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ON CERTAIN HARMONIC MEASURES ON THE UNIT DISK

BY

DIMITRIOS BETSAKOS (SAINT LOUIS, MISSOURI)

We will denote by clos E the closure of the set E ⊂ C and by ω(z,E, D)
the harmonic measure at z of the set clos E ∩ clos D relative to the compo-
nent of D \ clos E that contains z.

Beurling in his dissertation (see [1], pp. 58–62) proved the following
theorem:

Theorem 1 (Beurling’s shove theorem). Let K be the union of a finite
number of intervals on the radius (0, 1) of the unit disk D. Let l be the total
logarithmic measure of K. Then

(1.1) ω(0,K, D) ≥ ω(0,K0, D) =
2
π

arcsin
el − 1
el + 1

,

where K0 stands for the interval (e−l, 1). Equality occurs only for the case
K = K0.

This is a natural counterpart to the Beurling–Nevanlinna projection the-
orem. Nevanlinna’s book [7], pp. 108–110, contains a proof of both theorems.
Nevanlinna also remarks that the proof of the shove theorem gives also the
following result.

Theorem 2. Let K be as above and let m be the total length of K. Then

(1.2) ω(0,K, D) ≥ ω(0,K1, D),

where K1 = [1−m, 1].

In 1989 Essèn and Haliste [4] proved some generalizations of Beurling’s
shove theorem. In particular, they proved the following theorem.

Theorem3 (Essèn and Haliste). Let K be the union of a finite number of
closed intervals on the diameter [−1, 1] of D having total length 2m. Assume
that −K = K, i.e. K is symmetric with respect to the imaginary axis. Then

(1.3) ω(0,K, D) ≥ ω(0,K∗, D),

where K∗ = [−1,−1 + m] ∩ [1−m, 1].
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Segawa [10] made the following conjecture:

Conjecture 1 (Segawa). Let K ⊂ [−1, 1] be the union of a finite
number of intervals of total length 2m.Then

(1.4) ω(0,K, D) ≥ ω(0,K∗, D),

where K∗ = [−1,−1 + m] ∩ [1−m, 1].

Thus Essèn and Haliste proved Segawa’s conjecture in the special case
where K is symmetric with respect to the imaginary axis. Segawa’s con-
jecture may be viewed as a symmetrization result because the Steiner sym-
metrization of D\K is congruent to D\K∗. In this note we prove some spe-
cial cases of the conjecture as well as some results on extremal distances and
harmonic measures associated with the geometric configuration in Segawa’s
conjecture.

First we prove the conjecture in the special case where K consists of two
slits and D \ K is a simply connected domain. In this case the harmonic
measures of K and K∗ can be computed explicitly. The proof is based on
direct calculations and the following lemma whose easy proof is omitted.

Lemma 1. Let Φ, Ψ,Π1,Π2 ∈ R. If 0 < Π1 ≤ Π2 and Φ + Ψ ≥ 0, then

(1.5)
Φ

Π1
+

Ψ

Π2
≥ 0.

Theorem 4. For 0 < b < 1, 0 < a < 1, let K1 = [−1,−b], K2 = [a, 1],
K = K1 ∪K2, K∗

1 = [−1,−(a + b)/2], K∗
2 = [(a + b)/2, 1], K∗ = K∗

1 ∪K∗
2 .

Then

(1.6) ω(0,K, D) ≥ ω(0,K∗, D).

Equality holds if and only if K = K∗ (i.e. a = b).

P r o o f. A long but simple calculation (using various conformal map-
pings) gives

ω(0,K, D) =
1
π

cos−1

[
4− (a + 1/a) + (b + 1/b)

a + 1/a + b + 1/b

]
(1.7)

+ 1− 1
π

cos−1

[
−4− (a + 1/a) + (b + 1/b)

a + 1/a + b + 1/b

]
(see [12], exercise 273). Based on (1.7) we fix a real number l ∈ (0, 2) and
we define the function

f(x) = 1− 1
π

cos−1

[
−4− (x + 1/x) + l − x + 1/(l − x)

x + 1/x + l − x + 1/(l − x)

]
+

1
π

cos−1

[
4− (x + 1/x) + l − x + 1/(l − x)

x + 1/x + l − x + 1/(l − x)

]
for x ∈ (0, l).
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Thus to prove (1.6) it suffices to prove that f attains its minimum for
x = l/2. It is easy to see that f(x) = f(l−x). So we only need to prove that

(1.8) f ′(x) < 0 for all x ∈ (0, l/2), and f ′(l/2) = 0.

For this purpose we define, for x ∈ (0, l/2],

A = A(x) = x + 1/x, B = B(x) = l − x + 1/(l − x),

g(x) = cos−1

[
−4−A + B

A + B

]
− cos−1

[
4−A + B

A + B

]
.

It suffices to prove that g′(x) > 0 for all x ∈ (0, l/2), and g′(l/2) = 0. So we
differentiate and after some easy calculations we find that g′(x) > 0 if and
only if

(1.9)
AB′ −A′B − 2A′ − 2B′

(AB + 2A− 2B − 4)1/2
+
−AB′ + A′B − 2A′ − 2B′

(AB + 2B − 2A− 4)1/2
> 0.

Now we will apply Lemma 1. Put

Φ = AB′ −A′B − 2A′ − 2B′, Π1 = (AB + 2A− 2B − 4)1/2,

Ψ = −AB′ + A′B − 2A′ − 2B′, Π2 = (AB + 2B − 2A− 4)1/2.

It is easy to check that the assumptions of the lemma are satisfied. So by
the lemma we conclude that g′(x) > 0 for all x ∈ (0, l/2). We can check
directly that g′(l/2) = 0.

We will prove Segawa’s conjecture in the “totally non-symmetric case”
K ∩ (−K) = ∅. We need the following lemma.

Lemma 2. Let 0 < a < 1, K = [−1,−a]∪ [a, 1], K ′ = [−1,−(1 + a)/2]∪
[(1 + a)/2, 1]. Then

(1.10) 1
2ω(0,K, D) > ω(0,K ′, D).

P r o o f. The proof is again a direct calculation. By [12], exercise 273,
we have

πω(0,K, D) = 2 cos−1

[
2

a + 1/a

]
,(1.11)

πω(0,K ′, D) = 2 cos−1

[
2

(1 + a)/2 + 2/(1 + a)

]
.(1.12)

Let

f(x) = 2 cos−1

[
2

x + 1/x

]
− 4 cos−1

[
2

(1 + x)/2 + 2/(1 + x)

]
, x ∈ (0, 1).

It suffices to prove that f(x) > 0 for all x ∈ (0, 1). This can be easily proven
by a little calculus.

Theorem 5. Let K be the union of a finite number of intervals on the
diameter [−1, 1] of D. Let m be the total length of these intervals. Assume
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that (−K) ∩K = ∅. Then

(1.13) ω(0,K, D) > ω(0,K∗, D),

where K∗ = [−1,−1 + m/2] ∪ [1−m/2, 1].

P r o o f. By applying Øksendal’s reflection lemma [9] (see also Baern-
stein’s lemma in [5]) we see that

(1.14) ω(0,K, D) > ω(0,K1, D),

where K1 = −(K∩H)∪(−H∩K). Here H is the right half-plane. Note that
the sets −(K ∩ H) and (−H ∩K) are disjoint and lie on the radius [−1, 0)
of the unit disk.

Now Beurling’s shove theorem yields ω(0,K1, D) ≥ ω(0,K2, D), where
K2 = [−1,−1 + m].

Let u(z) = ω(z,K2, D) and v(z) = (u(z) + u(z))/2. Then by the maxi-
mum principle

(1.15) u(0) = v(0) > 1
2ω(0,K3, D),

where K3 = [−1,−1 + m] ∪ [1 −m, 1]. Now Lemma 2 finishes the proof of
the theorem.

We will now prove some results for extremal length. If E and F are two
compact sets lying in clos D, where D is a domain in the plane, then we
denote by λ(E,F, D) the extremal distance between E and F relative to
D \ F \ E. See [1], p. 361, or [8] for the definition and main properties of
extremal length.

Theorem 6. Let 0 < b < a < 1, K1 = [−1,−b], K2 = [a, 1], K∗
1 =

[−1,−(a + b)/2], K∗
2 = [(a + b)/2, 1], λ = λ(K1,K2, D), λ∗ = λ(K∗

1 ,K∗
2 , D).

Then λ > λ∗.

P r o o f. The proof is based on an explicit calculation of λ and λ∗. We
reflect K1,K2,K

∗
1 ,K∗

2 in the unit circle and let E1 (resp. E2, E
∗
1 , E∗

2 ) be
the union of K1 (resp. K2,K

∗
1 ,K∗

2 ) with its reflection. Then because of
symmetry (see [8], §2.12) we have

(1.16) λ/2 = λ(E1, E2, C) =: λ1 and λ∗/2 = λ(E∗
1 , E∗

2 , C) =: λ∗1.

Now λ1 and λ∗1 can be computed in terms of the Grötzsch-ring function ν
(see [8], §2.16). By using the fact that ν is a decreasing function we find
easily that

(1.17) λ∗1 < λ1 ⇔
(1/b− b)(1/a− a)
(a + 1/b)(b + 1/a)

<
(2/(a + b)− (a + b)/2)2

((a + b)/2 + 2/(a + b))2
.

Some additional easy calculations show that the right hand inequality holds.
So λ∗1 < λ1 and (1.16) implies λ∗ < λ.
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Theorem 7. Let K1 ⊂ [−1, 0) be a finite union of closed intervals of
total length m1. Let K2 ⊂ (0, 1] be a finite union of closed intervals of total
length m2. Then

(1.18) λ(K1,K2, D) ≤ λ(K ′
1,K

′
2, D),

where K ′
1 = [−1,−1 + m1] and K ′

2 = [1−m2, 1].

If in the above theorem we replace D by C then we obtain a special case
of a theorem proven by Tamrazov [11]. The proof of Theorem 7 is similar
to Dubinin’s proof of Tamrazov’s theorem (see [3]).

P r o o f o f T h e o r e m 7. For any A ⊂ C, let Â denote the reflection
of A in the unit circle. Because of symmetry we have

(1.19) λ(K1 ∪ k̂1,K2 ∪ k̂2, C) = 1
2λ(K1,K2, D).

Now by making successive polarizations with respect to suitable vertical
axes we get (see [3])

(1.20) λ(K1 ∪ k̂1,K2 ∪ k̂2, C) ≤ λ(K ′
1 ∪ k̂1,K

′
2 ∪ k̂2, C).

We reflect K ′
1 ∪ k̂1 and K ′

2 ∪ k̂2 in ∂D and by symmetry we have

(1.21) λ(K ′
1 ∪ k̂1,K

′
2 ∪ k̂2, C) = λ(k̂′1 ∪K1, k̂

′
2 ∪K2, C).

Again successive polarizations with respect to the same axes as previously
give

(1.22) λ(k̂′1 ∪K1, k̂
′
2 ∪K2, C) ≤ λ(K ′

1 ∪ k̂′1,K
′
2 ∪ k̂′2, C).

Finally, by symmetry,

(1.23) λ(K ′
1 ∪ k̂′1,K

′
2 ∪ k̂′2, C) = 1

2λ(K ′
1,K

′
2, D).

Now (1.19)–(1.23) give (1.18).

Corollary 1. Let K1,K2 be as in Theorem 7. Then

(1.24) λ(K1,K2, D) ≤ λ(K∗
1 ,K∗

2 , D),

where K∗
1 = [−1,−1 + (m1 + m2)/2] and K∗

2 = [1− (m1 + m2)/2, 1].

P r o o f. By Theorems 7 and 6 we have

(1.25) λ(K1,K2, D) ≤ λ(K ′
1,K

′
2, D) ≤ λ(K∗

1 ,K∗
2 , D).

Theorems 7 and 6 suggest the following conjecture.

Conjecture 2. Let K1,K2,K
′
1,K

′
2 be as in Theorem 7. Then

(1.26) ω(0,K1 ∪K2, D) ≥ ω(0,K ′
1 ∪K ′

2, D).

This conjecture implies Segawa’s conjecture because of Theorem 4.
We return to results on harmonic measure.
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Theorem 8. Let a ∈ (0, 1) and K be the union of a finite number of
intervals lying in (a, 1) and having total length m. Let D = D\[−1, a]\[a, 1].
Then

(1.27) ω(0,−K∗ ∪K∗, D) ≤ ω(0,−K ∪K, D) ≤ ω(0,−K∗ ∪K∗, D),

where K∗ = [1−m, 1] and K∗ = [a, a + m].

P r o o f. The proof is a direct calculation. Let F be the conformal
mapping of D onto D with F (0) = 0 and F ′(0) > 0. The mapping w = F (z)
is given by the formula

(1.28) w +
1
w

= 2
z + 1/z

a + 1/a
, z ∈ D, w ∈ D.

The extension of F on the boundary maps t ∈ [a, 1] to eiθ, θ ∈ [0, π] (t is
actually the prime end “approached from above”). By (1.28) we easily find

(1.29) θ = θ(t) = cos−1

[
t + 1/t

a + 1/a

]
.

Now we can easily prove that θ′′(t) < 0 for all t ∈ [a, 1], and this implies
both inequalities in (1.27).

Now we will use Theorem 8 to prove the following result that involves re-
arrangements of functions. See [6] for the basic facts about rearrangements.

Theorem 9. Let a ∈ (0, 1) and D = D \ [a, 1] \ [−1,−a]. Let f be
a positive, bounded , Borel function on [a, 1] and let Hf be the harmonic
function in D with boundary values Hf = 0 on ∂D, Hf = f on [a, 1] and
Hf (t) = f(−t) for t ∈ [−1,−a]. Let f̃ be the increasing rearrangement of f
and let Hf̃ be the harmonic function in D with boundary values Hf̃ = 0 on

∂D, Hf̃ = f̃ on [a, 1] and Hf̃ (t) = f̃(−t) for t ∈ [−1,−a]. Then Hf̃ (0) ≤
Hf (0).

P r o o f. First note that Theorem 8 is a special case of Theorem 9.
Theorem 8 says that Theorem 9 holds if f is the characteristic function of
the union of a finite number of intervals on [a, 1]. Now suppose that f is a
simple function s. Let {c1, c1 + c2, c1 + c2 + c3, . . . , c1 + c2 + . . .+ cn} be the
set of values of s (cj ≥ 0, j = 1, . . . , n). Thus

(1.30) s(x) = c1χE1(x) + . . . + cnχEn(x),

where En ⊂ En−1 ⊂ . . . ⊂ E1 := [a, 1]. (Ej may be assumed to be a finite
union of intervals, j = 1, . . . , n.) We also write

(1.31) si(x) = c1χE1(x) + . . . + ciχEi(x), i = 1, . . . , n.

So sn(x) = s(x).
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Let ui, i = 1, . . . , n, be the harmonic function in D with boundary values
ui = 0 on ∂D, ui(t) = si(t), t ∈ [a, 1], and ui(t) = si(−t), t ∈ [−1,−a]. So
un = Hs. The increasing rearrangement of s is given by

(1.32) s̃(x) = c1χE∗
1
(x) + . . . + cnχE∗

n
(x),

where E∗
i = [1− |Ei|, 1], i = 1, . . . , n.

Similarly, the increasing rearrangement of si is given by

(1.33) s̃i(x) = c1χE∗
1
(x) + . . . + ciχE∗

i
(x), i = 1, . . . , n.

Let u∗i , i = 1, . . . , n, be the harmonic function in D with boundary values
u∗i = 0 on ∂D, u∗i (t) = s∗i (t), t ∈ [a, 1], and u∗i (t) = s∗i (−t), t ∈ [−1,−a]. It
is easy to see that for z ∈ D we have

un(z)− un−1(z) = cnω(z,−En ∪ En, D),(1.34)
u∗n(z)− u∗n−1(z) = cnω(z,−E∗

n ∪ E∗
n, D).(1.35)

So by Theorem 8 we get
(1.36) un(0)− un−1(0) ≥ u∗n(0)− u∗n−1(0).
Similarly we prove that

un−1(0)− un−2(0) ≥ u∗n−1(0)− u∗n−2(0),(1.37)
un−2(0)− un−3(0) ≥ u∗n−2(0)− u∗n−3(0),(1.38)

...
u2(0)− u1(0) ≥ u∗2(0)− u∗1(0),(1.39)

u1(0) ≥ u∗1(0).(1.40)

We add the above inequalities and get
(1.41) Hs(0) = un(0) ≥ u∗n(0) = H∗

s (0).
So we proved the theorem in case f is a simple function. The general

case can be easily proved by using standard approximating theorems: Simple
functions approximate a Borel function; the rearrangements of these simple
functions approximate the rearrangement of the Borel function; harmonic
extensions approximate the corresponding harmonic extension.

R e m a r k. We can prove an analogous result for decreasing rearrange-
ments. In this case we use the last of the inequalities in (1.27). Actually,
the proof of Theorem 8 shows that a “continuous symmetrization” theorem
holds. Roughly speaking, this theorem would say: “If we move K contin-
uously to the right, the harmonic measure of −K ∪ K decreases”. Then
using this result we can prove a continuous version of Theorem 9. The in-
creasing rearrangement should be replaced by the appropriate continuous
rearrangement of f (see [2]).

I would like to thank Professor Albert Baernstein for helpful suggestions.
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