hom}(-, \tau_{W_l^{\perp}}^{-m}X)$ to this sequence, we get $\operatorname{Hom}(\tau_A S_l(r_l), \tau_{W_l^{\perp}}^{-m}X) \cong \operatorname{Hom}(Z, \tau_{W_l^{\perp}}^{-m}X) = 0$ for $m \geq m_0$.

The proof of the inductive step is quite similar. Let X be regular in T_2^{\perp} . By (ind3) and 6.4 we get $\tau_{\overline{\mathcal{G}}}^r \tau_{T_2^{\perp}}^{-m-r} X = \tau_{T_2^{\perp}}^{-m} X$ for $m \geq m_0$ and $r \geq 0$. As in the proof of 6.8 we get $\operatorname{Hom}(\tau_A S_l(r_l), \tau_{T_2^{\perp}}^{-m} X) \cong \operatorname{Hom}(Z, \tau_{T_2^{\perp}}^{-m} X)$. Since Z is in $\overline{\mathcal{G}}$ by 5.2, it follows that $0 = \operatorname{Hom}(Z, \tau_{T_2^{\perp}}^{-m-r} X) = \operatorname{Hom}(Z, \tau_{\overline{\mathcal{G}}}^{-r} \tau_{T_2^{\perp}}^{-m} X)$ for $r \gg 0$, by 6.7. In particular, $\operatorname{Hom}(\tau_A S_l(r_l), \tau_{\overline{\mathcal{G}}} \tau_{T_2^{\perp}}^{-m-r-1} X) = 0$. Considering the universal exact sequence

$$0 \to \tau_A S_l(r_l)^t \to \tau_{\overline{\mathcal{G}}} \tau_{T_2^{-1}}^{-m-r-1} X \to \tau_{\mathcal{G}} \tau_{T_2^{-1}}^{-m-r-1} X \to 0$$

the claim follows.

REFERENCES

- M. Auslander and S. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426–454.
- [2] W. Crawley-Boevey and O. Kerner, A functor between categories of regular modules for wild hereditary algebras, Math. Ann. 298 (1994), 481–487.
- [3] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273–343.
- [4] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitited algebras, Mem. Amer. Math. Soc. 575 (1996).
- [5] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23–28.
- [6] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399–443.
- [7] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427–439.
- [8] —, Modules without self-extensions and Nakayama's conjecture, Arch. Math. (Basel) 43 (1984), 493–500.
- [9] O. Kerner, Tilting wild algebras, J. London Math. Soc. (2) 39 (1989), 29-47.
- [10] —, Universal exact sequences for torsion theories, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 317–326.
- [11] —, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37–57.
- [12] O. Kerner and F. Lukas, Regular modules over wild hereditary algebras, in: Representations of Finite-Dimensional Algebras, H. Tachikawa and V. Dlab (eds.), Proc. ICRA V, CMS Conf. Proc. 11, 1991, 191–208.
- [13] H. Lenzing and J. A. de la Peña, Wild canonical algebras, Math. Z., to appear.

- [14] H. Meltzer, Auslander–Reiten componentes for concealed-canonical algebras, Colloq. Math. 71 (1996), 183–202.
- [15] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235–255.
- [16] —, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [17] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43–66.
- [18] A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 385–395.

Mathematisches Institut Heinrich-Heine-Universität Universitätsstr. 1 D-40225 Düsseldorf, Germany

E-mail: kerner@mx.cs.uni-duesseldorf.de

Received 9 April 1996; revised 3 July 1996