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A MODULUS FOR PROPERTY (β) OF ROLEWICZ

BY

J. M. A Y E R B E, T. D O M Í N G U E Z B E N A V I D E S
AND S. F R A N C I S C O C U T I L L A S (SEVILLA)

We define a modulus for the property (β) of Rolewicz and study some
useful properties in fixed point theory for nonexpansive mappings. More-
over, we calculate this modulus in `p spaces for the main measures of non-
compactness.

0. Introduction. In the geometric theory of Banach spaces, the notion
of modulus of convexity plays a very significant role. It allows classifying
Banach spaces from the point of view of their geometrical structure. In this
regard, the modulus of convexity is a useful tool in fixed point theory. A
lot of facts concerning this notion and its applications may be found, for
example, in [GK] and [O].

Recently, K. Goebel, T. Sȩkowski, J. Banaś et al . [GS, B1, DL] have
proposed several generalizations of the notion of modulus of convexity using
some measures of noncompactness. With these moduli (called moduli of
noncompact convexity), they proved several interesting facts concerning the
geometric theory of Banach spaces. Moreover, these moduli are suitable for
nearly uniformly convex spaces (N.U.C.) introduced in [H] in the same sense
as the classical modulus of convexity of Clarkson is suitable for uniformly
convex spaces (U.C.). Property (β) of Rolewicz, introduced in [R2], is a
geometric condition which is situated between U.C. and N.U.C. In [ADF]
we defined a modulus for this property utilizing a characterization given by
Kutzarova [Ku]. Our results, together with the results obtained in [KMP],
permitted obtaining properties not only of the space itself, but also of its
dual. However, we were not able to calculate the modulus for Kuratowski’s
measure of noncompactness in `p-spaces, and for other measures of noncom-
pactness the functions which we obtained are not simple. In this paper we
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use directly the definition of Rolewicz in order to define the modulus. In this
case we have been able to calculate the modulus for the main measures of
noncompactness (including Kuratowski’s measure) in `p, obtaining simpler
values.

1. Notations, definitions and first results. In this paper X will
denote an infinite-dimensional Banach space. Let B be the family of bounded
subsets of X. A map µ : B → [0,∞) is called a measure of noncompactness
on X if it has the property that µ(A) = 0 if and only if A is a precompact
set. The first measure of noncompactness (set-measure, denoted by α(A))
was defined by Kuratowski in [K] as inf{ε ≥ 0 : A can be covered by finitely
many sets with diameter ≤ ε}. Another measure of noncompactness (ball-
measure, denoted by β(A)) was introduced by several authors (see [GGM]
or [S]) as inf{ε ≥ 0 : A can be covered by finitely many balls with diameter
≤ ε}. In [WW, p. 91] another measure of noncompactness is defined by
S(A) = sup{ε ≥ 0 : there exists a sequence {xn} in A with sep({xn}) > ε},
where sep({xn}) = inf{‖xn − xm‖ : n 6= m}. It is easy to prove that
S(A) ≤ α(A) ≤ β(A) ≤ 2S(A) for every bounded subset A of X.

Throughout this paper we denote by µ any of these measures of noncom-
pactness. The main properties of these measures can be found in [AKPRS].
We will use in this paper the following: (1) µ(A) = µ(A), (2) µ(A ∪ B) =
max{µ(A), µ(B)}, (3) µ(A) ≤ µ(B) if A ⊂ B, (4) µ(tA) = |t|µ(A), (5)
µ(co(A)) = µ(A), where co(A) denotes the convex hull of A, (6) µ(A) =
µ(Rn(A)) if X is a Banach space with Schauder basis {ei : i ∈ N} and
Rn : X → X is defined by Rn(

∑∞
i=1 xiei) =

∑∞
i=n+1 xiei.

Utilizing these measures of noncompactness an important geometric pro-
perty of a Banach space, named property (β), has been defined in [R2].

In a Banach space X with closed unit ball BX and unit sphere SX , the
drop D(x,BX) defined by an element x ∈ X\BX is the set co({x} ∪ BX),
and we write Rx = D(x,BX)\BX .

X is said to have property (β) if for each ε > 0 there exists δ > 0 such
that 1 < ‖x‖ < 1 + δ implies µ(Rx) < ε.

We now define a modulus for property (β) of Rolewicz.

Definition 1.1. Let X be a Banach space. We define the modulus
PX,µ : [0, S(BX)) → [0,∞) by

PX,µ(ε) = inf{‖x‖ − 1 : x ∈ X, ‖x‖ > 1, µ(Rx) ≥ ε}.

R e m a r k 1.2. (a) It is known that α(BX) = β(BX) = 2 in every
Banach space (see [AKPRS, p. 3]) and that S(BX) depends on the space
X. For example, if 1 < p < ∞ then S(B`p) = 21/p (see [WW, p. 91].
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(b) From Proposition 1 in [KP] it is not difficult to check that this mod-
ulus is defined on the whole interval [0, µ(BX)). Moreover, 0 ≤ PX,µ(ε) ≤
ε/(µ(BX)− ε). It follows that PX,µ is continuous at zero.

It is easy to prove the following proposition:

Proposition 1.3. P0,µ(X) = sup{ε ≥ 0 : PX,µ(ε) = 0} = 0 ⇔ X has
property (β).

Therefore, this modulus is suitable for this property in the same sense
as the classical Clarkson modulus is suitable for the uniform convexity.

In [KMP] the following generalization of property (β) is defined.

Definition 1.4. A Banach space X has property (β, γ) for some γ > 0
if for all γ′ > γ there exists a δ > 0 such that for every x ∈ BX and every
{xn} ⊂ BX with sep({xn}) > γ′, there is an i ∈ N such that ‖(x + xi)/2‖ <
1− δ.

Proposition 1.5. Let X be a Banach space. If P0,µ(X) < 1/2, then X
has property (β, γ) for some γ < 1.

P r o o f. Since P0,S(X) ≤ P0,α(X) ≤ P0,β(X), it suffices to prove the
result for P0,S(X).

Since P0,S(X) < 1/2, there exists 0 < ε < 1/2 such that PX,S(ε) > 0.
Suppose, by contradiction, that X fails property (β, γ) if γ < 1. Then X
fails property (β, 2ε) and thus, there exists γ′ > 2ε such that

(1) ∀δ > 0 ∃x ∈ BX ∃{xn} ⊂ BX with sep({xn}) > γ′ such that∥∥∥∥x + xi

2

∥∥∥∥ ≥ 1− δ ∀i ∈ N.

Set η = PX,S(ε) and let η′ be a real number, 0 < η′ < η, {xn} a sequence
in BX with sep({xn}) ≥ 2ε and x an arbitrary point of BX .

We claim that there exists n ∈ N such that

[x, xn] ∩
(

1− η′

η + 2

)
BX 6= ∅,

where [x, xn] denotes the line segment between x and xn. Indeed, by con-
tradiction, assume that

[x, xn] ∩
(

1− η′

η + 2

)
BX = ∅

and take y = (1 + η′)x. Then

‖y‖ = (1 + η′)‖x‖ ≤ 1 + η′ < 1 + η

and

‖y‖ > (1 + η′)
(

1− η′

η + 2

)
= 1 +

η′

η + 2
(η + 1− η′) > 1.
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Therefore 1 < ‖y‖ < 1 + η. Let yn = (y + xn)/2 for each n ∈ N. We can
write

yn =
(

1 +
η′

2

)[
1 + η′

2 + η′
x +

1
2 + η′

xn

]
and so

‖yn‖ >

(
1 +

η′

2

)(
1− η′

η + 2

)
= 1 +

η′

2(η + 2)
(η − η′) > 1.

This implies that {yn} is contained in Ry. Since S(Ry) < ε we conclude
that sep({yn}) < ε and hence sep({xn}) < 2ε, contradicting our hypothesis.

Therefore, there exist i ∈ N, λ0, λ1 ∈ R, λ0 ≥ 0, λ1 ≥ 0, λ0 + λ1 = 1,
such that ‖λ0x + λ1xi‖ ≤ 1 − η′/(η + 2). Suppose λ0 ≥ λ1 (the opposite
case is analogous). Then

x + xi

2
=

1
2

[
1
λ0

(λ0x + λ1xi) +
(

1− λ1

λ0

)
xi

]
and thus∥∥∥∥x + xi

2

∥∥∥∥ ≤ 1
2

[
1
λ0

(
1− η′

η + 2

)
+

(
1− λ1

λ0

)]
≤ 1− η′

2(η + 2)
,

contradicting (1).

This proposition, together with Theorem 2 bis in [KMP], yields the fol-
lowing useful result in metric fixed point theory:

Corollary 1.6. If P0,µ(X) is less than 1/2, then the spaces X and X∗

are reflexive and have normal structure.

R e m a r k 1.7. Let us recall that normal structure is not a self-dual
property. Actually Bynum [By] proved that the space X = (`2, ‖ · ‖2,1),
where ‖x‖2,1 = ‖x+‖2 + ‖x−‖2 ( ‖ · ‖2 is the `2-norm and x+ and x− are
the positive and negative parts of x), has normal structure, while its dual
lacks it.

2. Computation of the modulus in `p-spaces. We start proving
several technical lemmas.

Lemma 2.1. Let X be a Banach space, x ∈ X with ‖x‖ > 1 and Yx =
{y ∈ SX : ‖λy + (1− λ)x‖ > 1 ∀λ ∈ [0, 1)}. Then Rx = co(Yx ∪ {x})\BX .

P r o o f. Since Yx ⊂ BX , it follows that co(Yx ∪ {x}) ⊂ co(BX ∪ {x})
and so co(Yx ∪ {x})\BX ⊂ Rx.

Conversely, let z ∈ Rx. Then there is y ∈ BX such that z = µy+(1−µ)x
for some µ ∈ [0, 1]. Consider the continuous function ϕ(λ) = ‖λy+(1−λ)x‖
defined on [0, 1]. Since ϕ(1) ≤ 1 < ϕ(0) we know that the set L = {λ ∈
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[0, 1] : ϕ(λ) ≤ 1} is nonempty and ϕ(λ0) = 1 if λ0 is the infimum of this set.
Let y0 = λ0y + (1− λ0)x. Then y0 ∈ Yx because if λ ∈ [0, 1) then

‖λy0 + (1− λ)x‖ = ‖λλ0y + (1− λλ0)x‖ = ϕ(λλ0) > 1.

Since z = (µ/λ0)y0 + (1− (µ/λ0))x with µ/λ0 ∈ [0, 1) we have z ∈ co(Yx ∪
{x}) and the proof is complete.

The following lemma was proved by Rolewicz in [R1] and it will play a
crucial role in our reasoning.

Lemma 2.2. Let X be a uniformly convex Banach space. Then there is
a positive increasing function f(r), defined for positive r, such that
limr→0+ f(r) = 0 and diam(Rx) ≤ f(‖x‖ − 1) for every x ∈ X\BX .

Lemma 2.3. Let X be a uniformly convex Banach space, x ∈ X\BX ,
0 < ε < ‖x‖ − 1 and

R̂x = {z = λy + (1− λ)x : 0 ≤ λ < 1, ‖y‖ ≤ 1, ‖z‖ ≥ 1 + ε}.

Then Rx ⊂ R̂x + f(ε)BX , where f is the function obtained in the above
lemma.

P r o o f. Let z ∈ Rx, 1 < ‖z‖ < 1 + ε, and consider the line segment
[z, x]. Then there exists z′ ∈ (z, x) such that ‖z′‖ = 1 + ε. Thus z′ ∈ R̂x

and it can be easily shown that z ∈ Rz′ . Therefore ‖z − z′‖ ≤ diam(Rz′) ≤
f(‖z′‖ − 1) = f(ε). Hence z ∈ R̂x + f(ε)BX .

Theorem 2.4. Let 1 < p < ∞ and x ∈ `p, ‖x‖p > 1. Then

S(Rx) = (2(1− 1/‖x‖q
p))

1/p

where q is the conjugate exponent of p, that is, 1/p + 1/q = 1.

P r o o f. We split the proof in two steps. In the first step, we suppose
that x is an eventually null sequence, that is, x = (x1, . . . , xn, 0, . . .) with
‖x‖p > 1.

Let Yx be the set defined in Lemma 2.1, y ∈ Yx and write y = a+ b with
a = (a1, . . . , an, 0, . . .), b = (0, (n). . . , 0, b1, b2, . . .) and so ‖y‖p

p = ‖a‖p
p + ‖b‖p

p

= 1.
Consider the norming functional fy of y, given by

fy = (a1|a1|p−2, a2|a2|p−2, . . . , an|an|p−2, b1|b1|p−2, b2|b2|p−2, . . .)

(see [M, p. 48]) and define

Ja = (a1|a1|p−2, a2|a2|p−2, . . . , an|an|p−2, 0, 0, . . .).

Since ‖λy + (1 − λ)x‖p > 1 for all 0 ≤ λ < 1 and fy is the directional
derivative of the norm (see [B, p. 182]), we have fy(x−y) ≥ 0, which implies
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fy(x) ≥ 1. Therefore

1 ≤ fy(x) = Ja(x) ≤ ‖x‖p‖Ja‖q.

Keeping in mind that ‖Ja‖q = ‖a‖p/q
p we conclude that 1 ≤ ‖a‖p/q

p ‖x‖p,
that is, 1 ≤ ‖a‖p

p‖x‖q
p. It follows that

‖b‖p
p ≤ 1− 1/‖x‖q

p.

Hence Rn(Yx) ⊂ (1 − 1/‖x‖q
p)

1/pB`p , where Rn : `p → `p is the projection
defined by Rn(

∑∞
i=1 xiei) =

∑∞
i=n+1 xiei and {ei : i ∈ N} is the standard

Schauder basis of `p. Thus from Lemma 2.1,

S(Rx) = S(co(Yx ∪ {x})\B`p) ≤ S(co(Yx ∪ {x})) = S(Yx) = S(RnYx)

≤ S((1− 1/‖x‖q
p)

1/pB`p) = (2(1− 1/‖x‖q
p))

1/p.

Actually, S(Rx) = (2(1− 1/‖x‖q
p))

1/p. Indeed, consider the set

A = {(x1/‖x‖q
p, . . . , xn/‖x‖q

p, c1, c2, . . .) : ‖(c1, c2, . . .)‖p = (1− 1/‖x‖q
p)

1/p}.
This set has the following properties:

(i) S(A) = (2(1− 1/‖x‖q
p))

1/p because S(A) = S((1− 1/‖x‖q
p)

1/pS`p).
(ii) A ⊂ Yx.

Indeed, if y ∈ A then

‖y‖p
p =

n∑
i=1

|xi|p/‖x‖pq
p + 1− 1/‖x‖q

p = 1.

Moreover, for all 0 ≤ λ < 1 we have

‖λy + (1− λ)x‖p
p =

n∑
i=1

∣∣∣∣ λxi

‖x‖q
p

+ (1− λ)xi

∣∣∣∣p +
(

1− 1
‖x‖q

p

)
λp

=
1

‖x‖q
p
(λ + ‖x‖q

p(1− λ))p +
(

1− 1
‖x‖q

p

)
λp > 1.

Since Yx ⊂ Rx we obtain S(A) ≤ S(Yx) ≤ S(Rx) = S(Rx) and therefore
(2(1− 1/‖x‖q

p))
1/p ≤ S(Rx).

Now, we prove the general case. From the finite-dimensional case, we
know that for every n ∈ N large enough such that ‖Pnx‖p > 1, we have

S(RPnx) = (2(1− 1/‖Pnx‖q
p))

1/p

where Pn are the natural projections associated with the standard basis of
`p. Therefore, since

lim
n→∞

(2(1− 1/‖Pnx‖q
p))

1/p = (2(1− 1/‖x‖q
p))

1/p

it suffices to show that limn→∞ S(RPnx) = S(Rx) in order to obtain the
required result.
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Let 0 < ε < (‖x‖p − 1)/2 and n0 ∈ N be such that ‖x − Pnx‖p < ε for
all n ≥ n0. Then ‖x‖p and ‖Pnx‖p are greater than 1 + ε.

Let us see that R̂Pnx ⊂ Rx + εB`p for all n ≥ n0 (for the definition
of R̂x see Lemma 2.3). Take ẑ ∈ R̂Pnx. Then ẑ = λy + (1 − λ)Pnx with
‖z‖p ≥ 1 + ε, and let z = λy + (1− λ)x. Then

‖z − ẑ‖p = (1− λ)‖x− Pnx‖p < (1− λ)ε < ε

and
‖z‖p ≥ ‖ẑ‖p − ‖ẑ − z‖p > 1 + ε− ε = 1.

Hence z ∈ Rx and so R̂Pnx ⊂ Rx + εB`p .
Analogously we can verify that R̂x ⊂ RPnx + εB`p for all n ≥ n0 and

thus
RPnx ⊂ R̂Pnx + f(ε)B`p ⊂ Rx + (ε + f(ε))B`p

for all n ≥ n0. Therefore

S(RPnx) ≤ S(Rx) + (ε + f(ε))21/p.

Similarly, for all n ≥ n0 we have

Rx ⊂ R̂x + f(ε)B`p ⊂ RPnx + (ε + f(ε))B`p

and thus
S(Rx) ≤ S(RPnx) + (ε + f(ε))21/p.

It follows that for all n ≥ n0,

|S(Rx)− S(RPnx)| ≤ (ε + f(ε))21/p

and since f(ε) → 0 as ε → 0+ we conclude that limn→∞ S(RPnx) = S(Rx).

With similar arguments we can prove the following result:

Corollary 2.5. Let 1 < p < ∞ and x ∈ `p, ‖x‖p > 1. Then

α(Rx) = β(Rx) = 2(1− 1/‖x‖q
p)

1/p.

Theorem 2.6. If 1 < p < ∞ and 0 ≤ ε < 21/p, then

P`p,S(ε) =
(

2
2− εp

)1/q

− 1.

P r o o f. According to Theorem 2.4,

inf{‖x‖p > 1 : S(Rx) ≥ ε} = inf{δ > 1 : (2(1− 1/δq))1/p ≥ ε}
and since the function δ → (2(1−1/δq))1/p is strictly increasing, the infimum
is attained when (2(1− 1/δq))1/p = ε, that is, when

δ =
(

2
2− εp

)1/q

.

Similarly, we can prove the following result:
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Corollary 2.7. If 1 < p < ∞ and 0 ≤ ε < 2, then

P`p,α(ε) = P`p,β(ε) =
(

2p

2p − εp

)1/q

− 1.

R e m a r k 2.8. The cases p = 1 and p = ∞ are much easier. Indeed:

(a) P`∞,µ(ε) = 0 for all ε ∈ [0, 2]. In order to obtain this result we are
going to show that for all η > 0 there exists x ∈ `∞ with ‖x‖∞ = 1+ η such
that µ(Rx) = 2.

Consider the sequence {yn} in `∞ given by

yn = (1, (n). . . , 1,−1, 0, 0, . . .)

for every n ∈ N and x = (1+η, 0, 0, . . .). Obviously ‖yn‖∞ = 1 for all n ∈ N
and sep({yn}) = 2. Moreover, for every 0 ≤ λ < 1 and n ∈ N we have

‖λyn + (1− λ)x‖∞ = λ + (1− λ)(1 + η) > 1.

Hence yn ∈ Yx = {y ∈ S`∞ : ‖λy + (1 − λ)x‖ > 1 ∀λ ∈ [0, 1)} and since
Yx ⊂ Rx we can conclude that µ(Rx) = 2.

(b) P`1,µ(ε) = 0 for all ε ∈ [0, 2]. The argument is the same taking as
{yn} the basis sequence.

(c) Analogously Pc,µ(ε) = Pc0,µ(ε) = 0 for all ε ∈ [0, 2].
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