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A VARIANT OF HÖRMANDER’S CONDITION
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BY
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Consider the operator T defined for f ∈ L2(R) ∩ Lp(R) by T̂ f(ξ) =

χ[−1,1](ξ)f̂(ξ). Of course, it is well known that this operator is bounded
from Lp(R) to Lp(R) if 1 < p < ∞. In fact, T can be constructed from
multiplication operators and the Hilbert transform, so the boundedness of T
on Lp is just a consequence of the Lp boundedness of the Hilbert transform.
It is curious that although the Lp boundedness of T follows from results on
singular integrals, it does not follow directly, since the kernel of T , (sin x)/x,
has a derivative which does not decay quickly enough at infinity to apply
the usual theory (see Davis and Chang [3]). Our aim in this paper is to show
a result on singular integrals which in fact does include operators defined
with kernels such as (sin x)/x.

Our result will be a variant of a classical result of Calderón and Zyg-
mund [1]. Actually, the statement will resemble that of a theorem found in
Stein’s [5] treatment of the Calderón and Zygmund theory. In order to state
our results succinctly, we first introduce a little terminology.

We say that a function p ≥ 0 on R
q satisfies a reverse-L∞ inequality

(abbreviated as “p satisfies RL∞”) if there is a constant C such that for
every cube Q ⊆ R

q centered at the origin we have 0 < ‖p|Q‖∞ ≤ CpQ.
Here and throughout, p|Q denotes the restriction of the function p to Q and
pQ denotes the average of the function p on Q. With these notations and
conventions, we can now state our results.

Theorem. Let K ∈ L2(Rn). Suppose that there exists a constant B
such that

(a) ‖K̂‖∞ ≤ B,
(b) There exist functions A1(x), . . . , Am(x) and ϕ1(y), . . . , ϕm(y) such

that each ϕi(y) is bounded , |det[ϕj(yi)]|2 satisfies RL∞ on R
nm, and

1991 Mathematics Subject Classification: Primary 42B20.
The second author partially supported by the NSF Grant No. DMS-9204529.

[165]



166 D. J. GRUBB AND C. N. MOORE

(c) We have\
|x|>2|y|

∣∣∣K(x − y) −
m∑

i=1

Ai(x)ϕi(y)
∣∣∣ dx ≤ B for all |y| > 0.

For 1 < p < ∞ and f ∈ L1 ∩ Lp set

Tf(x) =
\

Rn

K(x − y)f(y) dy.

Then there exists a constant Ap so that ‖Tf‖p ≤ Ap‖f‖p. The constant Ap

depends only on p, B, n, m and the constant in the RL∞ condition for the

ϕi, but not on the L2 norm of K.

The condition (b) is an alternation of what is known as Hörmander’s
condition. In fact, if we take m = 1, A1(x) = K(x), ϕ1(y) ≡ 1, then this is
exactly Hörmander’s condition and the theorem is Hörmander’s [4] version
of the result of Calderón and Zygmund. We will show in Section 3 how to
apply this theorem to the kernel (sin x)/x.

The proof of the theorem follows the strategy laid out by Calderón and
Zygmund; L2 boundedness of the operator T is a trivial consequence of hy-
pothesis (a). Using (a) and (b) we will then show T is weak type (1, 1).
Finally, interpolation and duality give the result for 1<p <∞. The difficult
task is the weak type (1, 1) estimate. This is where the proof of our result
differs from the proof of Calderón and Zygmund. To estimate the distribu-
tion of Tf(x), that is, to estimate |{x : |Tf(x)| > λ}| for λ > 0, Calderón
and Zygmund write f = g + b, where g is a function such that |g| ≤ λ, and
b is a function which is supported on a union of cubes. On a typical such
cube Q, b = f −fQ. To motivate the present theorem, we think of fQ = g|Q
as the projection of f onto the space of constant functions. We, however,
will consider a similar decomposition of f as f = g + b, but so that for each
cube Q, g|Q is a projection of f onto the linear span of ϕ1, . . . , ϕm. With
the proper estimates of these projections, we can proceed as in Calderón
and Zygmund and obtain the necessary distribution estimates for Tg and
Tb so that we can show T is weak (1, 1).

In Section 1 we show the necessary estimates on projections of functions.
In Section 2 we prove the theorem by filling in the details of the strategy we
have just outlined. Finally, in Section 3 we give some examples.

1. Projections. When we talk of the projection of an L1-function f
onto a finite-dimensional subspace, we mean that there is a function g in
the subspace such that

T
fh dx =

T
gh dx for every h in the subspace. If we

fix a cube Q and consider the projection of f |Q onto the space of functions
which are constant on Q, then this projection is just fQ, which obviously
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satisfies |fQ| ≤ C|f |Q with C = 1. We want to show this estimate persists
in some situations when the space of constant functions is replaced by the
linear span of a finite set of functions.

Lemma. Suppose ϕ1, . . . , ϕm is a set of bounded functions on R
n such

that |det[ϕj(xi)]|2 satisfies RL∞ on R
nm. Then there exists a constant C

with the property that whenever Q ⊆ R
n is a cube centered at the origin,

f ∈ L1(Q) and A1ϕ1(x) + . . . + Amϕm(x) is the projection of f |Q onto

the span of ϕ1, . . . , ϕm in L1(Q), then we have supx∈Q |A1ϕ1(x) + . . . +
Amϕm(x)| ≤ C|f |Q. The constant C depends only on n, m and the constant

in the RL∞ condition for the ϕj .

P r o o f. Fix Q. To simplify our notation we write

〈p, q〉 =
1

|Q|
\
Q

p(x)q(x) dx

and let G be the m × m matrix defined by Gij = 〈ϕi, ϕj〉. Then, with this
notation, the Ai are solutions of the system G[A1, . . . , Am]T =
[〈ϕ1, f〉 . . . 〈ϕm, f〉]T. For j = 1, . . . ,m let Gj be the matrix which is the
same as G except that the elements in the jth column of Gj are 〈ϕi, f〉, i =
1, . . . ,m, instead of the 〈ϕi, ϕj〉 which occur in G. By a formula in Courant
and Hilbert [2, p. 108],

(1) det G =
1

|Q|m
\
Q

. . .
\
Q

|det(ϕj(xi))|2 dx1 . . . dxm.

The RL∞ condition implies that the last expression is non-zero, so by
Cramer’s rule,

Aj =
detGj

det G
.

Thus, it will suffice to show

(2)
∣∣∣

m∑

j=1

[det Gj ]ϕj(x)
∣∣∣ ≤ C|f |Q|det G|, x ∈ Q.

For j = 1, . . . ,m, let Hj(u, x) be the matrix which is the same as G except
that the jth column consists of the elements ϕi(u)ϕj(x). Then

∣∣∣
m∑

j=1

[det Gj ]ϕj(x)
∣∣∣ =

∣∣∣∣
m∑

j=1

1

|Q|
\
Q

f(u)[detHj(u, x)] du

∣∣∣∣

≤ 1

|Q|
\
Q

|f(u)|
∣∣∣

m∑

j=1

det[Hj(u, x)]
∣∣∣ du.
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Thus, (2) follows if we show

(3)
∣∣∣

m∑

j=1

det[Hj(u, x)]
∣∣∣ ≤ C|detG|, x, u ∈ Q.

Now let M = M(x1, . . . , xm−1) be the m × m − 1 matrix defined by Mij =
ϕi(xj), j = 1, . . . ,m − 1, and let Φ(u) be the m × 1 matrix defined by
Φ(u) = [ϕ1(u) . . . ϕm(u)]T. Then we claim

(4)
1

|Q|m−1

\
Q

. . .
\
Q

det[M |Φ(u)] det[M |Φ(x)] dx1 . . . dxm−1

= (m − 1)!

m∑

j=1

detHj(u, x).

Before proving (4), we show how (3) follows from it. The left hand side of
(4) is dominated by

1

2
sup{|det[M |Φ(u)]|2 : x1, . . . , xm−1, u ∈ Q}

+
1

2
sup{|det[M |Φ(v)]|2 : x1, . . . , xm−1, v ∈ Q}

=
C

|Q|m
\
Q

. . .
\
Q

|det[M |Φ(u)]|2 dx1 . . . dxm−1 du

+
C

|Q|m
\
Q

. . .
\
Q

|det[M |Φ(v)]|2 dx1 . . . dm−1 dv ≤ 2C|detG|,

where the first inequality follows from our RL∞ assumption, and the last
inequality follows from (1). Thus, we are finished if we show (4).

The proof of (4) is essentially the same as the proof of the formula in
Courant and Hilbert that we just used. The integrand on the right side of
(4) can be rewritten as

det[M |Φ(u)] det[M |Φ(x)]

= det([M |Φ(u)][M |Φ(x)]T) = det
[( m−1∑

l=1

ϕi(xl)ϕj(xl) + ϕi(u)ϕj(x)
)

ij

]

=

m∑

j=1

∑

σ∈Sm−1

detAσj
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where

Aσj =




ϕ1(xσ(1))ϕ1(xσ(1)) . . . ϕ1(u)ϕj(x) . . . ϕ1(xσ(m−1))ϕm(xσ(m−1))

...
...

...

ϕm(xσ(1))ϕ1(xσ(1)) . . . ϕm(u)ϕj(x) . . . ϕm(xσ(m−1))ϕm(xσ(m−1))


 .

The first two equalities above are clear; to obtain the last we expand the
determinant to obtain mm determinants. However, many are zero, and
what remains is exactly the m! determinants written out in the last term.
Integrating both sides with respect to the variables x1, . . . , xm−1 gives (4)
and finishes the proof of the lemma.

2. The proof of the theorem. As indicated previously, we will es-
sentially follow Stein’s treatment of the Calderón and Zygmund theory. At
points when our proof is similar to that found in Stein, we will be rather
brief but will be careful to elaborate at those points where our proof differs.

For f ∈ L2(Rn) we have T̂ f(ξ) = K̂(ξ)f̂(ζ), so that by Plancherel’s
theorem ‖Tf‖2 ≤ B‖f‖2.

To show that T is weak type (1, 1), fix f ∈ L1 and λ > 0; we wish to
show that |{x : Tf(x) > λ}| ≤ Cλ−1‖f‖1 with C independent of f or λ.
We can assume that f is real-valued.

We now consider a Calderón–Zygmund decomposition of R
n (see Stein

[5, p. 17]): there exists a closed set F and an open set Ω such that

(i) R
n = F ∪ Ω,

(ii) |f(x)| ≤ λ a.e. on F ,

(iii) Ω is the union of cubes, Ω =
⋃

j Qj , whose interiors are disjoint,
and so that for each Qj , λ ≤ |f |Qj

≤ 2nλ.

For each such Qj we let yj denote the center of Qj , and then let gj(x)
denote the projection of f |Qj

onto the span of ϕ1(· − yj), . . . , ϕm(· − yj).

Now set

g(x) =

{
f(x) if x ∈ F ,
gj(x) if x ∈ Ω and x ∈ Qj

and let b(x) = f(x)−g(x). If x ∈ F , then by (ii), |g(x)| ≤ λ, while if x ∈ Qj ,
|g(x)| = |gj(x)| ≤ C|f |Qj

≤ Cλ by the lemma. Thus, |g(x)| ≤ Cλ for all x
and therefore

(5)

∣∣∣∣
{

x : |Tg(x)| >
λ

2

}∣∣∣∣ ≤
C

λ2

\
Rn

|g(x)|2 dx ≤ C

λ
‖g‖1

=
C

λ

\
F

|f(x)| dx +
C

λ

∑

j

\
Qj

|gj(x)| dx
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≤ C

λ

\
F

|f(x)| dx +
C

λ

∑

j

|Qj | |f |Qj
=

C

λ
‖f‖1.

The function b(x) is supported on
⋃

j Qj ; on each Qj we set bj(x) =
f(x) − gj(x), so that b(x) =

∑
j bj(x). For each j, let Q∗

j denote the cube

which has the same center as Qj but with sidelength 2
√

n times as long.
Then, since

T
Qj

ϕi(y − yj)bj(y) dy = 0,

Tbj(x) =
\

Qj

K(x − y)bj(y) dy

=
\

Qj

[
K(x − y) −

m∑

i=1

Ai(x − yj)ϕi(y − yj)
]
bj(y) dy

and so\
Rn\
⋃

Q∗

j

|Tb(x)| dx

≤
∑

j

\
x6∈Q∗

j

\
Qj

∣∣∣K(x − y) −
m∑

i=1

Ai(x − yj)ϕi(y − yj)
∣∣∣ |bj(y)| dy dx

=
∑

j

\
x6∈Q∗

j

\
Qj−yj

∣∣∣K(x − (y + yj)) −
m∑

i=1

Ai(x − yj)ϕi(y)
∣∣∣ |bj(y + yj)| dy dx

=
∑

j

\
Qj−yj

\
x6∈Q∗

j

∣∣∣K(x − (y + yj)) −
m∑

i=1

Ai(x − yj)ϕi(y)
∣∣∣ dx |bj(y + yj)| dy.

Make the change of variables x′ = x − yj in the inner integral in the last
expression, and note that if y ∈ Qj − yj , x′ 6∈ Q∗

j − yj , then |x′| > 2|y|, so
that the inner integral in the last expression is dominated by\

|x′|>2|y|

∣∣∣K(x′ − y) −
m∑

i=1

Ai(x
′)ϕi(y)

∣∣∣ dx′ ≤ B.

Combining this estimate with the previous ones yields\
Rn\
⋃

Q∗

j

|Tb(x)| dx ≤ B
∑

j

‖bj‖1

= B
∑

j

|Qj | |bj |Qj
≤ C

∑

j

|Qj | |f |Qj
≤ C‖f‖1.

Thus

(6)

∣∣∣∣
{

x ∈ R
n \

⋃
Q∗

j : |Tb(x)| >
λ

2

}∣∣∣∣ ≤
C

λ
‖f‖1.
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But also, using (iii),

(7)
∣∣∣
⋃

j

Q∗
j

∣∣∣ ≤ C
∑

j

|Qj | ≤ C
∑

j

1

λ
|Qj | |f |Qj

=
C

λ
‖f‖1.

Combining estimates (6) and (7) gives the estimate

(8)

∣∣∣∣
{

x ∈ R
n : |Tb(x)| >

λ

2

}∣∣∣∣ ≤
C

λ
‖f‖1.

Combining (5) and (8) gives the desired weak type (1, 1) inequality.

Since T is of weak type (1, 1) and bounded on L2, we can apply the
Marcinkiewicz interpolation theorem (see Stein [5, p. 21]) to conclude that
T is bounded on Lp if 1 < p < 2.

Now note that if K(x) satisfies the hypothesis of the theorem, then so
does K(−x); thus, the duality argument found in Stein [5, p. 33] applies to
show that T is bounded on Lp for 2 < p < ∞.

3. Examples

Example 1. As noted earlier, if we take m = 1, A1(x) = K(x), and
ϕ1(x) ≡ 1, we get Hörmander’s version of the Calderón–Zygmund Theo-
rem [4].

Example 2. Let T be the operator defined by T̂ f(ξ) = s(ξ)f̂(ξ), where
s(ξ) is a step function. The kernel corresponding to this operator is in L2(R)
and has the form

K(x) =

m∑

j=1

cje
iλjx

x
,

where λj is real for every j and
∑m

j=1 cj = 0. By construction, condition

(a) of the theorem is satisfied. Set Aj(x) = (cje
iλjx)/x and ϕj(y) = e−iλjy

to get the integral estimate in (c). We need to show that D(y1, . . . , ym) =
|det[exp(−iλjyk)]|2 satisfies the RL∞ condition. To see this, use Taylor’s
theorem to write D = p + r, where p 6≡ 0 is a homogeneous polynomial
of degree l and r(y1, . . . , ym) = O(|(y1, . . . , ym)|l+1). For a > 0, set Qa =
[−a, a]m; then the homogeneity of p implies that pQa

= alpQ1
. Let M

be a constant such that ‖r|Qa
‖∞ ≤ Mal+1, and ‖p|Qa

‖∞ ≤ Mal for all
0 < a ≤ 1. Since D > 0 and DQa

> 0 for all a > 0, we see that for
small enough a, pQa

> 0, hence pQ1
> 0. Then if a < (2M)−1pQ1

, we have
pQa

≤ 2DQq
, so

‖D|Qa
‖∞ ≤ 2Mal ≤ 2M

pQ1

pQa
≤ 2M

pQ1

DQa
.

The fact that the RL∞ condition holds for larger a is an easy consequence
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of the following properties of DQa
:

(i) DQa
> 0 for all a > 0,

(ii) ‖D‖∞ < ∞,

(iii) lim
a→∞

DQa
= m! lim

a→∞
det[(exp(i(λj − λk)x))Qa

] = m! det Im = m!,

where formula (1) is used again.
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