C OLLOQUIUM MATHEMATICUM
 $\begin{array}{lll}\text { VOL. } 73 & 1997 & \text { NO. } 2\end{array}$

ON RATIONALITY OF JACOBI SUMS

```
    BY
KATSUMI SHIRATANI and MIEKO YAMADA (FUKUOKA)
```

1. Introduction. Let p be an odd prime and $q=p^{f}$, where f is a positive integer. Let $\operatorname{GF}(q)$ be the finite field of q elements. The character group of the multiplicative group $\operatorname{GF}(q)^{\times}$is generated by the Teichmüller character ω, and is cyclic of order $q-1$.

Let $\eta \in\langle\omega\rangle$ be a nonprincipal character. For any character $\chi \in\langle\omega\rangle$ different from the principal character ω^{0} and from the character η we consider the Jacobi sum

$$
J(\chi, \eta)=\sum_{x \in \operatorname{GF}(q)-\{0,1\}} \chi(x) \eta(1-x) .
$$

We consider the problem of obtaining precise conditions to ensure that $J(\chi, \eta)$ belongs to the rational number field \mathbb{Q}. This problem seems to be of interest in itself and has an application. Indeed, it is related to a question in algebraic combinatorics. The Jacobi sum $J(\chi, \eta)$ with the quadratic character $\eta=\omega^{\frac{q-1}{2}}$ belongs to \mathbb{Q} if and only if the T-submodule of the Terwilliger algebra obtained from a cyclotomic scheme with class 2 is reducible [4].

In this paper we treat only the case where the character η is the quadratic character $\omega^{\frac{q-1}{2}}$. Namely we determine conditions on χ and q ensuring that $J(\chi, \eta)$ belongs to the rationals \mathbb{Q}, in the case $f=2$:

Suppose $q=p^{2}$ and $1 \leq i \leq p^{2}-1$. Then $J\left(\omega^{-i}, \omega^{\frac{p^{2}-1}{2}}\right)$ is rational if and only if $i=(p-1) k(k=1,2, \ldots, p)$, or $i=\frac{p+1}{2} k(k=1,3, \ldots, 2(p-1)-1)$, or ω^{-i} is of order 24 and $p \equiv 17,19(\bmod 24)$, or ω^{-i} is of order 60 and $p \equiv 41,49(\bmod 60)\left({ }^{1}\right)$.

We can discuss the problem in the general case by the same method.

[^0]We turn to the case where q is arbitrary. It is known [7] that Jacobi sums can be factored into Gauss sums in the sense that

$$
\begin{equation*}
J(\chi, \eta)=\frac{g(\chi) g(\eta)}{g(\chi \eta)} \tag{1}
\end{equation*}
$$

Here we define the Gauss sum $g(\chi)$ for any $\chi \in\langle\omega\rangle$, as usual, as follows:

$$
g(\chi)=\sum_{x \in \mathrm{GF}(q)^{\times}} \chi(x) \zeta_{p}^{s(x)}
$$

where ζ_{p} denotes a fixed primitive p th root of unity and $s(x)$ means the trace of x with respect to $\operatorname{GF}(q) / \operatorname{GF}(p)$.

Now, we embed the Gauss sum $g\left(\omega^{-i}\right) \in \mathbb{Q}\left(\zeta_{p}, \zeta_{q-1}\right)(0 \leq i \leq q-2)$ into the p-adic field $\mathbb{Q}_{p}\left(\zeta_{p}, \zeta_{q-1}\right)$ over the p-adic rational number field \mathbb{Q}_{p}, where ζ_{q-1} denotes a primitive $(q-1)$ th root of unity. Then we have the Gross-Koblitz formula [5]

$$
\begin{equation*}
g\left(\omega^{-i}\right)=-\varpi^{s_{p}(i)} \prod_{l=0}^{f-1} \Gamma_{p}\left(\frac{p^{l} i}{q-1}-\sum_{j=1}^{l} i_{f-j} p^{l-j}\right) \tag{2}
\end{equation*}
$$

Here $s_{p}(i)=\sum_{j=0}^{f-1} i_{j}$ means the sum of the coefficients of the canonical p adic expansion of i, namely $i=i_{0}+i_{1} p+\ldots+i_{f-1} p^{f-1}$ with $0 \leq i_{j} \leq p-1$, and ϖ denotes a prime element in the field $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ such that $\varpi=\sqrt[p-1]{-p}$, $\varpi \equiv \zeta_{p}-1\left(\bmod \left(\zeta_{p}-1\right)^{2}\right)$. The function $\Gamma_{p}(x)$ is the p-adic gamma function. For example, we see for $\eta=\omega^{-\frac{q-1}{2}}$ that

$$
g\left(\omega^{-\frac{q-1}{2}}\right)=-\varpi^{\frac{p-1}{2} f} \Gamma_{p}\left(\frac{1}{2}\right)^{f} .
$$

In the sequel, for the sake of convenience, we call the product appearing in the Gross-Koblitz formula the gamma product part and $\varpi^{s_{p}(i)}$ the ϖ-part of the Gauss sum $g\left(\omega^{-i}\right)$.
2. A formulation in the general case. The condition $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right) \in$ \mathbb{Q} is equivalent to $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right) \in \mathbb{Z}$, the ring of rational integers, because $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right)$ is an algebraic integer. This condition yields easily $f \equiv 0$ $(\bmod 2)$, in view of $\left|J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right)\right|=\sqrt{q}$ and the formula (1).

Next, as $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right) \in \mathbb{Z}$ is left fixed by the element σ_{-1} in the Galois group $\left.G\left(\mathbb{Q}\left(\zeta_{q-1}, \zeta_{p}\right)\right) / \mathbb{Q}\left(\zeta_{p}\right)\right)$, which is defined by $\sigma_{-1}\left(\zeta_{q-1}\right)=\zeta_{q-1}^{-1}$, $\sigma_{-1}\left(\zeta_{p}\right)=\zeta_{p}$, we have by the equality (1),

$$
\begin{equation*}
\frac{g\left(\omega^{-i}\right)}{g\left(\omega^{-i+\frac{q-1}{2}}\right)}=\frac{g\left(\omega^{i}\right)}{g\left(\omega^{i+\frac{q-1}{2}}\right)} . \tag{3}
\end{equation*}
$$

Then, comparing the ϖ-parts of both sides we see at once that

$$
s_{p}(i)-s_{p}(j)=s_{p}(q-1-i)-s_{p}(q-1-j),
$$

where we put $\omega^{-j}=\omega^{-i+\frac{q-1}{2}}$ with $1 \leq j \leq q-2$. Hence we have $s_{p}(i)=$ $s_{p}(j)$. In the case $1 \leq i<\frac{q-1}{2}$ this gives $s_{p}(i)=s_{p}\left(i+\frac{q-1}{2}\right)$, and in the case $\frac{q-1}{2}<i \leq q-2$ this gives $s_{p}(i)=s_{p}\left(i-\frac{q-1}{2}\right)$ from the equality $s_{p}(q-1-i)+s_{p}(i)=f(p-1)$.

In the former case this can be rewritten as

$$
s_{p}(i)+s_{p}\left(\frac{q-1}{2}-i\right)=f(p-1)
$$

and this means that the canonical p-adic expansion $i=i_{0}+i_{1} p+\ldots+$ $i_{f-1} p^{f-1}$ has just $\frac{f}{2}$ coefficients not smaller than $\frac{p-1}{2}$.

Moreover, for $f \equiv 0(\bmod 2)$ we see

$$
\begin{equation*}
g\left(\omega^{-\frac{q-1}{2}}\right)=(-1)^{1+\frac{f}{2} \frac{p-1}{2}} p^{\frac{f}{2}} \tag{4}
\end{equation*}
$$

Hence, $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right) \in \mathbb{Z}$ means necessarily that its absolute value is $p^{\frac{f}{2}}$. From this and (1), (4) we conclude that

$$
g\left(\omega^{-i}\right)= \pm g\left(\omega^{-i+\frac{q-1}{2}}\right)
$$

Conversely, if this equality holds together with $f \equiv 0(\bmod 2)$, we see readily that $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right)= \pm p^{\frac{f}{2}} \in \mathbb{Z}$. In the sequel we may assume $1 \leq$ $i<\frac{q-1}{2}$, because we can take $q-1-i$ instead of i if necessary. Thus we have the following:

Theorem 1. It is necessary and sufficient for $J\left(\omega^{-i}, \omega^{\frac{q-1}{2}}\right) \in \mathbb{Q}$ that we have $f \equiv 0(\bmod 2), s_{p}(i)=s_{p}\left(i+\frac{q-1}{2}\right)$ and

$$
\begin{aligned}
\prod_{l=0}^{f-1} \Gamma_{p}\left(\frac{p^{l} i}{q-1}\right. & \left.-\sum_{j=1}^{l} i_{f-j} p^{l-j}\right) \\
& = \pm \prod_{l=0}^{f-1} \Gamma_{p}\left(\frac{p^{l}\left(i+\frac{q-1}{2}\right)}{q-1}-\sum_{j=1}^{l}\left(i+\frac{q-1}{2}\right)_{f-j} p^{l-j}\right)
\end{aligned}
$$

3. The case $f=2$. In what follows we treat only the case $f=2$. In this case the condition can be simply expressed as follows.

For $1 \leq i<\frac{p^{2}-1}{2}$, let $i=i_{0}+i_{1} p$ be the canonical expansion of i. Then the equality in Theorem 1 states that for $\frac{p-1}{2}<i_{0} \leq p-1,0 \leq i_{1}<\frac{p-1}{2}$ we have
(5) $\quad \Gamma_{p}\left(\frac{i_{0}+i_{1} p}{p^{2}-1}\right) \Gamma_{p}\left(\frac{i_{1}+i_{0} p}{p^{2}-1}\right)= \pm \Gamma_{p}\left(\frac{i_{0}+i_{1} p}{p^{2}-1}+\frac{1}{2}\right) \Gamma_{p}\left(\frac{i_{1}+i_{0} p}{p^{2}-1}-\frac{1}{2}\right)$.

We immediately get two systems of trivial solutions of this equation, namely solutions with the integers i that satisfy

$$
\frac{i_{0}+i_{1} p}{p^{2}-1}=1-\frac{i_{1}+i_{0} p}{p^{2}-1} \quad \text { or } \quad \frac{i_{0}+i_{1} p}{p^{2}-1}=\frac{i_{1}+i_{0} p}{p^{2}-1}-\frac{1}{2}
$$

The former follows from the norm relation $\Gamma_{p}\left(\frac{i_{1}+i_{0} p}{p^{2}-1}\right) \Gamma_{p}\left(1-\frac{i_{1}+i_{0} p}{p^{2}-1}\right)= \pm 1$, which is explained below. Hence in the range $1 \leq i<p^{2}-1$ we obtain

Theorem 2. For $i=(p-1) k(k=1, \ldots, p)$ or $i=\frac{p+1}{2} k(k=$ $1,3, \ldots, 2(p-1)-1)$ we have $J\left(\omega^{-i}, \omega^{\frac{p^{2}-1}{2}}\right) \in \mathbb{Z}$.

In order to find all nontrivial solutions we explain the distribution relation of Gauss sums. The equality $g\left(\omega^{-i}\right)= \pm g\left(\omega^{-i+\frac{q-1}{2}}\right)$ in question is a relation between Gauss sums. Hence it follows necessarily only from the norm relations, the Davenport-Hasse relations and the 2-torsion relations of Gauss sums, because the Davenport-Hasse distribution of the Gauss sums is the universal odd distribution up to 2 -torsion relations [6]-[9]. The equality $g\left(\omega^{-i}\right)= \pm g\left(\omega^{-i+\frac{q-1}{2}}\right)$ is equivalent to $g\left(\omega^{-i}\right)^{2}=g\left(\omega^{-i+\frac{q-1}{2}}\right)^{2}$, thus this equality comes only from the norm relations and the Davenport-Hasse relations. It is also known that the norm relations and the Davenport-Hasse relations of Gauss sums can be obtained from the norm relations and the distribution relations of the p-adic gamma function $\Gamma_{p}(x)$ together with consideration of the ϖ-parts by making use of the Gross-Koblitz formula. The norm relations of $\Gamma_{p}(x)$ in the case of odd p are as follows [5]:

$$
\Gamma_{p}(x) \Gamma_{p}(1-x)=(-1)^{1+u(-x)} \quad \text { for any } x \in \mathbb{Z}_{p}
$$

where $u(-x) \in \mathbb{Z}$ denotes the unique integer satisfying $u(-x) \equiv-x(\bmod p)$, $0 \leq u(-x) \leq p-1$.

The distribution relations of $\Gamma_{p}(x)$ are expressed as follows. Let m be any natural number prime to p. Then

$$
\begin{equation*}
\frac{\prod_{h=0}^{m-1} \Gamma_{p}\left(\frac{x+h}{m}\right)}{\Gamma_{p}(x) \prod_{h=1}^{m-1} \Gamma_{p}\left(\frac{h}{m}\right)}=m^{u(-x)}\left(m^{1-p}\right)^{\frac{1}{p}(u(-x)+x)} \tag{6}
\end{equation*}
$$

for any $x \in \mathbb{Z}_{p}$ [5]. This is called the m-multiplication formula.
Now, if d denotes the order of the character ω^{-i}, the equality $g\left(\omega^{-i}\right)=$ $\pm g\left(\omega^{-i+\frac{p^{2}-1}{2}}\right)$ is left fixed by any $\varphi(d)$ automorphisms of the Galois group $G\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)$ of the extension $\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}$, where ζ_{d} means a primitive d th root of unity.

By setting

$$
\frac{i_{0}+i_{1} p}{p^{2}-1}=\frac{\alpha}{d}, \quad \frac{i_{1}+i_{0} p}{p^{2}-1}=\frac{\beta}{d}, \quad(\alpha, d)=(\beta, d)=1,
$$

namely $i_{0}=\frac{1}{d}(\beta p-\alpha), i_{1}=\frac{1}{d}(\alpha p-\beta)$, where $\alpha p \equiv \beta(\bmod d), \beta p \equiv \alpha$ $(\bmod d)$, the equality (5) can be rewritten as

$$
\begin{equation*}
\Gamma_{p}\left(\frac{\alpha}{d}\right) \Gamma_{p}\left(\frac{\beta}{d}\right)= \pm \Gamma_{p}\left(\frac{\alpha}{d}+\frac{1}{2}\right) \Gamma_{p}\left(\frac{\beta}{d}-\frac{1}{2}\right) . \tag{7}
\end{equation*}
$$

Furthermore, α and β satisfy

$$
\begin{equation*}
0<\frac{\alpha}{d}<\frac{1}{2} \quad \text { and } \quad \frac{1}{2}<\frac{\beta}{d}<1 \tag{8}
\end{equation*}
$$

From the invariance property mentioned above, the equality (7) is simply equivalent to

$$
\begin{equation*}
\Gamma_{p}\left(\frac{1}{d}\right) \Gamma_{p}\left(\frac{\beta}{d}\right)= \pm \Gamma_{p}\left(\frac{1}{d}+\frac{1}{2}\right) \Gamma_{p}\left(\frac{\beta}{d}-\frac{1}{2}\right) \tag{9}
\end{equation*}
$$

where $\beta \equiv p(\bmod d), \frac{1}{d}<\frac{\beta}{d}-\frac{1}{2}<\frac{\beta}{d}<\frac{1}{d}+\frac{1}{2}$.
First we assume that the equality (9) (or (7)) holds. Under this assumption we prove several lemmas.

Lemma 1. Denote the order of ω^{-i} by d. If ω^{-i} gives a nontrivial solution, namely the equality (7) holds for ω^{-i}, then d is divisible by 4.

Proof. The order of $\chi \eta=\omega^{-i+\left(p^{2}-1\right) / 2}$ is d or $2 d$ when d is even or odd respectively. Therefore, we can suppose that d is odd by taking $\chi \eta$ instead of χ if necessary. Then $\sigma_{2}: \zeta_{d} \rightarrow \zeta_{d}^{2}$ is an element of the Galois group $G\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)$. Let n be the minimal positive integer such that $2^{n} \equiv 1$ $(\bmod d)$. From the assumption and letting σ_{2} operate repeatedly on the Davenport-Hasse relation

$$
g(\chi)^{2}= \pm g(\chi) g(\chi \eta)= \pm \chi\left(2^{-2}\right) g(\eta) g\left(\chi^{2}\right)
$$

we obtain

$$
\begin{equation*}
g(\chi)=g\left(\chi^{2^{n}}\right)= \pm p^{-\left(2^{n}-1\right)} g(\chi)^{2^{n}} \tag{10}
\end{equation*}
$$

By the Gross-Koblitz formula we then have

$$
g(\chi)^{2^{n}}=-\left(\varpi^{\frac{\alpha+\beta}{d}(p-1)}\right)^{2^{n}}\left(\Gamma_{p}\left(\frac{\alpha}{d}\right) \Gamma_{p}\left(\frac{\beta}{d}\right)\right)^{2^{n}}
$$

Comparing the ϖ-parts of both sides of (10) we have

$$
\varpi^{\frac{\alpha+\beta}{d}(p-1)}= \pm\left(-\varpi^{\frac{\alpha+\beta}{d}(p-1)}\right)^{2^{n}} p^{-\left(2^{n}-1\right)} .
$$

This yields $\frac{\alpha+\beta}{d}=1$. By virtue of the norm relation of $\Gamma_{p}(x)$ this means that ω^{-i} is a trivial solution. Consequently, d is divisible by 4.

As mentioned before, since the equality is a relation between Gauss sums, it comes from the norm relations and the distribution relations of the p-adic gamma function. It is equivalent to obtain the simultaneous solutions of the equality (9) and the distribution relations (6). Thus, if the equality (9) or (7) has a simultaneous solution with the m-multiplication formula for some positive integer m prime to p, then we call the equality (9) m-reducible. Then the equality holds if and only if there exists an odd prime l such that l
divides d exactly once and the equality is l-reducible. Namely, if the equality is m-reducible for some m, then it has to be l-reducible for some odd prime l.

Using these definitions we have
Lemma 2. Assume that ω^{-i} gives a nontrivial solution of the equality (9) and this is l-reducible for an odd prime divisor l of d. Then l is equal to 3 or 5. Furthermore, the equality holds only when $d=24$ and $p \equiv 17,19$ $(\bmod 24)$ or $d=60$ and $p \equiv 41,49(\bmod 60)$.

Proof. We distinguish two cases according as $p-1 \equiv 0(\bmod l)$ or $p+1 \equiv 0(\bmod l)$.

Case $1: p+1 \equiv 0(\bmod l)$. As $(p-1, l)=1$, the denominator of $\frac{\beta}{d}-\frac{1}{d} \equiv \frac{p-1}{d}(\bmod 1)$ is divisible by l. From the above, it must be equal to l.

Now we put

$$
\frac{\beta}{d}-\frac{1}{d}=\frac{h}{l}, \quad(h, l)=1, \quad 0<h<l .
$$

The left-hand side of the equality (9) appears in the numerator of the following distribution relation:

$$
\begin{equation*}
\frac{\prod_{x=0}^{l-1} \Gamma_{p}\left(\frac{1}{d}+\frac{x}{l}\right)}{\Gamma_{p}\left(\frac{l}{d}\right) \prod_{x=1}^{l-1} \Gamma_{p}\left(\frac{x}{l}\right)}=l^{u\left(-\frac{l}{d}\right)}\left(l^{1-p}\right)^{\frac{1}{p}\left(u\left(-\frac{l}{d}\right)+\frac{l}{d}\right)} . \tag{11}
\end{equation*}
$$

Similarly the right-hand side of (9) appears in the numerator of the distribution relation

$$
\begin{equation*}
\frac{\prod_{x=0}^{l-1} \Gamma_{p}\left(\frac{\beta}{d}-\frac{1}{2}+\frac{x}{l}\right)}{\Gamma_{p}\left(\frac{l \beta}{d}-\frac{l}{2}\right) \prod_{x=1}^{l-1} \Gamma_{p}\left(\frac{x}{l}\right)}=l^{u\left(-\frac{l \beta}{d}+\frac{l}{2}\right)}\left(l^{1-p}\right)^{\frac{1}{p}\left(u\left(-\frac{l \beta}{d}+\frac{l}{2}\right)+\frac{l \beta}{d}-\frac{l}{2}\right)} . \tag{12}
\end{equation*}
$$

Exactly one fraction, say $\frac{1}{d}+\frac{m}{l}$, in the numerator of (11) has the denominator $\frac{d}{l}$. Then $\frac{1}{d}+\frac{m}{l}=\frac{1}{d}\left(1+\frac{d m}{l}\right) \equiv 0\left(\bmod \frac{l}{d}\right)$. The other $l-1$ fractions have the denominator d. We first consider the fraction $\frac{1}{d}+\frac{j}{l}(0 \leq j<h, j \neq m)$. Letting the automorphism $\sigma_{p}: \zeta_{d} \rightarrow \zeta_{d}^{p}$ operate on the Gauss sums, we have

$$
p\left(1+\frac{d}{l} j\right) \equiv \beta+\frac{d}{l} p j \equiv \beta-\frac{d}{l} j \equiv 1+\frac{d}{l}(h-j)(\bmod d) .
$$

This means that $\Gamma_{p}\left(\frac{1}{d}+\frac{j}{l}\right) \Gamma_{p}\left(\frac{1}{d}+\frac{h-j}{l}\right)$ is the gamma product part of the Gauss sum $g\left(\chi \xi_{l}\right)$, where ξ_{l} denotes a character of order l. Since an element of the Galois group $G\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)$ maps $g(\chi)$ to $g\left(\chi \xi_{l}\right)$ and the equality is left fixed by this automorphism, the fractions $\frac{1}{d}+\frac{j}{l}$ and $\frac{1}{d}+\frac{h-j}{l}$ satisfy the condition (8), namely one of them is less than $\frac{1}{2}$ and the other is greater than $\frac{1}{2}$.

Next we consider the fractions $\frac{1}{d}+\frac{h+j}{l}(0<j<l-h, j \neq m)$. Letting
σ_{p} operate on the Gauss sums, we have
$p\left(1+\frac{d}{l}(h+j)\right) \equiv \beta+\frac{d}{l} p(h+j) \equiv 1+\frac{d}{l} h-\frac{d}{l}(h+j) \equiv 1+\frac{d}{l}(l-j)(\bmod d)$.
This means that $\Gamma_{p}\left(\frac{1}{d}+\frac{h+j}{l}\right) \Gamma_{p}\left(\frac{1}{d}+\frac{l-j}{l}\right)$ is also the gamma product part of a Gauss sum. Hence $\frac{1}{d}+\frac{h+j}{l}$ and $\frac{1}{d}+\frac{l-j}{l}$ must also satisfy the condition (8), but both numbers are greater than $\frac{1}{2}$.

Therefore $h=l-1$ or $h=l-2$, and $m=l-1$. But the case $h=l-2$ and $m=l-1$ does not occur. Indeed, when we take $j=\frac{l-1}{2}$, the product $\Gamma_{p}\left(\frac{1}{d}+\frac{1}{l} \frac{l-1}{2}\right) \Gamma_{p}\left(\frac{1}{d}+\frac{1}{l}\left(l-2-\frac{l-1}{2}\right)\right)$ is the gamma product part of a Gauss sum. But the fractions $\frac{1}{d}+\frac{1}{l} \frac{l-1}{2}$ and $\frac{1}{d}+\frac{1}{l}\left(l-2-\frac{l-1}{2}\right)$ do not satisfy the condition (8), as

$$
\frac{1}{d}+\frac{1}{l} \frac{l-1}{2}<\frac{1}{2} \quad \text { and } \quad \frac{1}{d}+\frac{1}{l}\left(l-2-\frac{l-1}{2}\right)<\frac{1}{2}
$$

Hence $h=l-1$. We see that $m=\frac{1}{2}(l-1)$ and $\beta=1+\frac{d}{l}(l-1)$. Since the $l-1$ values of the gamma function in the numerator of (11) (also (12)) are the gamma product parts of certain $\frac{l-1}{2}$ Gauss sums, and an element of $G\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)$ maps $g(\chi)$ to those $\frac{l-1}{2}$ Gauss sums, and the equality is left fixed by these automorphisms, the distribution relations (11), (12) give rise to the relation

$$
\begin{equation*}
\Gamma_{p}\left(\frac{l}{d}\right) \Gamma_{p}\left(\frac{1}{2}-\frac{1}{d}+\frac{1}{2 l}\right)= \pm \Gamma_{p}\left(\frac{l}{d}+\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{2 l}-\frac{1}{d}\right) . \tag{13}
\end{equation*}
$$

Since $\frac{1}{2 l}-\frac{1}{d} \equiv \frac{1}{d}\left(\frac{d}{2 l}-1\right) \equiv 0\left(\bmod \frac{l}{d}\right)$, we obtain $\frac{d}{2 l} \equiv 1(\bmod l)$. Therefore the order d can be written as $d=2 l(k l+1)$ for some odd integer k.

Assume that $k l \equiv 1(\bmod 4)$. If l is not equal to 5 , we put $x=\frac{1}{2}(k l+5)$. Then by letting the automorphism $\sigma_{\frac{1}{2}(k l+5)}: \zeta_{d} \rightarrow \zeta_{d}^{\frac{1}{2}(k l+5)}$ operate on the Gauss sum $g(\chi)$, we have

$$
\begin{aligned}
\beta x & =(1+2(l k+1)(l-1)) \frac{1}{2}(k l+5) \\
& \equiv \frac{1}{2}(-2 l-2 l(k-1)-1)(k l+5) \\
& \equiv k l^{2}-\frac{9}{2} k l+l-\frac{5}{2}(\bmod d) .
\end{aligned}
$$

The condition (8) is not satisfied except for $l=3$ as

$$
k l^{2}-\frac{9}{2} k l+l-\frac{5}{2}<\frac{d}{2}=k l^{2}+l .
$$

When $k l \equiv 3(\bmod 4)$ and $l \neq 3$, by letting the automorphism $\sigma_{\frac{1}{2}(k l+3)}$: $\zeta_{d} \rightarrow \zeta_{d}^{\frac{1}{2}(k l+3)}$ operate on the Gauss sum $g(\chi)$, we see that (8) is not satisfied.

Now we assume $l=3$. Then $d=18 k+6$ and $\beta=12 k+5$. If $k \equiv 1$ $(\bmod 4)$ and $k>1$, we put $x=\frac{1}{2}(3 k+7)$. Then by letting the automorphism $\sigma_{\frac{1}{2}(3 k+7)}: \zeta_{d} \rightarrow \zeta_{d}^{\frac{1}{2}(3 k+7)}$ operate on the Gauss sum $g(\chi)$, we have

$$
\begin{gathered}
\beta x=\frac{1}{2}(3 k+7)(12 k+5) \equiv 7 k+5+\frac{1}{2}(k+1)(\bmod d), \\
7 k+5+\frac{1}{2}(k+1)<9 k+3=\frac{d}{2}
\end{gathered}
$$

This contradicts (8).
If $k \equiv 3(\bmod 4)$, we see that βx is also less than $\frac{1}{2}$ by letting the automorphism $\sigma_{\frac{1}{2}(3 k-11)}$ for $k>3$ operate on the Gauss sum. In two cases $l=3, k=1$ and $^{2} l=3, k=3$, we can verify easily that for every positive integer c such that $(c, d)=1$, one of $\frac{c}{d}$ and $\frac{\beta c}{d}$ is less than $\frac{1}{2}$ and the other is greater than $\frac{1}{2}$.

We treat the case $l=5$ similarly. Assume $k>1$. Then, operating by $\sigma_{\frac{1}{2}(5 k-7)}: \zeta_{d} \rightarrow \zeta_{d}^{\frac{1}{2}(5 k-7)}$ if $k \equiv 1(\bmod 4)$ and by $\sigma_{\frac{1}{2}(5 k+3)}: \zeta_{d} \rightarrow \zeta_{d}^{\frac{1}{2}(5 k+3)}$ if $k \equiv 3(\bmod 4)$ respectively, we get the same contradiction. However, the condition (8) is satisfied in the case $k=1$.

Consequently, we have the solutions $d=24, \beta=17$, and $d=60, \beta=41$, and $d=60, \beta=49$.

Case $2: p-1 \equiv 0(\bmod l)$. As $(p+1, l)=1$, the denominator of $\frac{3}{2}-\frac{\beta}{d}-\frac{1}{d} \equiv \frac{3}{2}-\frac{p+1}{d}(\bmod 1)$ is divisible by l, hence it must be equal to l. As above, we have quite similarly the solutions $d=24, \beta=19$, and $d=60$, $\beta=41$, and $d=60, \beta=49$.

From Lemmas 1 and 2 we obtain
Theorem 3. It is necessary and sufficient for $J\left(\omega^{-i}, \omega^{\frac{p^{2}-1}{2}}\right) \in \mathbb{Q}$, except for the trivial solutions, that the character ω^{-i} is of order 24 for $p \equiv 17,19$ $(\bmod 24)$ or the character ω^{-i} is of order 60 for $p \equiv 41,49(\bmod 60)$.

Proof. Assume that the equality (7) or (9) holds. From the above lemmas, the order d is equal to 24 or 60 , and $p \equiv 17,19(\bmod 24)$ or $p \equiv 41,49(\bmod 60)$.

Conversely, let d be equal to 24 or 60 , and $p \equiv 17,19(\bmod 24)$ or $p \equiv 41,49(\bmod 60)$, respectively. When $d=24$ and $p \equiv 17(\bmod 24)$, from the norm relations together with the distribution relations of $\Gamma_{p}(x)$, we have

$$
\frac{\Gamma_{p}\left(\frac{1}{24}\right) \Gamma_{p}\left(\frac{9}{24}\right) \Gamma_{p}\left(\frac{17}{24}\right)}{\Gamma_{p}\left(\frac{1}{8}\right) \Gamma_{p}\left(\frac{1}{3}\right) \Gamma_{p}\left(\frac{2}{3}\right)}=3^{u\left(-\frac{1}{8}\right)}\left(3^{1-p}\right)^{\frac{1}{p}\left(u\left(-\frac{1}{8}\right)+\frac{1}{8}\right)}=1
$$

and

$$
\frac{\Gamma_{p}\left(\frac{5}{24}\right) \Gamma_{p}\left(\frac{13}{24}\right) \Gamma_{p}\left(\frac{21}{24}\right)}{\Gamma_{p}\left(\frac{5}{8}\right) \Gamma_{p}\left(\frac{1}{3}\right) \Gamma_{p}\left(\frac{2}{3}\right)}=3^{u\left(-\frac{5}{8}\right)}\left(3^{1-p}\right)^{\frac{1}{p}\left(u\left(-\frac{5}{8}\right)+\frac{5}{8}\right)}=1
$$

hence we obtain the equality

$$
\Gamma_{p}\left(\frac{1}{24}\right) \Gamma_{p}\left(\frac{17}{24}\right)= \pm \Gamma_{p}\left(\frac{5}{24}\right) \Gamma_{p}\left(\frac{13}{24}\right) .
$$

When $d=60$ and $p \equiv 41(\bmod 60)$, from the norm relations together with the two distribution relations, we easily get

$$
\frac{\Gamma_{p}\left(\frac{1}{60}\right) \Gamma_{p}\left(\frac{21}{60}\right) \Gamma_{p}\left(\frac{41}{60}\right)}{\Gamma_{p}\left(\frac{1}{20}\right)}= \pm \frac{\Gamma_{p}\left(\frac{11}{60}\right) \Gamma_{p}\left(\frac{31}{60}\right) \Gamma_{p}\left(\frac{51}{60}\right)}{\Gamma_{p}\left(\frac{11}{20}\right)} .
$$

By making use of the distribution relation of 5 -multiplication

$$
\frac{\Gamma_{p}\left(\frac{1}{20}\right) \Gamma_{p}\left(\frac{5}{20}\right) \Gamma_{p}\left(\frac{9}{20}\right) \Gamma_{p}\left(\frac{13}{20}\right) \Gamma_{p}\left(\frac{17}{20}\right)}{\Gamma_{p}\left(\frac{1}{4}\right) \Gamma_{p}\left(\frac{1}{5}\right) \Gamma_{p}\left(\frac{2}{5}\right) \Gamma_{p}\left(\frac{3}{5}\right) \Gamma_{p}\left(\frac{4}{5}\right)}=5^{u\left(-\frac{1}{4}\right)}\left(5^{1-p}\right)^{\frac{1}{p}\left(u\left(-\frac{1}{4}\right)+\frac{1}{4}\right)}=1,
$$

we see that

$$
\Gamma_{p}\left(\frac{1}{60}\right) \Gamma_{p}\left(\frac{41}{60}\right)= \pm \Gamma_{p}\left(\frac{11}{60}\right) \Gamma_{p}\left(\frac{31}{60}\right) .
$$

This completes the proofs for sufficiency in the cases treated.
In the other cases, where $d=24$ and $p \equiv 19(\bmod 24)$ or $d=60$ and $p \equiv 49(\bmod 60)$, the sufficiency can be proved in a similar way.

It should be noted that the condition in Theorem 3 is sufficient in any general case where the problem is considered in $\operatorname{GF}\left(p^{f}\right)$ with $f \equiv 0(\bmod 2)$. If a character ω^{-i} of order d is a solution of the equality, then the induced character $\omega^{-i} \circ N_{\mathrm{GF}\left(p^{f}\right) / \mathrm{GF}\left(p^{2}\right)}$ of $\mathrm{GF}\left(p^{f}\right)^{\times}$, which is of the same order d, also satisfies the equality

$$
\left(\Gamma_{p}\left(\frac{1}{d}\right) \Gamma_{p}\left(\frac{\beta}{d}\right)\right)^{\frac{f}{2}}= \pm\left(\Gamma_{p}\left(\frac{1}{d}+\frac{1}{2}\right) \Gamma_{p}\left(\frac{\beta}{d}-\frac{1}{2}\right)\right)^{\frac{f}{2}}
$$

where $p \equiv \beta(\bmod d)$ and $N_{\mathrm{GF}\left(p^{f}\right) / \mathrm{GF}\left(p^{2}\right)}$ means the norm with respect to $\operatorname{GF}\left(p^{f}\right) / \mathrm{GF}\left(p^{2}\right)$.

This equality amounts just to one of the Davenport-Hasse relations for Gauss sums. Thus we see that the condition in Theorem 3 is still sufficient in any general case with $f \equiv 0(\bmod 2)$.

REFERENCES

[1] R. F. Coleman, The Gross-Koblitz formula, Adv. Stud. Pure Math. 12 (1987), 21-52.
[2] H. Davenport und H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
[3] M. Ishibashi, H. Sato and K. Shiratani, On the Hasse invariants of elliptic curves, Kyushu J. Math. 48 (1994), 307-321.
[4] T. Ito, H. Ishibashi, A. Munemasa and M. Yamada, The Terwilliger algebras of cyclotomic schemes and rationality of Jacobi sums, in: Algebraic Combinatorics (Fukuoka 1993), 43-44.
[5] N. Koblitz, p-adic Analysis: a Short Course on Recent Works, Cambridge University Press, Cambridge, 1980.
[6] C. G. Schmidt, Die Relationenfaktorgruppen von Stickelberger-Elementen und Kreiszahlen, J. Reine Angew. Math. 315 (1980), 60-72.
[7] L. G. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
[8] K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combin. Theory 1 (1966), 476-489.
[9] -, The gap group of multiplicative relationships of Gaussian sums, Sympos. Math. 15 (1975), 427-440.

Graduate School of Mathematics
Kyushu University
Fukuoka 812, Japan
E-mail: siratani@math.kyushu-u.ac.jp yamada@math.kyushu-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: 11T24.
 $\left.{ }^{1}\right)$ One of the authors has recently received a reprint of a paper by S. Akiyama, On the pure Jacobi sums, Acta Arith. 75 (1996), 97-104. The authors have found that the same result is independently obtained there with a completely different proof. The authors had already announced the result in a symposium of RIMS at Kyoto University held in November 1994.

