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CESARO SUMMABILITY OF ONE- AND TWO-DIMENSIONAL
TRIGONOMETRIC-FOURIER SERIES

BY

FERENC WEISZ (BUDAPEST)

We introduce p-quasilocal operators and prove that, if a sublinear oper-
ator T is p-quasilocal and bounded from L, to L, then it is also bounded
from the classical Hardy space Hy(T) to L, (0 < p <1). As an application
it is shown that the maximal operator of the one-parameter Cesaro means
of a distribution is bounded from H,(T) to L, (3/4 < p < o0) and is of
weak type (L1, L;). We define the two-dimensional dyadic hybrid Hardy
space Hf(Tz) and verify that the maximal operator of the Cesaro means
of a two-dimensional function is of weak type (H f(TQ), Li). So we deduce
that the two-parameter Cesaro means of a function f € H lﬁ (T?) > Llog L
converge a.e. to the function in question.

1. Introduction. It can be found in Zygmund [23] that the Cesaro
means o, f of a function f € Li(T) converge a.e. to f as n — oo and
that if f € Llog™ L(T?) then the two-parameter Cesaro summability holds.
Analogous results for Walsh—Fourier series are due to Fine [11] and Mdricz,
Schipp and Wade [15].

The Hardy-Lorentz spaces H,, , of distributions on the unit circle are
introduced with the L,, , Lorentz norms of the non-tangential maximal func-
tion. Of course, H, = H,, , are the usual Hardy spaces (0 < p < 00).

In the one-dimensional case it is known (see Zygmund [23] and Torchin-
sky [20]) that the maximal operator of the Cesaro means sup,,cy |o,| is of
weak type (L1, Lq), i.e.

supyA(sup lon f| > 7) < C[[f[1 (f € L1(T))
v>0 neN

(for the Walsh case see Schipp [17]). Also, for Walsh—-Fourier series, the
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boundedness of the operator sup,,cy |0, | from H,, to L, was shown by Fujii
[12] (p =1) and by Weisz [21] (1/2 <p <1).

In this paper we generalize these results for trigonometric-Fourier series
with the help of the so-called p-quasilocal operators. An operator T is
p-quastlocal (0 < p < 1) if for all p-atoms a the integral of |T'al? over T \ I
is less than an absolute constant where [ is the support of the atom a. We
shall verify that a sublinear, p-quasilocal operator T which is bounded from
L to L is also bounded from H, to L, (0 < p < 1). By interpolation we
find that 7" is bounded from H, , to L, , as well (0 < p < 00, 0 < ¢ < o0)
and is of weak type (L1, Ly).

It will be shown that sup,,cy |o,| is p-quasilocal for each 3/4 < p < 1.
Consequently, sup,,cy |oy| is bounded from Hy, , to L, , for 3/4 < p < oo
and 0 < ¢ < oo and is of weak type (L1, L1). We will extend this result also
to (C, ) means.

For two-dimensional trigonometric-Fourier series we will verify that
SUP,, men |On,m| is of weak type (Hlﬁ, Ly) where Hf is defined by the Li-norm
of the two-dimensional hybrid non-tangential maximal function. Recall that
Llog L(T?) ¢ H lﬁ (see Zygmund [23]). A usual density argument implies
then that o, ,,,f — f a.e. as min(n,m) — oo whenever f € H?

2. Preliminaries and notations. For a set X # ) let X2 be the
Cartesian product X x X; moreover, let T := [—7, 7) and A be the Lebesgue
measure. We also use the notation |I| for the Lebesgue measure of the
set I. We briefly write L, or L,(T7) instead of the real L,(T7,\) space
( =1,2), and the norm (or quasinorm) of this space is defined by || f||, :=
(§ps |1 £IPdX)Y/P (0 < p < 00). For simplicity, we assume that for a function
f € Ly we have {, fd\=0.

The distribution function of a Lebesgue-measurable function f is de-
fined by

A{IFI > b = Az [f(@)[ >} (v =0).

The weak L, space L; (0 < p < c0) consists of all measurable functions f
for which

[ fllLy == supyA({[f] > YMHMP < o0;
7>0

*
moreover, we set L: = L.

The spaces Lj are special cases of the more general Lorentz spaces Ly 4.
In their definition another concept is used. For a measurable function f the
non-increasing rearrangement is defined by

(1) = inf{y : A{1f] > 7)) <t}
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The Lorentz space L), , is defined as follows: for 0 < p < 00, 0 < ¢ < o0,

0 1/
1= § Feeyeo )

0
while for 0 < p < oo,

| £llp.oo := supt'/? f(2).
t>0
Let

Lpq = Lp,q(Tj)\) ={f N fllpg <o} (1=1,2).
One can show the following equalities:
Lypp=1Ly, Lpo= L; (0 <p<o0)
(see e.g. Bennett—Sharpley [1] or Bergh-Lofstrom [2]).
Let f be a distribution on C*°(T) (briefly f € D'(T) = D’). The nth

Fourier coefficient is defined by f(n) := f(e~"*) where + = /—1. In the
special case when f is an integrable function,

f(n) ! Xf(ac)e*“” dzx.

T o
T

Denote by s,, f the nth partial sum of the Fourier series of a distribution f,
namely,

snf(x) = Z Flk)e™.

k=—n

For f €D and z :=re™ (0 <r <1)let
u(z) = u(re’”) :== fx P.(x)

where x denotes the convolution and
o0

1—r2
Po(z):= Y rliMehe = T
() e 1472 —2rcosx (zeT)

k=—o0

is the Poisson kernel. It is easy to show that u(z) is a harmonic function on
the unit disc and

[ee]
u(rezm) _ Z fA(k)le‘elkm
k=—o00

with absolute and uniform convergence (see e.g. Kashin—Saakyan [13], Ed-
wards [8]).

Let 0 < o < 1 be an arbitrary number. We denote by £2,(x) (z € T) the
region bounded by two tangents to the circle |z| = « from e and the longer
arc of the circle included between the points of tangency. The non-tangential
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maximal function is defined by

up(x) == sup Ju(z)] (0<a<1).
2E€802(x)
For 0 < p,q < oo the Hardy-Lorentz space Hy ,(T) = H, , consists of
all distributions f for which u}, € L,, 4; we set

”f”Hpq = HUT/QHPH-

The equivalence [ug|[p,q ~ [[u] j2llp.q (0 <p,q <00, 0 < <1) was proved
in Burkholder—-Gundy-Silverstein [3] and Fefferman—Stein [10]. Note that
in case p = ¢ the usual definition of Hardy spaces H,, = H, is obtained.
For other equivalent definitions we also refer to the previous two papers. It
is known that if f € H, then f(z) = lim,_,; u(re*”) in the sense of distribu-
tions (see Fefferman-Stein [10]). Recall that Ly C Hy o and LlogL C Hy;
more exactly,

(1) [flly o =supyA(uise >7) < Ifllh - (f € Ly)
v>0

and

(2) Ifllg, < C+CE(|fllog™ |f) (f € LlogL)

where log™ u = 1{u>1y log u. Moreover, Hy, ; ~ Ly 4 for 1 <p <o0,0<¢q <
oo (see Fefferman—Stein [10], Stein [19], Fefferman—Riviere-Sagher [9]).

The following interpolation result concerning Hardy—Lorentz spaces will
be used several times in this paper (see Fefferman—Riviere-Sagher [9]).

THEOREM A. If a sublinear operator T is bounded from H,, to L,, and
from Lo to Lo then it is also bounded from Hp 4 to Ly, if po < p < 00
and 0 < g < oco.

3. Quasilocal operators. The atomic decomposition is a useful char-
acterization of Hardy spaces. To demonstrate this let us introduce first the
concept of an atom. A generalized interval on T is either an interval I C T
or I =[—m z)U[y, 7). A bounded measurable function a is a p-atom if there
exists a generalized interval I such that

(i) §; a(z)z* dz = 0 where o € N and a < [1/p — 1], the integer part of
I/p—1,
(it) flallo < 1717177,
(iii) {a # 0} C I.
The basic result on the atomic decomposition is stated as follows (see Coif-
man [4], Coifman—Weiss [5] and also Weisz [22]).

THEOREM B. A distribution f is in H, (0 < p < 1) if and only if there
exist a sequence (ap,k € N) of p-atoms and a sequence (ug,k € N) of real
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numbers such that

o0
Z,ukak = f in the sense of distributions,
k=0

(3)

o0
Z \,uk]p < Q.
k=0
Moreover, the following equivalence of norms holds:
> 1/p
(4 11, ~ inf (D L)
k=0

where the infimum is taken over all decompositions of f of the form (3).

Motivated by the definition in Mdricz—Schipp—Wade [15] we introduce
the quasilocal operators. Their definition is weakened and extended here.

An operator T' which maps the set of distributions into the collection
of measurable functions will be called p-quasilocal if there exists a constant
Cp > 0 such that

| ITaPdx < C,
T\4I

for every p-atom a where [ is the support of the atom and 417 is the gener-
alized interval with the same center as I and with length 4|I].

The quasilocal operators were defined in [15] only for p = 1 and for L,
functions instead of atoms.

The following result gives sufficient conditions for 7" to be bounded from
H), to L. For the sake of completeness it is verified here.

THEOREM 1. Suppose that the operator T is sublinear and p-quasilocal
for some 0 < p < 1. If T is bounded from Ly to Lo then

ITfllp < Cpllfllm, (f € Hp).
Proof. Suppose that a is a p-atom with support I. By the p-quasilocality

and L., boundedness of T we obtain
VITalrax= | |Tal?dx+ | |Tal"d
T a1 T\47
< TSl 4] + Cp = Cy
where the symbol ), may denote different constants in different contexts.
Applying Theorem B, we get

ITFIE < D Il ITarllh < Collf I,
k=0

which proves the theorem. m
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Taking into account Theorem A and (1) we have

COROLLARY 1. Suppose that the operator T is sublinear and p-quasilocal
for each pg < p < 1. If T is bounded from Lo, to Lo, then

ITfllpq < Cpgllflla,, (f € Hpg)

for every pog < p < 00 and 0 < q < oo. In particular, T is of weak type
(1,1), i.e. if f € Ly then

1T fll1.00 = 51;187/\(|Tf| >7) < Cillflla, o < Cillfll-
Y

4. Cesaro summability of one-dimensional trigonometric-
Fourier series. For n € N and a distribution f the Cesaro mean of order
n of the Fourier series of f is given by

1 n
onf::n—HkZ:%skf:f*Kn (n € N)

where K,, is the Fejér kernel of order n. It is shown in Zygmund [23] that
2

(5) OSKn(t)g(nj_Til)tQ (0 < [t < )
and
(6) | K (t) dt = .

T

As an application of Theorem 1 we have the following result.

THEOREM 2. There are absolute constants C' and C,, , such that

(7) | Slég lonflllpg < Cp,q”f”Hp,q (f € Hpyq)
for every 3/4 < p < o0 and 0 < g < oo. In particular, if f € Ly then
C
(8) A(sup |on f| > ) < —|fll (v >0).
neN Y

Proof. By Corollary 1 the proof of Theorem 2 will be complete if we
show that the operator sup,,cy |0, | is p-quasilocal for each 3/4 < p <1 and
bounded from L, to L.

The boundedness follows from (6). To verify the p-quasilocality for 3/4 <
p < 1let a be an arbitrary p-atom with support I and 2= 5-1 < |[|/7 < 27K
(K € N). We can suppose that the center of I is zero. In this case

[-m2 K72 q27 K2 c I ¢ [—n27 K7 r27 KT,
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Obviously,
oK _q1xw(i41)27K
S sup |opa(x)|P de < Z S sup |opa(x)|P d
T\41 "N lil=1 mig-x €N

oK _1m(i+1)27K

Z S sup lona(z)|P dz

lijl=1 w2~ K

IN

oK _1m(i+1)27K

+ Z S sup lona(z)|P dz

lil=1  mi2—K

= (4)+(B)

where 7; := [25K/i%] (i € N) with a > 0 to be chosen later.
It follows from (5) and from the definition of the atom that

1
= HK,(r—t dt‘<C2K/p —— dt.
onala) ucw Kale =) < G2 | gy
By a simple calculation we get
m2 K1
S 1 - c2~% - Cc2K
ok (x —t)2  — (m|i|2=K —q2-K-1)2 = 42
if v € [mi2~ % 7(i +1)27%) (Ji| > 1). Hence
1
P K+Kp
Fnal@)l? < G2 e
Using the value of r; we can conclude that
2K 1 1 2K 1 1
—KoK+Kp
(A) < Cp Z; 2 2 (Ti T 1)pi2p < CP Z; §2p—ap’
This series is convergent if
2p—1
(9) a< 2 (<),

Now let us consider (B). It is well-known that

n

onalz) = <1— n|£1>a(j)eljm.

l71=1

If n < r; then
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On the other hand, by the definition of the atom,

gl PP

<
- 47

% Sa(x)(e_”r —1)dzx
I

Vla(@)| - |ja| do <
I

e

a() =

Therefore

n<r;

sup |opa(z)] < Cp Y (ry — j)2 K@D < 022 K@D,
j=1

Finally, we can estimate (B):

251 9K \ 2P 21
-K(Z —K(2-1/p)p _
B =c, 3 (%) =G 2

=1 =1

The last series converges if

1
10 > —.
(10) o>

The number « satisfies (9) and (10) if and only if 3/4 < p < 1. The proof
of the theorem is complete. m

Note that (8) can be found in Zygmund [23] or in Torchinsky [20], how-
ever, (7) was known only for Walsh-Fourier series (see Weisz [21]).

5. (C, ) summability of one-dimensional trigonometric-Fourier
series. In this section we generalize Theorem 2. For 0 < 8 <1 let

A <j+6> _(B+1)(B+2)...(B+)) _oG® (e
(see Zygmund [23]). The (C, ) means of a distribution f are defined by

1 & -
ol f = —BZAg_iskf:f*Kg
An 120

where the K f kernel satisfies the conditions

C
IK2(1)] < jﬁtﬁil 0 < [t| < )

and
[IK) (@) =Cs (€N
T
(see Zygmund [23]). In case =1 we get the Cesaro means.
The following result can be proved with the same method as Theorem 2.
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THEOREM 3. If 0 < 3 <1 then there are absolute constants C and Cp 4
such that

| S‘ég Ugf”p,q < Cp,q”f”Hp,q (f € Hp,q)
n

for every (6+2)/2(f+1) <p < oo and 0 < q¢ < co. In particular, if f € Ly
then

C
Asupol f>v) < =|flh  (v>0).
neN Y

The latter weak type inequality implies the next convergence result.
COROLLARY 2. If 0 < B <1 and f € Ly then
Jﬁf—>f a.e. asmn — Q.

We remark that this corollary can also be found in Zygmund [23].

6. Cesaro summability of two-dimensional trigonometric-
Fourier series. For f € L1(T?) and z :=re"® (0 <7 < 1) let

u(z,y) = u(re'™,y) = % S ft,y)Po(x —t)dt

and
ug(z,y) == sup Ju(z,y) (0<a<l).
2€024 ()
We say that f € Li(T?) is in the hybrid Hardy space Hlﬁ(T2) = Hf if
[fll gz == lluq ol < oo

The Fourier coefficients of a two-dimensional integrable function are de-
fined by

Fln,m) = —

)2 S Sf(ac,y)e_mxe_my dx dy.
TT

We can introduce the Cesaro means o, ,, f again as the arithmetic mean of
the rectangle partial sums of the Fourier series of f and can prove that

Onmf = fx (K, x Kp,).
We generalize (8) in the following way.

THEOREM 4. If f € H? then

A(sup |opmfl>7) <

1z (v >0).
n,meN 1

=1Q

Proof. Applying Fubini’s theorem, (8) and the positivity of K, (see
(5)) we have
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)\((a:,y) : sup ‘ S Sf(t,u)Kn(x —t) K (y —u) dtdu‘ > ’y)

n,meN T

< A((x,y) : sup S <Sup Sf(t,u)Kn(:n —t) dtDKm(y—u) du > 7)

meN T neN T

S S Lisup,,en g (suppen | g F(Ew) K (- —t) dt])) Ko (- —u) dus~} (T Y) dy da
T

Q|QH

S Ssup S ft,9)Ky(x—1t) dt‘ dy dz.

nEN

For a fixed y € T we deduce by (7) that

S sup ‘ S ft,y)Kp(x —1t) dt‘ de < C S ui o (2, y) dz.
TnEN T T
Theorem 4 follows from Fubini’s theorem. =

Note that we can verify with the same method that the operator
SUD,, men |On,m| is bounded from L, (T?) to L,(T?) if 1 < p < co.

It is easy to show that the two-dimensional trigonometric polynomials
are dense in Hf . Hence Theorem 4 and the usual density argument (see
Marcinkiewicz—Zygmund [14]) imply

COROLLARY 3. If f € HY then
Onmf — [ a.e. as min(n,m) — oo.

Note that H % D Llog L(T?) by (2). Corollary 3 for Llog L functions can
be found in Zygmund [23], and, for Walsh—Fourier series in Méricz—Schipp—
Wade [15].

REFERENCES

[1] C.Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129
Academic Press, New York, 1988.

[2] J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction, Springer, Ber-
lin, 1976.

[3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A mazimal function
characterization of the class HP, Trans. Amer. Math. Soc. 157 (1971), 137-153.

[4] R. R. Coifman, A real variable characterization of HP Studia Math. 51 (1974),
269-274.

[5] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in anal-
ysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.

[6] P.Duren, Theory of HP Spaces, Academic Press, New York, 1970.

[7] R.E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin,
1982.

[8] —, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.



CESARO SUMMABILITY 133

(19]
20]
(21]
(22]

23]

C. Fefferman, N. M. Rivieére and Y. Sagher, Interpolation between H? spaces:
the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.

C. Fefferman and E. M. Stein, HP spaces of several variables, Acta Math. 129
(1972), 137-194.

N. J. Fine, Cesdaro summability of Walsh—Fourier series, Proc. Nat. Acad. Sci.
U.S.A. 41 (1955), 558-591.

N. Fujii, A mazimal inequality for Hl-functions on a generalized Walsh—Paley
group, Proc. Amer. Math. Soc. 77 (1979), 111-116.

B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monographs
75, Amer. Math. Soc. 75, Providence, R.I., 1989.

J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier se-
ries, Fund. Math. 32 (1939), 122-132.

F. Moéricz, F. Schipp and W. R. Wade, Cesaro summability of double Walsh—
Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140.

N. M. Riviéreand Y. Sagher, Interpolation between L* and H?', the real method,
J. Funct. Anal. 14 (1973), 401-409.

F. Schipp, Uber gewissen Mazimaloperatoren, Ann. Univ. Sci. Budapest. E6tvos
Sect. Math. 18 (1975), 189-195.

F. Schipp and P. Simon, On some (H, L1)-type mazimal inequalities with re-
spect to the Walsh—Paley system, in: Functions, Series, Operators, Budapest, 1980,
Colloq. Math. Soc. Janos Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton Univ. Press, Princeton, N.J., 1970.

A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press,
New York, 1986.

F. Weisz, Cesaro summability of one- and two-dimensional Walsh—Fourier series,
Anal. Math. 22 (1996), 229-242.

—, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture
Notes in Math. 1568, Springer, Berlin, 1994.

A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.

Department of Numerical Analysis
Eotvos L. University

Muzeum krt. 6-8

H-1088 Budapest, Hungary
E-mail: weisz@ludens.elte.hu

Received 18 June 1996;
revised 11 December 1996



