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EXTENSIONLESS MODULES
OVER TAME HEREDITARY ALGEBRAS

BY

FRANK OKOH (DETROIT, MICHIGAN)

Introduction. This paper is a sequel to [15]. However, the empha-
sis here is on modules over finite-dimensional tame hereditary algebras, R.
Finite-dimensional R-modules M with the property that Ext1R(M,M) = 0
have established their importance in the theory of R-modules; see for in-
stance [3]. Various adjectives have been attached to such modules; see [4],
[9], and [11]. The last two references also deal with categories of sheaves.
The neutral term extensionless is used here because our modules are not
assumed to be finite-dimensional.

Let R be a finite-dimensional hereditary algebra. In studying R-modules
there is no loss of generality in assuming that R is basic, i.e. R/radR is a
finite direct sum of division rings; see [2, Corollary 2.6]. In that case R gives
rise to a quadratic form q. If q is semidefinite but not positive definite, R
is said to be tame. See Chapter 8 of [2], Chapter 14 of [20], or [19] for a
treatise on this class of algebras. The category of R-modules in this paper
is encapsulated in Theorem 0.1.

Theorem 0.1. Let R be a two-sided indecomposable tame finite-dimen-
sional hereditary algebra over an algebraically closed field K. Then the
category of R-modules is equivalent to the category of K-representations of
an oriented extended Coxeter–Dynkin diagram without oriented cycles.

P r o o f. This follows from Section 4.3 of [8], Corollary 14.7 and Theorem
14.15 of [20].

Let R be the tame finite-dimensional hereditary algebra(
K K2

0 K

)
,

where K2 is the two-dimensional K-vector space and the multiplication is
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given by (
d u
0 c

) (
f v
0 e

)
=

(
df dv + ue
0 ce

)
.

We follow [2] and [20] and call such an algebra R a Kronecker algebra.
Theorem 0.1 allows us to view an R-module, called a Kronecker module, as
a quadruple V = (V1, V2, φ, ψ), where (V1, V2) is a pair of K-vector spaces
and (φ, ψ) is a pair of K-linear maps from V1 to V2. All this and more can
be found in Example 1.5 and on p. 282 of [20]. See also Section 8.7 of [2].
N. Aronszajn became interested in systems as a result of his work in pertur-
bation theory. His joint work with Fixman has now been incorporated into
the more general theory of R-modules. However, many results on Kronecker
modules do not yet have analogues for R-modules. See for instance [12] and
Section 3 of the present paper.

In Section 1 we define our terms and state preliminary results needed in
the rest of the paper. The main result of Section 2 describes the countable-
dimensional torsion-free extensionless R-modules of finite rank. In Section 3
we show that if K has the same cardinality as the field of complex numbers
then any rank two torsion-free extensionless Kronecker module, V , may
be considered a K[X]-module, where K[X] is the polynomial ring in the
variable X. It then follows from [16, Theorem 3.4] that V is a direct sum
of rank one torsion-free Kronecker modules. At the end of Section 3 we
briefly contrast the results in this paper with related results for modules
over Dedekind domains.

Notation. The following notation prevails throughout the paper.

• R will stand for the algebra with all the properties mentioned in The-
orem 0.1. When module is unappended we mean R-module, while vector
space means K-vector space. Moreover, K is algebraically closed.

• Mn = M ⊕ . . .⊕M (n copies)
• Ext will stand for Ext1R and the HomR(M,N) will often do without R.
• dimU is the dimension of the K-vector space U .
• cardS is the cardinality of the set S.

1. Preliminary results. We begin by recalling a torsion theory on
R-modules due to Aronszajn and Fixman in [1] when R is the Kronecker
algebra and to Ringel in [19] for arbitrary R.

The non-zero finite-dimensional indecomposable R-modules are of three
types: pre-injective, preprojective, and regular. A finite-dimensional module
is torsion if it has no preprojective direct summand. Given an arbitrary
R-module, M , the torsion submodule tM of M is the submodule of M gen-
erated by all finite-dimensional torsion submodules of M . We say that M is
torsion if tM = M and torsion-free if tM = 0. If M is neither torsion nor
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torsion-free, M is mixed. It is convenient to allow the zero module to float
among all three types.

A torsion module is regular if every finite-dimensional indecomposable
direct summand is regular. It is shown in [19] that a torsion regular module
M decomposes as

(1) M =
⊕

p∈K∪{∞}

M(p),

where each M(p) is analogous to the p-primary component of a torsion
abelian group. Consequently, we refer to M(p) as the p-primary component
of M . There is also the following analogue of a Prüfer group.

Let M1 be a non-zero torsion regular module with no non-zero proper
regular submodule. There is a sequence of torsion regular modules Mn of
regular length n with Mn ⊆Mn+1. The module

(2) M =
∞⋃

n=1

Mn

is called a Prüfer module in [1] and [19]. It is studied in Section 8 of [1] under
the notation II∞θ , where IIn

θ corresponds to the K[X]-module K[X]/(X −
θ)nK[X]. See also p. 10 of [20].

Proposition 1.1 ([19]). Submodules and direct products of torsion-free
R-modules are torsion-free. Extensions of torsion-free R-modules by torsion-
free modules are also torsion-free.

For use in Section 3 we note that a Kronecker module V = (V1, V2, φ, ψ)
is torsion-free if aφ+ bψ : V1 → V2 is one-to-one for every non-zero element
(a, b) in K2.

Let M be a torsion-free R-module. Let X be a subset of M . Let F =
{L ⊆ M : X ⊆ L and M/L is torsion-free}. Then N =

⋂
L∈F L is the

smallest submodule of M containing X with M/N torsion-free. We call
N the torsion-closure of X in M and denote it by tcM X or tcX if M is
understood.

A submodule M1 of M is said to be torsion-closed in M if tcM M1 = M1.
Let

(3) C = {B ⊆M : tcM B = M}.

Since M ∈ C, C is non-empty. In [6] Fixman calls B0 ∈ C a basis of M
with respect to generation if no proper subset of B0 is in C. The rank of M ,
denoted by rankM , is by definition cardB0. This is well-defined by Theorem
1.2(a).

Theorem 1.2. Let M be a torsion-free R-module.
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(a) If B1 and B2 are two bases of M with respect to generation then
cardB1 = cardB2.

(b) If B ∈ C then B contains a basis of M with respect to generation.
(c) If S ⊆M and tcM S 6= tcM S′ for every proper subset S′ of S, then

S is contained in a basis of M with respect to generation.
(d) If M1 and M2 are torsion-free R-modules and M is an extension of

M1 by M2 then rankM = rankM1 + rankM2.

P r o o f. When R is the Kronecker algebra, see [6]. It was noted in [17]
that the results in Sections 4 and 5 of [19] can be used to adapt the proofs
in [6] for arbitrary algebras in Theorem 0.1.

Corollary 1.3. Let L and M be torsion-free R-modules. Then a ho-
momorphism φ : L → M is determined on any basis of L with respect to
generation. In particular , if L is of rank one then φ is determined by its
value on any non-zero element of L.

We need more facts on rank one torsion-free R-modules. For this purpose
we recall from [6] that a height function is a function

h : K ∪ {∞} → {∞, 0, 1, 2, . . .}.

Two height functions h1 and h2 are equivalent if the following conditions
are satisfied:

(i) h1(t) = ∞ if and only if h2(t) = ∞.
(ii) The set ∆ = {t ∈ K ∪ {∞} : h1(t) 6= h2(t)} is finite.
(iii) If h1, hence h2, does not assume ∞, then

∑
t∈∆ h1(t) =

∑
t∈∆ h2(t).

Equivalence classes of height functions characterize isomorphism classes
of rank one torsion-free R-modules; see Theorem 3.3 of [6] and Section 6.4
of [19]. The principal ideal domain version of this result is due to R. Baer;
see [7, Section 85].

Let h be a height function. We shall denote by M(h) the corresponding
rank one torsion-free R-module. So we have the correspondence

(4) h 7→M(h).

Conversely, every torsion-free rank one R-module is isomorphic to M(h) for
some height function h. We illustrate (4) below in the case of Kronecker
modules and K[X]-modules.

Example1.4 (Section 3 of [6] and Section 85 of [7]). (a) We wantM(h)=
(V1, V2, φ, ψ). Let K(X) be the field of rational functions. Then V2 is the
K-subspace of K(X) consisting of those functions that have a pole at each
θ ∈ K ∪ {∞} of order ≤ h(θ), while V1 is the subspace of V2 consisting of
those functions in V2 with a pole at ∞ of order < h(∞). So V2 has as basis
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the set

{(X − θ)−k : 0 ≤ k < h(θ) + 1, θ 6= ∞} ∪ {Xk : 0 < k < h(∞) + 1}.
The map φ : V1 → V2 is the inclusion map and ψ : V1 → V2 is given by
ψ(v1) = Xv1.

(b) Since K is algebraically closed, there is a one-to-one correspondence
between the monic irreducible polynomials in K[X] and the elements of K.
A height function h in this context is a function

h : K → {∞, 0, 1, 2, . . .}.
Only (i) and (ii) are needed in the definition of equivalence of these height
functions. The corresponding K[X]-module M(h) is the K[X]-submodule
of K(X) generated by V2 in (a).

Definition 1.5. The module M(h) is said to be idempotent if h is
equivalent to a height function whose image is in {0,∞}.

The following notation will be used for any height function h:

F (h) = {p ∈ K ∪ {∞} : h(p) 6= ∞},
P (h) = {p ∈ K ∪ {∞} : h(p) 6= 0},
I(h) = {p ∈ K ∪ {∞} : h(p) = ∞}.

We have the following lemma on rank one torsion-free R-modules.

Lemma 1.6. (a) Suppose that M(h) is infinite-dimensional. Then it is
idempotent if and only if I(h) is non-empty and F (h) ∩ P (h) is finite.

(b) M(h) is infinite-dimensional if and only if I(h) is non-empty or
P (h) is infinite. In that case dimM(h) = ℵ0 cardP (h).

(c) M(h) is countably infinite-dimensional if and only if P (h) is count-
ably infinite or I(h) is non-empty and countable.

P r o o f. (a) follows from the definitions, while (b) and (c) follow from
Theorem 6.5 of [19].

Proposition 1.7 ([15, Proposition 3.4]). Let h1 and h2 be height func-
tions. Suppose dimM(h1) + dimM(h2) is infinite, F (h1) ⊆ F (h2), and
F (h1) ∩ P (h2) is finite. Then Ext1R(M(h2),M(h1)) = 0.

Lemma 1.6(a) and Proposition 1.7 imply that idempotent rank one
torsion-free R-modules are extensionless. Proposition 1.7 also implies that
if M(h2) is finite-dimensional and M(h1) is infinite-dimensional, then
Ext(M(h2),M(h1)) = 0.

Proposition 1.8 ([19, Section 2.2]). Let M be a torsion-free R-module.

(a) If M has no non-zero finite-dimensional direct summand then
Ext1R(N,M) = 0 for every torsion-free finite-dimensional R-module N .
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(b) If N is a non-zero finite-dimensional torsion-free R-module and
HomR(M,N) 6= 0, then M has a non-zero finite-dimensional direct sum-
mand.

Proposition 1.9 ([15, Lemma 3.1]). Let M be a non-zero torsion module
with only one non-zero primary part at t ∈ K ∪ {∞} and let h be a height
function. Then Ext(M,M(h)) = 0 if and only if h(t) = ∞.

We shall also need results on the dimensions of some vector spaces of
R-homomorphisms.

Lemma 1.10. Let M and N be torsion-free modules with M of finite
rank.

(a) If N is infinite-dimensional , then dim HomR(M,N) ≤ dimN .
(b) If N is finite-dimensional , then HomR(M,N) is finite-dimensional.

P r o o f. (a) Let C and H be respective bases of the K-vector spaces
N and HomR(M,N). Let Pf (C) be the set of finite subsets of C. Let
B = {b1, . . . , br} be a basis of M with respect to generation. The proof is
by induction on r.

Suppose r = 1. Let α ∈ H and let α(b1) = k1c1 + . . . + kncn, where
ki ∈ K and ci ∈ C. We now define a map ψ : H → Pf (C) by setting
ψ(α) = {c1, . . . , cn}. By Corollary 1.3, α is determined by α(b1). So ψ is a
finite-to-one map. Hence cardH ≤ cardC = dimN .

We now assume the result for all torsion-free modules of rank < r. Let
M1 = tcM{b1, . . . , br−1} and M2 = M/M1. From the exact sequence

(5) 0 →M1 →M →M2 → 0

we get the exact sequence

(6) 0 → Hom(M2, N) → Hom(M,N) → Hom(M1, N).

That dim Hom(M,N) ≤ dimN follows from (6), the induction hypothesis,
and the fact that N is infinite-dimensional.

(b) Since M is of finite rank we can write it as M = L1 ⊕ L2, where L1

is finite-dimensional and L2 has no non-zero finite-dimensional direct sum-
mand. By Proposition 1.8(b) we obtain Hom(L2, N) = 0. So Hom(M,N) ∼=
Hom(L1, N).

Lemma 1.11. The endomorphism algebra of a Prüfer R-module M is an
uncountable-dimensional vector space over K.

P r o o f. Let E=EndM . The modules Mn in (2) play the role of Z/pnZ
in the proof that End Z∞p is a complete discrete valuation ring; see Section
43.3 of [7] or Remark 3, Section 4.4 of [19]. So E is a complete discrete
valuation ring. Let I be its maximal ideal. Since K ⊆ E and K ⊆ E/I, both
E and E/I have the same characteristic. Therefore, by [21] for instance,
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E ∼= (E/I)[[X]], the power series ring over E/I in the variable X, which is
an uncountable-dimensional vector space over K.

2. Countable-dimensional extensionless modules of finite rank.
Throughout this section R stands for the algebra in Theorem 0.1. Theorem
2.3, Proposition 2.5, and Theorem 2.8 are the main results of the section.
However, the other results are needed to prove them. The notation in (4)
will be used.

If M(h) is infinite-dimensional, then by Section 6.3 of [19], it contains a
simple projective module P and

(7) M(h)/P ∼=
⊕

p∈K∪{∞}

M(p),

where eachM(p) is a p-primary module of regular length h(p). In particular,
M(p) is a Prüfer module when h(p) = ∞.

Proposition 2.1. Let M(h1) and M(h2) be countable-dimensional
torsion-free rank one R-modules. Suppose that for some t in K ∪ {∞},
h2(t) = ∞ while h1(t) <∞. Then Ext1R(M(h2),M(h1)) is an uncountable-
dimensional vector space over K.

P r o o f. Let M(h3) be the rank one submodule of M(h2), where h3(t)
= ∞ and h3(p) = 0 if p 6= t. Since R is hereditary it is enough to show that
Ext(M(h3),M(h1)) is uncountable-dimensional.

Let M(h4) be a rank one module that contains M(h1), where h4(t) = ∞
and h4(p) = h1(p) when p 6= t. For brevity, we write Mi for M(hi). From
the exact sequence

0 →M1 →M4 →M4/M1 → 0

we get the exact sequence

(8) Hom(M3,M4) → Hom(M3,M4/M1) → Ext(M3,M1) → Ext(M3,M4).

From the definitions of h3 and h4 we see that M3 is isomorphic to a submod-
ule of M4. Since F (h4) ⊆ F (h3) and F (h4)∩P (h3) is empty, Ext(M3,M4) =
0, by Proposition 1.7. From h1(t) <∞, h4(t) = ∞ and (7) we deduce that
M4/M1 contains a Prüfer module, M(t), as a direct summand. Hence from
Lemma 1.11 we infer that Hom(M3,M4/M1) is uncountable-dimensional.
Since M1 is countable-dimensional it follows from Lemma 1.6(c) that M4

is also countable-dimensional. By Lemma 1.10, Hom(M3,M4) is countable-
dimensional. When we take all these to (8) we deduce that Ext(M3,M1) is
uncountable-dimensional.

Proposition 2.2. Suppose that M(h1) and M(h2) are countable-dimen-
sional torsion-free rank one R-modules and F (h1) ∩ P (h2) is an infinite



292 F. OKOH

set. Then Ext1R(M(h2),M(h1)) is an uncountable-dimensional vector space
over K.

P r o o f. Denote M(hi) by Mi. With P as in (7) we have

(9) 0 → P →M2 →M2/P → 0.

From (9) we get the exact sequence

(10) Hom(P,M1) → Ext(M2/P,M1) → Ext(M2,M1) → Ext(P,M1).

The last entry is zero because P is a projective module. By Lemma 1.10(a),
Hom(P,M1) is countable-dimensional. From (7) we deduce that M2/P con-
tains

⊕
p∈F (h1)∩P (h2)

M(p), where M(p) is a nonzero p-primary module.
Since F (h1) ∩ P (h2) is infinite, it follows from (7) and Proposition 1.9 that
Ext(M2/P,M1) is uncountable-dimensional. So (10) implies that the mod-
ule Ext(M2,M1) is isomorphic to the uncountable-dimensional vector space
Ext(M2,M1)/Hom(P,M1).

Propositions 1.7, 2.1, and 2.2 together give the next theorem.

Theorem 2.3. Let M(h1) and M(h2) be countable-dimensional torsion-
free rank one R-modules with at least one of them infinite-dimensional. Then
Ext1R(M(h2),M(h1)) is either zero or an uncountable-dimensional K-vector
space. It is zero if and only if F (h1) ⊆ F (h2) and F (h1) ∩ P (h2) is finite.

Corollary 2.4. Suppose that M is a non-zero finite-dimensional tor-
sion-free R-module and N is a countably infinite-dimensional torsion-free
R-module of finite rank. Then Ext1R(N,M) is uncountable-dimensional. If
N is also extensionless then N does not have a non-zero finite-dimensional
direct summand.

P r o o f. Since M is finite-dimensional we can write M =
⊕n

i=1M(hi)
for some positive integer n, and hi height functions with F (hi) = K ∪{∞},
for i = 1, . . . , n. So if rankN = 1, the corollary follows from Theorem 2.3.

Suppose rank N > 1. Then we have an exact sequence

(11) 0 → N1 → N → N2 → 0,

where both N1 and N2 are non-zero and torsion-free with at least one of
them infinite-dimensional. From (11) we get the exact sequence

(12) Hom(N1,M) → Ext(N2,M) → Ext(N,M) → Ext(N1,M) → 0.

By induction either Ext(N2,M) or Ext(N1,M) is uncountable-dimensional.
Since Hom(N1,M) is finite-dimensional by Lemma 1.10(b), it follows from
(12) that Ext(N,M) is uncountable-dimensional.

Suppose N=M⊕N1, M 6=0 and finite-dimensional. Then N1 is infinite-
dimensional. So Ext(N1,M) 6= 0. This contradicts Ext(N,N) = 0.
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In light of Corollary 2.4 we point out that the investigation of extension-
less R-modules with a non-zero finite-dimensional direct summand requires
different techniques from those in this paper; see [18].

Proposition 2.5. Let M and N be countable-dimensional torsion-free
modules of finite rank with N infinite-dimensional. Then Ext1R(N,M) is
either zero or an uncountable-dimensional K-vector space.

P r o o f. Suppose that Ext(N,M) 6= 0. We show by induction on r =
rankM +rankN that Ext(N,M) is uncountable-dimensional. Theorem 2.3
starts the induction. We may, therefore, assume that r ≥ 3. Either N or M
has rank ≥ 2.

Suppose that rankM = 1. Then rankN ≥ 2 and we have the exact
sequences (11) and (12). If M is finite-dimensional then Corollary 2.4 gives
us the required conclusion. So we assume that M is infinite-dimensional.
Since Ext(N,M) 6= 0 it follows from (12) that at least one of Ext(N1,M) and
Ext(N2,M) is non-zero. If Ext(Ni,M) 6= 0, i = 1 or 2, then by Proposition
1.8(a), Ni is infinite-dimensional. Induction then shows that Ext(Ni,M) is
uncountable-dimensional. Since Hom(N1,M) is countable-dimensional by
Lemma 1.10, (12) implies that Ext(N,M) is uncountable-dimensional when
rankM = 1.

Suppose rankM ≥ 2. Then we get from (5) the exact sequence

(13) Hom(N,M2) → Ext(N,M1) → Ext(N,M) → Ext(N,M2) → 0.

Since rankMi + rankN < rankM + rankN , i = 1, 2, induction and (13)
imply that Ext(N,M) is uncountable-dimensional.

R e m a r k 2.6. If N is finite-dimensional, Proposition 2.5 may fail when
M is infinite-dimensional and has a non-zero finite-dimensional direct sum-
mand. For instance, let N and L be finite-dimensional torsion-free R-mod-
ules with Ext1R(N,L) 6= 0. Let M(h) be an infinite-dimensional torsion-free
rank one R-module. Then by Proposition 1.8(a), Ext1R(N,L ⊕ M(h)) ∼=
Ext1R(N,L), which is a non-zero finite-dimensional vector space.

Lemma 2.7. Let M be a countably infinite-dimensional torsion-free ex-
tensionless R-module of finite rank ≥ 2. Then every submodule M1 of M
with M2 = M/M1 torsion-free is an infinite-dimensional extensionless direct
summand of M .

P r o o f. We have the exact sequence

(14) 0 →M1 →M →M2 → 0.

Proposition 1.8(b) and Corollary 2.4 imply that M2 is infinite-dimensional.
The sequence (14) gives the exact sequence

(15) Hom(M,M2) → Ext(M,M1) → Ext(M,M) → Ext(M,M2) → 0.
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Since Hom(M,M2) is countable-dimensional and Ext(M,M) = 0 we deduce
from Proposition 2.5 that Ext(M,M1) = 0. Hence Ext(M1,M1) = 0.

We now want to show that (14) splits. From (14) we get the exact
sequence

(16) Hom(M1,M1) → Ext(M2,M1) → Ext(M,M1).

Since Hom(M1,M1) is countable-dimensional, Ext(M,M1) = 0, and M2 is
infinite-dimensional, Proposition 2.5 and (16) imply that Ext(M2,M1) = 0
as required.

Theorem 2.8. A countably infinite-dimensional torsion-free R-module
M , of finite rank , n, is extensionless if and only if there is a non-zero idem-
potent height function h such that M is isomorphic to M(h)n.

P r o o f. Proposition 1.7 shows that if h is idempotent then M(h)n is
extensionless.

SupposeM is extensionless. Using (5), Lemma 2.7, and induction on the
rank of M we deduce that there are height functions hj , j = 1, . . . , n with

(17) M ∼= M(h1)⊕ . . .⊕M(hn).

Since Ext(M,M) = 0, we have Ext(M(hj),M(hi)) = 0 for every pair (i, j).
Using the notation in Lemma 1.6, Theorem 2.3 implies that, for every pair
(i, j), F (hi) = F (hj), F (hi) ∩ P (hj) is a finite set, and I(hi) = I(hj).

Since each M(hi) is infinite-dimensional, by Corollary 2.4, it also follows
from Theorem 2.3 that each I(hj) is non-empty. So by Lemma 1.6(a), the
height functions in (17) are non-zero, idempotent, and equivalent.

3. Uncountable-dimensional torsion-free extensionless rank two
Kronecker modules. In this section R denotes the Kronecker algebra and
R-modules will be written as V = (V1, V2, φ, ψ) (see the introduction). We
shall need the results in [14]. The only properties of the field of complex
numbers used in [14] are that it is algebraically closed and has the cardinality
of the continuum. So in this section we shall assume that not only is K
algebraically closed but also that K, hence R, has the cardinality of the
continuum. In that case we have Theorem 3.1, which is a more precise version
of Theorem 2.3 for Kronecker modules. The notation in (4) is still in force.

Theorem 3.1 ([14]). Suppose the Kronecker algebra R has the cardi-
nality of the continuum. Let M(h1) and M(h2) be torsion-free rank one
R-modules, at least one of which is infinite-dimensional. Then

dim Ext(M(h2),M(h1)) = 2card F (h1)∩P (h2)

if cardF (h1) ∩ P (h2) is infinite. Otherwise, dim Ext(M(h2),M(h1)) is ei-
ther 2ℵ0 or 0. It is zero if and only if , in addition, F (h1) ⊆ F (h2).
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Next comes a refinement of Corollary 2.4.

Proposition 3.2. Suppose the Kronecker algebra R has the cardinality
of the continuum. Let M be a non-zero finite-dimensional torsion-free R-
module and let N be an infinite-dimensional , torsion-free R-module of finite
rank. Then dim Ext(N,M) = 2dim N . If N is also extensionless then N
does not have a non-zero finite-dimensional direct summand.

P r o o f. If N is of rank one and infinite-dimensional then the result
follows from Theorem 3.1 and Lemma 1.6(b). Suppose rankN > 1. In that
case we proceed as in the proof of Corollary 2.4 beginning with (11).

Corollary 3.3. Suppose the Kronecker algebra R has the cardinality of
the continuum. Let M be an infinite-dimensional extensionless torsion-free
R-module of finite rank. Then every non-zero torsion-closed submodule of
M is infinite-dimensional.

P r o o f. Let M1 be a non-zero torsion-closed submodule of M and
let M2 = M/M1. So we have the sequences (14) and (15). If M1 were
finite-dimensional, then dim Ext(M,M1) would be 2dim M by Proposition
3.2. Since Ext(M,M) = 0, and dim Hom(M,M2) ≤ dimM2 < 2dim M , (15)
implies that dimM2 ≥ 2dim M , a contradiction.

Before we continue, we have to recall some relationships between K[X]-
modules and some Kronecker modules.

Let V = (V1, V2, φ, ψ). Let e = (e1, e2) be a non-zero element of K2. We
say that V is non-singular via e if e1φ+e2ψ : V1 → V2 is an isomorphism. As
shown in [1, p. 281] we may in that case consider V as a K[X]-module. Con-
versely, any K[X]-module M gives rise to a Kronecker module (M,M, id, β),
where id is the identity map on M and β(m) = Xm. For a fixed e ∈ K2,
the subcategory of Kronecker modules non-singular via e is an exact full
subcategory equivalent to the category of K[X]-modules. We shall use the
following facts on non-singular Kronecker modules.

Proposition 3.4. (a) ([6, Corollary 3.5]). A rank one torsion-free Kro-
necker module is non-singular if and only if its height function assumes the
value ∞.

(b) If h1(θ) = h2(θ) = ∞ then any extension of M(h1) by M(h2) is
non-singular.

(c) A K[X]-module M is torsion-free if and only if the corresponding
Kronecker module (M,M) is torsion-free. Moreover , rankM=rank(M,M).

The main result of this section ultimately rests on Theorem 3.5. It was
proved in [16] for Dedekind domains that are not local rings.

Theorem 3.5 ([16, Theorem 3.4). Let M be a torsion-free F [X]-module
of arbitrary finite rank n, and F a field of arbitrary cardinality and not
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necessarily algebraically closed. Then M is extensionless if and only if there
is an idempotent height function h such that M is isomorphic to M(h)n.

We recall that a height function h has domain K or K ∪{∞} depending
on whether we are dealing with K[X]-modules or R-modules. When h is
the zero function the corresponding R-module, M(h), is a finite-dimensional
projective R-module, while the corresponding K[X]-module is K[X]. This
explains why, in order to get an infinite-dimensional R-module from an idem-
potent height function, non-zero idempotent height function is stipulated in
Theorems 2.8 and 3.6. No non-zero assumption is needed in Theorem 3.5.
However, no problem arises in applying Theorem 3.5 in the proof of Theorem
3.6 because when K[X] is considered as a Kronecker module, the way de-
scribed before Proposition 3.4, its corresponding height function h assumes
0 on K and h(∞) = ∞. So what was a zero height function when dealing
with K[X]-modules becomes a non-zero height function when ∞ is included
in its domain.

Theorem 3.6. Suppose the Kronecker algebra R has the cardinality of
the continuum. Let V = (V1, V2, φ, ψ) be a torsion-free rank two infinite-
dimensional R-module. Then V is extensionless if and only if there is a
non-zero idempotent height function h such that V is isomorphic to M(h)2.

P r o o f. Sufficiency follows from Proposition 1.7.
Suppose that V is extensionless. Since rankV = 2 we have an exact

sequence

(18) 0 →M(h1) → V →M(h2) → 0,

where M(h1) and M(h2) are torsion-free rank one modules.
Since Ext(V, V ) = 0 and R is hereditary we have Ext(M(h1),M(h2))

= 0.
Suppose that for some θ ∈ K ∪ {∞} we have h1(θ) = ∞.
Then by Theorem 3.1, we get h2(θ) = ∞. So by Proposition 3.4(b),

V may be considered a K[X]-module. Hence Theorem 3.5 implies that
V is isomorphic to M(h)2 for some idempotent height function h. If h is
the zero height function in the category of K[X]-modules, then M(h) is
isomorphic to K[X] as a K[X]-module. However, when M(h) is viewed
as an R-module, h(∞) = ∞. Therefore h is a non-zero idempotent height
function as required.

Suppose that

(19) F (h1) = K ∪ {∞}.
We shall show that (19) leads to a contradiction. Using Ext(M(h1),M(h2))
= 0, it follows from (19), Lemma 1.6(b) and Theorem 3.1 that dimM(h2) ≥
dimM(h1). So (18) gives dimM(h2)=dimV . With Mi =M(hi), (18) gives
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the exact sequence

(20) Hom(M2,M2) → Ext(M2,M1) → Ext(M2, V ) → Ext(M2,M2).

From (19), Lemma 1.6(b), Corollary 3.3 and Theorem 3.1 we get

dim Ext(M(h2),M(h1)) = 2dim M(h2) = 2dim V .

By Lemma 1.10(a), dim Hom(M2,M2) ≤ dimM2. Therefore, (20) yields
that dim Ext(M2, V ) = 2dim M2 = 2dim V . The exact sequence

(21) Hom(V, V ) → Hom(M1, V ) → Ext(M2, V ) → Ext(V, V )

is obtained from (18). Feeding (21) with dim Hom(M1, V ) ≤ dimV and
Ext(V, V ) = 0 leads to the contradiction 2dim V ≤ dimV . Therefore (19) is
untenable. So for some θ ∈ K ∪ {∞}, h1(θ) = ∞. We quote the paragraph
before (19) to complete the proof.

We conclude the paper with some remarks on the cardinality assumptions
in the paper.

Remarks 3.7. (a) At first sight it seems that two in Theorem 3.6 can be
replaced by n as in Theorem 3.5. However, the reduction to K[X]-modules
in the proof of Theorem 3.6 required Theorem 3.1, which in turn required
the explicit structure of rank one torsion-free Kronecker modules.

(b) If M is an idempotent torsion-free rank one R-module then any finite
direct sum of copies of M is extensionless—even when M is not countable-
dimensional. This follows from Proposition 1.7. So only one direction in
Theorems 2.3 and 2.8 requires a countability hypothesis.

In [15] results analogous to those in this paper were obtained for count-
able Dedekind domains and countable R. Here we have shifted the count-
ability hypothesis from the algebra to the module. The format of the proofs
is the same. However, the example below shows that the analogue of Theo-
rem 2.8 is false for Dedekind domains.

Example 3.8. Let D be an incomplete discrete valuation ring whose
completion D̂ is a module of finite rank r > 1 over D, for instance the
bad noetherian ring in [13, p. 207]. In [16] it was observed that D̂ is an
indecomposable extensionless D-module of finite rank. We now show that
D̂ is a countably generated D-module: First, F , the quotient field of D, is
generated over D by {1/pn : n = 1, 2, . . .}, where p is a generator of the
maximal ideal of D. Let F̂ be the quotient field of D̂. Since it is finitely
generated over F , it follows that F̂ is countably generated over D. Since D
is noetherian and D̂ ⊆ F̂ , it follows that D̂ is also countably generated over
D. Therefore we have found a countably generated extensionless D-module
that is not a direct sum of rank one D-modules.
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The problem of describing extensionless modules is a special case of
the problem of classifying pairs of modules (M2,M1) with Ext(M2,M1) =
0. The latter problem is solved in [22] for torsion-free abelian groups of
finite rank. As observed in Theorem 2.16 of [5], Pontryagin’s criterion, [7,
Theorem 19.1], extends the result in [22] to countable rank. As noted in [5],
Z can be replaced by any countable principal ideal domain. Theorem 3.5 is
a sample of the results in [16] on extensionless modules that do not require
the Dedekind domain to be countable. We refer to [10] for the structure of
modules of countable rank over complete discrete valuation rings.

Let G be a countable torsion-free abelian group and let A be an un-
countable torsion-free abelian group. There is a characterization in [5],
under various assumptions each consistent with ZFC, of pairs (A,G) with
Ext(A,G) = 0. Such a theorem is still inaccessible for the algebras in The-
orem 0.1 even if we restrict to Kronecker algebras.
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