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GENERIC PROPERTIES OF SOME BOUNDARY VALUE PROBLEMS

FOR DIFFERENTIAL EQUATIONS

BY

DARIUSZ B IELAWSK I (GDAŃSK)

In this note we consider ordinary differential equations with the Picard,
Nicoletti or Floquet boundary value conditions. We are also concerned with
some boundary value problems for a hyperbolic equation which were posed
in [6]. In [1] we presented results concerning the existence of solutions and
the existence and uniqueness of solutions of these problems. These results
seem to be the best possible for certain classes of right-hand sides and they
develop ideas of Lasota and Olech [3] and of Kasprzyk and Myjak [2].

In the present paper we widen the classes of right-hand sides considered.
The above mentioned results are not true for all maps from the extended
classes. We show, however, that the subset of maps for which the existence
of solutions or the existence and uniqueness of solutions fails is of the first
Baire category in an appropriate complete metric space. Recall that a subset
of a metric space is called residual if its complement is of the first category.
A property of elements of a metric space which holds true for every member
of a residual set is called generic.

This approach to differential equations was introduced by Orlicz [5].
He proved a theorem on genericity of uniqueness for the Cauchy problem.
Since then generic properties of functional and differential equations have
been studied by many authors. In Myjak’s monograph [4] the reader can
find several results and a list of references.

1. Preliminaries. In the sequel ∆ denotes [0, p1] × . . . × [0, pi] with
the Lebesgue measure µ. Let E be the Banach space C(∆, Rn) with the
usual supremum norm ‖ · ‖∞. We denote by K the real Hilbert space of all
x ∈ L2(∆, Rn) with the scalar product given by (γ ∈ C(∆, (0,∞)))

(x, y)K =
\
∆

γ(t)

n∑

j=1

xj(t)yj(t) dµ
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and the corresponding norm ‖ · ‖K. B∞(0, r) and BK(0, r) stand for the
closed balls about 0 with radius r in the spaces E and K respectively. We
denote by J the canonical continuous injection from E to K.

(Z, ̺) is the Fréchet space C(∆ × (Rn)k, Rn) endowed with the metric

̺(f, g) =
∞∑

j=1

2−j supj

1 + supj

,

where we have set supj = sup{|f(t, u0, . . . , uk−1)− g(t, u0, . . . , uk−1)| : t∈∆,
|u0|, . . . , |uk−1| ≤ j}. Consider two closed subspaces of Z:

G = {f ∈ Z : |f(t, u0, . . . , uk−1)| ≤ L0|u0| + . . . + Lk−1|uk−1| + M,

u0, . . . , uk−1 ∈ R
n},

F = {f ∈ Z : |f(t, u0, . . . , uk−1) − f(t, v0, . . . , vk−1)|

≤ L0|u0 − v0| + . . . + Lk−1|uk−1 − vk−1|,

u0, . . . , uk−1, v0, . . . , vk−1 ∈ R
n},

where L0, . . . , Lk−1,M are nonnegative constants.
Let T0, . . . , Tk−1 : K → E be completely continuous and linear. We

denote by θj the norm of the bounded linear operator J ◦Tj : K → K, where
j = 0, . . . , k − 1. For any f ∈ Z and ξ0, . . . , ξk−1 ∈ E define a completely
continuous operator hf : E → E by

hf (x)(t) = f(t, ξ0(t) + T0 ◦ J(x)(t), . . . , ξk−1(t) + Tk−1 ◦ J(x)(t)), t ∈ ∆.

Theorem 1. Suppose that θ0L0 + . . . + θk−1Lk−1 ≤ 1. Then the set G∗

of all f ∈ G such that for all ξ0, . . . , ξk−1 ∈ E the map hf has at least one

fixed point is residual in the complete space (G, ̺).

P r o o f. Define N = {µf : µ ∈ [0, 1), f ∈ G}. Observe that N is dense
in G. For every g ∈ N and l ∈ N we will find η(g, l) > 0 such that

(1.1)
∞⋂

l=1

⋃

g∈N

B(g, η(g, l)) ⊂ G∗.

Hence G∗ contains a dense Gδ-set, and so it is residual in (G, ̺).
Suppose that l ∈ N and g ∈ N . Choose µ(g) ∈ [0, 1) such that g ∈ µ(g)G.

Set

R(g, l) = ‖J‖(1 + M + L0l + . . . + Lk−1l)/(1 − µ(g)),

r(g, l) = M + L0l + . . . + Lk−1l + (L0‖T0‖ + . . . + Lk−1‖Tk−1‖)R(g, l).

Define the nonempty, closed, convex and bounded set C(g, l) ⊂ E by

C(g, l) = J−1(BK(0, R(g, l))) ∩ B∞(0, r(g, l)).

From the definition of ̺ and the continuity of T0, . . . , Tk−1 it follows that one
can find η(g, l) > 0 such that for any f ∈ B(g, η(g, l)) and x, ξ0, . . . , ξk−1 ∈ E
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we have

(1.2) ‖ξ0‖∞ ≤ l, . . . , ‖ξk−1‖∞ ≤ l, ‖J(x)‖K ≤ R(g, l)

⇒ ‖hf (x) − hg(x)‖∞ ≤ 1.

Now we prove (1.1). Suppose that f belongs to the left side of that
inclusion. Then there exists a sequence {gl} such that gl ∈ N and
̺(gl, f) < η(gl, l) for l ∈ N. Observe that for all ξ0, . . . , ξk−1 ∈ E such that
‖ξ0‖∞, . . . , ‖ξk−1‖∞ ≤ l we have hf (C(gl, l)) ⊂ C(gl, l). In fact, gl ∈ µ(gl)G.
Furthermore, from (1.2) it follows that for x ∈ C(gl, l) we have

‖J ◦ hf (x)‖K

≤ ‖J ◦ (hf − hgl
)(x)‖K + ‖J ◦ hgl

(x)‖K

≤ ‖J‖ + ‖M‖K + L0‖J(ξ0)‖K + . . . + Lk−1‖J(ξk−1)‖K + µ(gl)‖J(x)‖K

≤ R(gl, l)

and

‖hf (x)‖∞ ≤ M + L0‖ξ0‖∞ + . . . + Lk−1‖ξk−1‖∞

+ (L0‖T0‖ + . . . + Lk−1‖Tk−1‖)‖J(x)‖K

≤ r(gl, l),

which proves hf (C(gl, l)) ⊂ C(gl, l). The map hf : E → E is completely
continuous and so it has a fixed point. One can choose l ∈ N arbitrarily and
consequently f ∈ G∗. This completes the proof.

Theorem 2. Suppose that θ0L0 + . . . + θk−1Lk−1 ≤ 1. Then the set F∗

of all f ∈ F such that for all ξ0, . . . , ξk−1 ∈ E the map hf has exactly one

fixed point is residual in the complete space (F , ̺).

P r o o f. As in the proof of Theorem 1 one can show that the set of all
f ∈ F such that for all ξ0, . . . , ξk−1 ∈ E the map hf has at least one fixed

point is residual in F . Therefore, it suffices to prove that the set F̃ of all
f ∈ F such that for all ξ0, . . . , ξk−1 ∈ E the map hf has at most one fixed
point is residual in F .

Define M = {µf : µ ∈ [0, 1), f ∈ F}. Observe that M is dense in F .
For every g ∈ M and l ∈ N we will find ε(g, l) > 0 such that

(1.3)

∞⋂

l=1

⋃

g∈M

B(g, ε(g, l)) ⊂ F̃ .

Then F̃ is residual in F . Suppose that l = 1, 2, . . . and g ∈ M. Choose
µ(g) ∈ [0, 1) such that g ∈ µ(g)F . From the definition of ̺ and the conti-
nuity of J, T0, . . . , Tk−1 it follows that one can find ε(g, l) > 0 such that for
any f ∈ B(g, ε(g, l)) and x, ξ0, . . . , ξk−1 ∈ E we have
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(1.4) ‖ξ0‖∞ ≤ l, . . . , ‖ξk−1‖∞ ≤ l, ‖x‖∞ ≤ l

⇒ ‖hf (x) − hg(x)‖∞ ≤
1 − µ(g)

2l‖J‖
.

Now we prove (1.3). Suppose that f belongs to the left side of that
inclusion. Then there exists a sequence {gl} such that gl ∈ M and ̺(gl, f) <
ε(gl, l) for l = 1, 2 . . . Assume that x, y, ξ0, . . . , ξk−1 ∈ E, x = hf (x), y =
hf (y) and ‖x‖∞ ≤ l, ‖y‖∞ ≤ l, ‖ξ0‖∞ ≤ l, . . . , ‖ξk−1‖∞ ≤ l. Observe that
gl ∈ µ(gl)F . From (1.4) we get

‖J(x − y)‖K

= ‖J ◦ hf (x) − J ◦ hf (y)‖K

≤ ‖J ◦ (hf − hgl
)(x)‖K + ‖J ◦ hgl

(x) − J ◦ hgl
(y)‖K + ‖J ◦ (hgl

− hf )(y)‖K

≤ µ(gl)(L0θ0‖J(x − y)‖K + . . . + Lk−1θk−1‖J(x − y)‖K) + (1 − µ(gl))/l

≤ µ(gl)‖J(x − y)‖K + (1 − µ(gl))/l.

Thus, ‖J(x − y)‖K ≤ 1/l. Since one can choose l = 1, 2, . . . arbitrarily we
get x = y. This means that hf has at most one fixed point and completes
the proof.

2. Generic properties of the Picard problem. Consider the Picard
boundary value problem

(2.1)

{
x′′(t) = f(t, x(t)), t ∈ [0, p],
x(0) = a, x(p) = b,

where a, b ∈ R
n and f : [0, p]×R

n → R
n is continuous. By a solution of the

problem (2.1) we mean any x ∈ C2([0, p], Rn) satisfying (2.1).

Let ∆ be [0, p]. Therefore, E is the Banach space C([0, p], Rn) and K is
the Hilbert space L2([0, p], Rn) (we assume that γ ≡ 1). Let T : K → E be
given by

T (x)(t) = −
1

p

(
(p − t)

t\
0

sx(s) ds + t

p\
t

(p − s)x(s) ds
)
.

It is known (see [1]) that ‖J ◦T‖ = (p/π)2. The map hf : E → E is defined
by

hf (y)(t) = f(t, ξ(t) + T ◦ J(y)(t)), t ∈ [0, p],

where ξ(t) = (1 − (t/p))a + (t/p)b for t ∈ [0, p]. After setting y = x′′ the
problem (2.1) may be written as y = hf (y), where y ∈ E. If y is a fixed
point of hf , then ξ + T ◦J(y) is a solution of (2.1). From Theorems 1 and 2
respectively we obtain the following two theorems.
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Theorem 3. Suppose that M ≥ 0. Then the set of all f such that for

every a, b ∈ R
n the problem (2.1) has at least one solution, is residual in the

complete space

{f ∈ C([0, p] × R
n, Rn) : |f(t, u)| ≤ (π2/p2)|u| + M for t ∈ [0, p], u ∈ R

n}

with the metric ̺.

Theorem 4. The set of all f such that for every a, b ∈ R
n the problem

(2.1) has exactly one solution is residual in the complete space

{f ∈ C([0, p] × R
n, Rn) : |f(t, u) − f(t, v)| ≤ (π2/p2)|u − v|

for t ∈ [0, p], u, v ∈ R
n}

with the metric ̺.

3. Generic properties of the Floquet problem. Consider the
Floquet boundary value problem

(3.1)

{
x(k)(t) = f(t, x(t), x′(t), . . . , x(k−1)(t)), t ∈ [0, p],
x(0) + λx(p) = r0, . . . , x(k−1)(0) + λx(k−1)(p) = rk−1,

where λ > 0, r0, . . . , rk−1 ∈ R
n and f : [0, p] × (Rn)k → R

n is continu-
ous. By a solution of the problem (3.1) we mean any x ∈ Ck([0, p], Rn)
satisfying (3.1).

In this section ∆ = [0, p]. Consequently, E = C([0, p], Rn). Here K is
the Hilbert space of all x ∈ L2([0, p], Rn) with the scalar product

(x, y)K =

p\
0

λ2t/p
n∑

j=1

xj(t)yj(t) dt.

Set θ = p/
√

π2 + ln2 λ. Let T : K → E be given by

T (x)(t) =
1

1 + λ

t\
0

x(s) ds −
λ

1 + λ

p\
t

x(s) ds.

It is proved in [1] that ‖J ◦ T‖ ≤ θ.
Define ξ ∈ C∞([0, p], Rn) and hf : E → E by

ξ(t) = (r0 + T ◦ J(r1)(t) + . . . + (T ◦ J)k−1(rk−1)(t))/(1 + λ),

hf (y)(t) = f(t, ξ(t) + (T ◦ J)k(y)(t), . . . , ξ(k−1)(t) + T ◦ J(y)(t)).

After setting y = x(k) the problem (3.1) may be written as y = hf (y), where
y ∈ E. If y is a fixed point of hf , then ξ + (T ◦ J)k(y) is a solution of (3.1).
From Theorems 1 and 2 we obtain

Theorem 5. Suppose that M,L0, L1, . . . , Lk−1 ≥ 0 satisfy

(3.2) θkL0 + . . . + θLk−1 ≤ 1.
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Then the set of all f ∈ G such that for every r0, . . . , rk−1 ∈ R
n the problem

(3.1) has at least one solution, is residual in the complete space (G, ̺).

Theorem 6. Suppose that L0, L1, . . . , Lk−1 ≥ 0 satisfy (3.2). Then the

set of all f ∈ F such that for every r0, . . . , rk−1 ∈ R
n the problem (3.1) has

exactly one solution, is residual in the complete space (F , ̺).

4. Generic properties of the Nicoletti problem. Consider the
Nicoletti boundary value problem

(4.1)

{
x(k)(t) = f(t, x(t), x′(t), . . . , x(k−1)(t)), t ∈ [0, p],

x
(l)
j (tlj) = rlj , l = 0, . . . , k − 1, j = 1, . . . , n,

where tl = (tl1, . . . , tln) ∈ [0, p]n, rl = (rl1, . . . , rln) ∈ Rn for l = 0, . . . , k− 1
and f : [0, p] × (Rn)k → R

n is continuous. By a solution of (4.1) we mean
any x ∈ Ck([0, p], Rn) satisfying (4.1).

In this section ∆ = [0, p]. Consequently, E = C([0, p], Rn). Now K is
the Hilbert space of all x ∈ L2([0, p], Rn) with the scalar product

(x, y)K =

p\
0

n∑

j=1

xj(t)yj(t) dt.

Set ω = 2p/π. Define T0, . . . , Tk−1 : K → E by

Tl(x)(t)j =

t\
tlj

xj(s) ds, l = 0, . . . , k − 1, j = 1, . . . , n.

In [1] it was shown that for l = 0, . . . , k − 1 we have ‖J ◦ Tl‖ ≤ ω.
Define ξ ∈ C∞([0, p], Rn) and hf : E → E by

ξ = r0 + T0 ◦ J(r1) + . . . + T0 ◦ J ◦ . . . ◦ Tk−2 ◦ J(rk−1),

hf (y)(t) = f(t, ξ(t) + T0 ◦ J ◦ . . . ◦ Tk−1 ◦ J(y)(t), . . . , ξ(k−1)(t)

+ Tk−1 ◦ J(y)(t)).

After setting y = x(k) the problem (4.1) may be written as y = hf (y), where
y ∈ E. If y is a fixed point of hf , then ξ + T0 ◦ J ◦ . . . ◦ Tk−1 ◦ J(y) is a
solution of (4.1). From Theorems 1 and 2 we obtain

Theorem 7. Suppose that M,L0, L1, . . . , Lk−1 ≥ 0 satisfy

(4.2) ωkL0 + . . . + ωLk−1 ≤ 1.

Then the set of all f ∈ G such that for every r0, . . . , rk−1 ∈ R
n the problem

(4.1) has at least one solution, is residual in the complete space (G, ̺).

Theorem 8. Suppose that L0, L1, . . . , Lk−1 ≥ 0 satisfy (4.2). Then the

set of all f ∈ F such that for every r0, . . . , rk−1 ∈ R
n the problem (4.1) has

exactly one solution, is residual in the complete space (F , ̺).
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5. Generic properties of a boundary value problem for a hy-

perbolic equation. Consider the boundary value problem

(5.1)

{
uxy = f(x, y, u), x ∈ [0, p], y ∈ [0, q],
u(0, y) + λ1u(p, y) = σ(y), u(x, 0) + λ2u(x, q) = χ(x),

where λ1, λ2 > 0, f : [0, p] × [0, q] × R
n → R

n is continuous, χ : [0, p] → R
n

and σ : [0, q] → R
n are continuously differentiable and χ(0) + λ1χ(p)

= σ(0) + λ2σ(q). By a solution of (5.1) we mean any continuous map
u : [0, p] × [0, q] → R

n with continuous derivatives ux, uy, uxy = uyx satisfy-
ing (5.1) on [0, p] × [0, q].

Let ∆ be [0, p]× [0, q]. Then E is the Banach space C([0, p]× [0, q], Rn).
Let K be the Hilbert space of all v ∈ L2([0, p] × [0, q], Rn) with the scalar
product

(u, v)K =

p\
0

q\
0

n∑

j=1

λ
2s/p
1 λ

2t/q
2 uj(s, t)vj(s, t) ds dt.

Write θ̃ = p/
√

π2 + ln2 λ1 and θ̂ = q/
√

π2 + ln2 λ2. Define two operators

S̃, Ŝ : K → E by

S̃(v)(x, y) =
1

1 + λ1

x\
0

v(s, y) ds −
λ1

1 + λ1

p\
x

v(s, y) ds,

Ŝ(v)(x, y) =
1

1 + λ2

y\
0

v(x, t) dt −
λ2

1 + λ2

q\
y

v(x, t) dt.

Observe that Ŝ ◦ J ◦ S̃ : K → E is completely continuous. It was proved in
[1] that ‖J ◦ S̃‖ ≤ θ̃ and ‖J ◦ Ŝ‖ ≤ θ̂.

Define ξ : [0, p] × [0, q] → R
n and hf : E → E by

ξ(x, y) =
χ(x)

1 + λ2
+

σ(y)

1 + λ1
−

χ(0) + λ1χ(p)

(1 + λ1)(1 + λ2)
,

hf (v)(x, y) = f(x, y, ξ(x, y) + Ŝ ◦ J ◦ S̃ ◦ J(v)(x, y)).

After setting v = uxy the problem (5.1) may be written as v = hf (v), where

v ∈ E. If hf (v) = v, then ξ + Ŝ ◦ J ◦ S̃ ◦ J(v) is a solution of (5.1). From
Theorems 1 and 2 we obtain

Theorem 9. Suppose that M ≥ 0. Then the set of all f such that for

every χ ∈ C1([0, p], Rn) and σ ∈ C1([0, q], Rn) satisfying χ(0) + λ1χ(p) =
σ(0) + λ2σ(q) the problem (5.1) has at least one solution, is residual in the

complete space

{f ∈ Z : |f(x, y, z)| ≤ (θ̃ θ̂)−1|z| + M, x ∈ [0, p], y ∈ [0, q], z ∈ R
n}

with the metric ̺.
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Theorem 10. The set of all f such that for every χ ∈ C1([0, p], Rn) and

σ ∈ C1([0, q], Rn) satisfying χ(0)+λ1χ(p) = σ(0)+λ2σ(q) the problem (5.1)
has exactly one solution, is residual in the complete space

{f ∈ Z : |f(x, y, z) − f(x, y, z̃)| ≤ (θ̃ θ̂)−1|z − z̃|,

x ∈ [0, p], y ∈ [0, q], z, z̃ ∈ R
n}

with the metric ̺.

6. Generic properties of a hyperbolic equation with another

boundary value condition. Consider the boundary value problem

(6.1)

{
uxy = f(x, y, u), x ∈ [0, p], y ∈ [0, q],
uj(sj , y) = σj(y), uj(x, tj) = χj(x), j = 1, . . . , n,

where f : [0, p] × [0, q] × Rn → Rn is continuous, χ : [0, p] → Rn and
σ : [0, q] → R

n are continuously differentiable, sj ∈ [0, p], tj ∈ [0, q] and
χj(sj) = σj(tj) for j = 1, . . . , n. By a solution of the problem (6.1) we
mean any continuous map u : [0, p] × [0, q] → R

n with continuous partial
derivatives ux, uy, uxy = uyx satisfying (6.1) on [0, p] × [0, q].

Let ∆ = [0, p]× [0, q]. Thus, E is the Banach space C([0, p]× [0, q], Rn).

Let K be the Hilbert space L2([0, p]× [0, q], Rn). Define two operators S̃, Ŝ :
K → E by

S̃(v)(x, y)j =

x\
sj

vj(s, y) ds, Ŝ(v)(x, y)j =

y\
tj

vj(x, t) dt.

Notice that Ŝ ◦ J ◦ S̃ : K → E is completely continuous. In [1] it was shown

that ‖J ◦ S̃‖ ≤ 2p/π and ‖J ◦ Ŝ‖ ≤ 2q/π. Define ξ : [0, p] × [0, q] → R
n and

hf : E → E by

ξj(x, y) = χj(x) + σj(y) − χj(sj), j = 1, . . . , n,

hf (v)(x, y) = f(x, y, ξ(x, y) + Ŝ ◦ J ◦ S̃ ◦ J(v)(x, y)),

After setting v = uxy the problem (6.1) may be written as v = hf (v), where

v ∈ E. If hf (v) = v, then ξ + Ŝ ◦ J ◦ S̃ ◦ J(v) is a solution of (6.1). From
Theorems 1 and 2 we obtain.

Theorem 11. Let M ≥ 0. Then the set of all f such that for ev-

ery χ ∈ C1([0, p], Rn) and σ ∈ C1([0, q], Rn) satisfying χj(sj) = σj(tj)
(j = 1, . . . , n) the problem (6.1) has at least one solution, is residual in the

complete space
{

f ∈ Z : |f(x, y, z)| ≤
π2

4pq
|z| + M, x ∈ [0, p], y ∈ [0, q], z ∈ R

n

}

with the metric ̺.



BOUNDARY VALUE PROBLEMS 181

Theorem 12. The set of all f such that for every χ ∈ C1([0, p], Rn) and

σ ∈ C1([0, q], Rn) satisfying χj(sj) = σj(tj) (j = 1, . . . , n) the problem (6.1)
has exactly one solution, is residual in the complete space
{
f ∈ Z : |f(x, y, z)−f(x, y, z̃)| ≤

π2

4pq
|z−z̃|, x ∈ [0, p], y ∈ [0, q], z, z̃ ∈ R

n

}

with the metric ̺.
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