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CESÀRO SUMMABILITY OF ONE- AND TWO-DIMENSIONAL

TRIGONOMETRIC-FOURIER SERIES

BY

FERENC WEI SZ (BUDAPEST)

We introduce p-quasilocal operators and prove that, if a sublinear oper-
ator T is p-quasilocal and bounded from L∞ to L∞, then it is also bounded
from the classical Hardy space Hp(T) to Lp (0 < p ≤ 1). As an application
it is shown that the maximal operator of the one-parameter Cesàro means
of a distribution is bounded from Hp(T) to Lp (3/4 < p ≤ ∞) and is of
weak type (L1, L1). We define the two-dimensional dyadic hybrid Hardy

space H♯
1(T

2) and verify that the maximal operator of the Cesàro means

of a two-dimensional function is of weak type (H♯
1(T

2), L1). So we deduce

that the two-parameter Cesàro means of a function f ∈ H♯
1(T

2) ⊃ L log L
converge a.e. to the function in question.

1. Introduction. It can be found in Zygmund [23] that the Cesàro
means σnf of a function f ∈ L1(T) converge a.e. to f as n → ∞ and
that if f ∈ L log+ L(T2) then the two-parameter Cesàro summability holds.
Analogous results for Walsh–Fourier series are due to Fine [11] and Móricz,
Schipp and Wade [15].

The Hardy–Lorentz spaces Hp,q of distributions on the unit circle are
introduced with the Lp,q Lorentz norms of the non-tangential maximal func-
tion. Of course, Hp = Hp,p are the usual Hardy spaces (0 < p ≤ ∞).

In the one-dimensional case it is known (see Zygmund [23] and Torchin-
sky [20]) that the maximal operator of the Cesàro means supn∈N

|σn| is of
weak type (L1, L1), i.e.

sup
γ>0

γλ(sup
n∈N

|σnf | > γ) ≤ C‖f‖1 (f ∈ L1(T))

(for the Walsh case see Schipp [17]). Also, for Walsh–Fourier series, the
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boundedness of the operator supn∈N |σn| from Hp to Lp was shown by Fujii
[12] (p = 1) and by Weisz [21] (1/2 < p ≤ 1).

In this paper we generalize these results for trigonometric-Fourier series
with the help of the so-called p-quasilocal operators. An operator T is
p-quasilocal (0 < p ≤ 1) if for all p-atoms a the integral of |Ta|p over T \ I
is less than an absolute constant where I is the support of the atom a. We
shall verify that a sublinear, p-quasilocal operator T which is bounded from
L∞ to L∞ is also bounded from Hp to Lp (0 < p ≤ 1). By interpolation we
find that T is bounded from Hp,q to Lp,q as well (0 < p < ∞, 0 < q ≤ ∞)
and is of weak type (L1, L1).

It will be shown that supn∈N |σn| is p-quasilocal for each 3/4 < p ≤ 1.
Consequently, supn∈N |σn| is bounded from Hp,q to Lp,q for 3/4 < p < ∞
and 0 < q ≤ ∞ and is of weak type (L1, L1). We will extend this result also
to (C, β) means.

For two-dimensional trigonometric-Fourier series we will verify that
supn,m∈N |σn,m| is of weak type (H♯

1, L1) where H♯
1 is defined by the L1-norm

of the two-dimensional hybrid non-tangential maximal function. Recall that
L log L(T2) ⊂ H♯

1 (see Zygmund [23]). A usual density argument implies

then that σn,mf → f a.e. as min(n,m) → ∞ whenever f ∈ H♯
1.

2. Preliminaries and notations. For a set X 6= ∅ let X2 be the
Cartesian product X×X; moreover, let T := [−π, π) and λ be the Lebesgue
measure. We also use the notation |I| for the Lebesgue measure of the
set I. We briefly write Lp or Lp(T

j) instead of the real Lp(T
j , λ) space

(j = 1, 2), and the norm (or quasinorm) of this space is defined by ‖f‖p :=
(
T
Tj |f |p dλ)1/p (0 < p ≤ ∞). For simplicity, we assume that for a function

f ∈ L1 we have
T
T

f dλ = 0.

The distribution function of a Lebesgue-measurable function f is de-
fined by

λ({|f | > γ}) := λ({x : |f(x)| > γ}) (γ ≥ 0).

The weak Lp space L∗
p (0 < p < ∞) consists of all measurable functions f

for which

‖f‖L∗
p

:= sup
γ>0

γλ({|f | > γ})1/p < ∞;

moreover, we set L∗
∞ = L∞.

The spaces L∗
p are special cases of the more general Lorentz spaces Lp,q .

In their definition another concept is used. For a measurable function f the
non-increasing rearrangement is defined by

f̃(t) := inf{γ : λ({|f | > γ}) ≤ t}.
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The Lorentz space Lp,q is defined as follows: for 0 < p < ∞, 0 < q < ∞,

‖f‖p,q :=

(∞\
0

f̃(t)qtq/p dt

t

)1/q

while for 0 < p ≤ ∞,

‖f‖p,∞ := sup
t>0

t1/pf̃(t).

Let

Lp,q := Lp,q(T
j , λ) := {f : ‖f‖p,q < ∞} (j = 1, 2).

One can show the following equalities:

Lp,p = Lp, Lp,∞ = L∗
p (0 < p ≤ ∞)

(see e.g. Bennett–Sharpley [1] or Bergh–Löfström [2]).

Let f be a distribution on C∞(T) (briefly f ∈ D′(T) = D′). The nth

Fourier coefficient is defined by f̂(n) := f(e−ınx) where ı =
√
−1. In the

special case when f is an integrable function,

f̂(n) =
1

2π

\
T

f(x)e−ınx dx.

Denote by snf the nth partial sum of the Fourier series of a distribution f ,
namely,

snf(x) :=

n∑

k=−n

f̂(k)eıkx.

For f ∈ D′ and z := reıx (0 < r < 1) let

u(z) = u(reıx) := f ∗ Pr(x)

where ∗ denotes the convolution and

Pr(x) :=

∞∑

k=−∞

r|k|eıkx =
1 − r2

1 + r2 − 2r cos x
(x ∈ T)

is the Poisson kernel. It is easy to show that u(z) is a harmonic function on
the unit disc and

u(reıx) =

∞∑

k=−∞

f̂(k)r|k|eıkx

with absolute and uniform convergence (see e.g. Kashin–Saakyan [13], Ed-
wards [8]).

Let 0 < α < 1 be an arbitrary number. We denote by Ωα(x) (x ∈ T) the
region bounded by two tangents to the circle |z| = α from eıx and the longer
arc of the circle included between the points of tangency. The non-tangential
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maximal function is defined by

u∗
α(x) := sup

z∈Ωα(x)

|u(z)| (0 < α < 1).

For 0 < p, q ≤ ∞ the Hardy–Lorentz space Hp,q(T) = Hp,q consists of
all distributions f for which u∗

α ∈ Lp,q; we set

‖f‖Hp,q
:= ‖u∗

1/2‖p,q
.

The equivalence ‖u∗
α‖p,q ∼ ‖u∗

1/2‖p,q (0 < p, q < ∞, 0 < α < 1) was proved

in Burkholder–Gundy–Silverstein [3] and Fefferman–Stein [10]. Note that
in case p = q the usual definition of Hardy spaces Hp,p = Hp is obtained.
For other equivalent definitions we also refer to the previous two papers. It
is known that if f ∈ Hp then f(x) = limr→1 u(reıx) in the sense of distribu-
tions (see Fefferman–Stein [10]). Recall that L1 ⊂ H1,∞ and L log L ⊂ H1;
more exactly,

(1) ‖f‖H1,∞
= sup

γ>0
γλ(u∗

1/2 > γ) ≤ ‖f‖1 (f ∈ L1)

and

(2) ‖f‖H1
≤ C + CE(|f | log+ |f |) (f ∈ L log L)

where log+ u = 1{u>1} log u. Moreover, Hp,q ∼ Lp,q for 1 < p < ∞, 0 < q ≤
∞ (see Fefferman–Stein [10], Stein [19], Fefferman–Rivière–Sagher [9]).

The following interpolation result concerning Hardy–Lorentz spaces will
be used several times in this paper (see Fefferman–Rivière–Sagher [9]).

Theorem A. If a sublinear operator T is bounded from Hp0
to Lp0

and

from L∞ to L∞ then it is also bounded from Hp,q to Lp,q if p0 < p < ∞
and 0 < q ≤ ∞.

3. Quasilocal operators. The atomic decomposition is a useful char-
acterization of Hardy spaces. To demonstrate this let us introduce first the
concept of an atom. A generalized interval on T is either an interval I ⊂ T

or I = [−π, x)∪ [y, π). A bounded measurable function a is a p-atom if there
exists a generalized interval I such that

(i)
T
I
a(x)xα dx = 0 where α ∈ N and α ≤ [1/p − 1], the integer part of

1/p − 1,
(ii) ‖a‖∞ ≤ |I|−1/p,
(iii) {a 6= 0} ⊂ I.

The basic result on the atomic decomposition is stated as follows (see Coif-
man [4], Coifman–Weiss [5] and also Weisz [22]).

Theorem B. A distribution f is in Hp (0 < p ≤ 1) if and only if there

exist a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real
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numbers such that

(3)

∞∑

k=0

µkak = f in the sense of distributions,

∞∑

k=0

|µk|p < ∞.

Moreover , the following equivalence of norms holds:

(4) ‖f‖Hp
∼ inf

( ∞∑

k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (3).

Motivated by the definition in Móricz–Schipp–Wade [15] we introduce
the quasilocal operators. Their definition is weakened and extended here.

An operator T which maps the set of distributions into the collection
of measurable functions will be called p-quasilocal if there exists a constant
Cp > 0 such that \

T\4I

|Ta|p dλ ≤ Cp

for every p-atom a where I is the support of the atom and 4I is the gener-
alized interval with the same center as I and with length 4|I|.

The quasilocal operators were defined in [15] only for p = 1 and for L1

functions instead of atoms.
The following result gives sufficient conditions for T to be bounded from

Hp to Lp. For the sake of completeness it is verified here.

Theorem 1. Suppose that the operator T is sublinear and p-quasilocal

for some 0 < p ≤ 1. If T is bounded from L∞ to L∞ then

‖Tf‖p ≤ Cp‖f‖Hp
(f ∈ Hp).

P r o o f. Suppose that a is a p-atom with support I. By the p-quasilocality
and L∞ boundedness of T we obtain\

T

|Ta|p dλ =
\
4I

|Ta|p dλ +
\

T\4I

|Ta|p dλ

≤ ‖T‖p
∞‖a‖p

∞4|I| + Cp = Cp

where the symbol Cp may denote different constants in different contexts.
Applying Theorem B, we get

‖Tf‖p
p ≤

∞∑

k=0

|µk|p‖Tak‖p
p ≤ Cp‖f‖p

Hp
,

which proves the theorem.
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Taking into account Theorem A and (1) we have

Corollary 1. Suppose that the operator T is sublinear and p-quasilocal

for each p0 < p ≤ 1. If T is bounded from L∞ to L∞ then

‖Tf‖p,q ≤ Cp,q‖f‖Hp,q
(f ∈ Hp,q)

for every p0 < p < ∞ and 0 < q ≤ ∞. In particular , T is of weak type

(1, 1), i.e. if f ∈ L1 then

‖Tf‖1,∞ = sup
γ>0

γλ(|Tf | > γ) ≤ C1‖f‖H1,∞
≤ C1‖f‖1.

4. Cesàro summability of one-dimensional trigonometric-

Fourier series. For n ∈ N and a distribution f the Cesàro mean of order
n of the Fourier series of f is given by

σnf :=
1

n + 1

n∑

k=0

skf = f ∗ Kn (n ∈ N)

where Kn is the Fejér kernel of order n. It is shown in Zygmund [23] that

(5) 0 ≤ Kn(t) ≤ π2

(n + 1)t2
(0 < |t| < π)

and

(6)
\
T

Kn(t) dt = π.

As an application of Theorem 1 we have the following result.

Theorem 2. There are absolute constants C and Cp,q such that

(7) ‖ sup
n∈N

|σnf |‖p,q ≤ Cp,q‖f‖Hp,q
(f ∈ Hp,q)

for every 3/4 < p < ∞ and 0 < q ≤ ∞. In particular , if f ∈ L1 then

(8) λ(sup
n∈N

|σnf | > γ) ≤ C

γ
‖f‖1 (γ > 0).

P r o o f. By Corollary 1 the proof of Theorem 2 will be complete if we
show that the operator supn∈N |σn| is p-quasilocal for each 3/4 < p ≤ 1 and
bounded from L∞ to L∞.

The boundedness follows from (6). To verify the p-quasilocality for 3/4 <
p ≤ 1 let a be an arbitrary p-atom with support I and 2−K−1 < |I|/π ≤ 2−K

(K ∈ N). We can suppose that the center of I is zero. In this case

[−π2−K−2, π2−K−2] ⊂ I ⊂ [−π2−K−1, π2−K−1].
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Obviously,\
T\4I

sup
n∈N

|σna(x)|p dx ≤
2K−1∑

|i|=1

π(i+1)2−K\
πi2−K

sup
n∈N

|σna(x)|p dx

≤
2K−1∑

|i|=1

π(i+1)2−K\
πi2−K

sup
n≥ri

|σna(x)|p dx

+

2K−1∑

|i|=1

π(i+1)2−K\
πi2−K

sup
n<ri

|σna(x)|p dx

= (A) + (B)

where ri := [2K/iα] (i ∈ N) with α > 0 to be chosen later.
It follows from (5) and from the definition of the atom that

|σna(x)| =
∣∣∣
\
T

a(t)Kn(x − t) dt
∣∣∣ ≤ Cp2

K/p
\
I

1

(n + 1)(x − t)2
dt.

By a simple calculation we get

π2−K−1\
−π2−K−1

1

(x − t)2
dt ≤ C2−K

(π|i|2−K − π2−K−1)2
≤ C2K

i2

if x ∈ [πi2−K , π(i + 1)2−K) (|i| ≥ 1). Hence

|σna(x)|p ≤ Cp2
K+Kp 1

(n + 1)pi2p
.

Using the value of ri we can conclude that

(A) ≤ Cp

2K−1∑

i=1

2−K2K+Kp 1

(ri + 1)pi2p
≤ Cp

2K−1∑

i=1

1

i2p−αp
.

This series is convergent if

(9) α <
2p − 1

p
(≤ 1).

Now let us consider (B). It is well-known that

σna(x) =

n∑

|j|=1

(
1 − |j|

n + 1

)
â(j)eıjx.

If n < ri then

|σna(x)| ≤
n∑

|j|=1

(
n + 1 − |j|

|j|

)
|â(j)| ≤

ri∑

|j|=1

(
ri − |j|

|j|

)
|â(j)|.
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On the other hand, by the definition of the atom,

|â(j)| =

∣∣∣∣
1

2π

\
I

a(x)(e−ıjx − 1) dx

∣∣∣∣ ≤
1

2π

\
I

|a(x)| · |jx| dx ≤ |j| · |I|2−1/p

4π
.

Therefore

sup
n<ri

|σna(x)| ≤ Cp

ri∑

j=1

(ri − j)2−K(2−1/p) ≤ Cpr
2
i 2

−K(2−1/p) .

Finally, we can estimate (B):

(B) ≤ Cp

2K−1∑

i=1

2−K

(
2K

iα

)2p

2−K(2−1/p)p = Cp

2K−1∑

i=1

1

i2αp
.

The last series converges if

(10) α >
1

2p
.

The number α satisfies (9) and (10) if and only if 3/4 < p ≤ 1. The proof
of the theorem is complete.

Note that (8) can be found in Zygmund [23] or in Torchinsky [20], how-
ever, (7) was known only for Walsh–Fourier series (see Weisz [21]).

5. (C, β) summability of one-dimensional trigonometric-Fourier

series. In this section we generalize Theorem 2. For 0 < β ≤ 1 let

Aβ
j :=

(
j + β

j

)
=

(β + 1)(β + 2) . . . (β + j)

j!
= O(jβ) (j ∈ N)

(see Zygmund [23]). The (C, β) means of a distribution f are defined by

σβ
nf :=

1

Aβ
n

n∑

k=0

Aβ−1
n−kskf = f ∗ Kβ

n

where the Kβ
j kernel satisfies the conditions

|Kβ
j (t)| ≤ Cβ

jβtβ+1
(0 < |t| < π)

and \
T

|Kβ
j (t)| dt = Cβ (j ∈ N)

(see Zygmund [23]). In case β = 1 we get the Cesàro means.

The following result can be proved with the same method as Theorem 2.
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Theorem 3. If 0 < β ≤ 1 then there are absolute constants C and Cp,q

such that

‖ sup
n∈N

σβ
nf‖p,q ≤ Cp,q‖f‖Hp,q

(f ∈ Hp,q)

for every (β +2)/2(β +1) < p ≤ ∞ and 0 < q ≤ ∞. In particular , if f ∈ L1

then

λ(sup
n∈N

σβ
nf > γ) ≤ C

γ
‖f‖1 (γ > 0).

The latter weak type inequality implies the next convergence result.

Corollary 2. If 0 < β ≤ 1 and f ∈ L1 then

σβ
nf → f a.e. as n → ∞.

We remark that this corollary can also be found in Zygmund [23].

6. Cesàro summability of two-dimensional trigonometric-

Fourier series. For f ∈ L1(T
2) and z := reıx (0 < r < 1) let

u(z, y) = u(reıx, y) :=
1

2π

\
T

f(t, y)Pr(x − t) dt

and

u∗
α(x, y) := sup

z∈Ωα(x)

|u(z, y)| (0 < α < 1).

We say that f ∈ L1(T
2) is in the hybrid Hardy space H♯

1(T
2) = H♯

1 if

‖f‖H♯
1

:= ‖u∗
1/2‖1

< ∞.

The Fourier coefficients of a two-dimensional integrable function are de-
fined by

f̂(n,m) =
1

(2π)2

\
T

\
T

f(x, y)e−ınxe−ıny dx dy.

We can introduce the Cesàro means σn,mf again as the arithmetic mean of
the rectangle partial sums of the Fourier series of f and can prove that

σn,mf = f ∗ (Kn × Km).

We generalize (8) in the following way.

Theorem 4. If f ∈ H♯
1 then

λ( sup
n,m∈N

|σn,mf | > γ) ≤ C

γ
‖f‖H♯

1

(γ > 0).

P r o o f. Applying Fubini’s theorem, (8) and the positivity of Km (see
(5)) we have
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λ
(
(x, y) : sup

n,m∈N

∣∣∣
\
T

\
T

f(t, u)Kn(x − t)Km(y − u) dt du
∣∣∣ > γ

)

≤ λ
(
(x, y) : sup

m∈N

\
T

(
sup
n∈N

∣∣∣
\
T

f(t, u)Kn(x − t) dt
∣∣∣
)
Km(y − u) du > γ

)

=
\
T

\
T

1{supm∈N T
(supn∈N

|
T

f(t,u)Kn(· −t) dt|)Km(· −u) du>γ}(x, y) dy dx

≤ C

γ

\
T

\
T

sup
n∈N

∣∣∣
\
T

f(t, y)Kn(x − t) dt
∣∣∣ dy dx.

For a fixed y ∈ T we deduce by (7) that\
T

sup
n∈N

∣∣∣
\
T

f(t, y)Kn(x − t) dt
∣∣∣ dx ≤ C

\
T

u∗
1/2(x, y) dx.

Theorem 4 follows from Fubini’s theorem.

Note that we can verify with the same method that the operator
supn,m∈N

|σn,m| is bounded from Lp(T
2) to Lp(T

2) if 1 < p ≤ ∞.
It is easy to show that the two-dimensional trigonometric polynomials

are dense in H♯
1. Hence Theorem 4 and the usual density argument (see

Marcinkiewicz–Zygmund [14]) imply

Corollary 3. If f ∈ H♯
1 then

σn,mf → f a.e. as min(n,m) → ∞.

Note that H♯
1 ⊃ L log L(T2) by (2). Corollary 3 for L log L functions can

be found in Zygmund [23], and, for Walsh–Fourier series in Móricz–Schipp–
Wade [15].
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[2] J. Bergh and J. L ö f st r öm, Interpolation Spaces. An Introduction, Springer, Ber-
lin, 1976.

[3] D. L. Burkholder, R. F. Gundy and M. L. S i lverste in, A maximal function
characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137–153.

[4] R. R. Coi fman, A real variable characterization of Hp, Studia Math. 51 (1974),
269–274.

[5] R. R. Coi fman and G. Weiss, Extensions of Hardy spaces and their use in anal-
ysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

[6] P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
[7] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin,

1982.
[8] —, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
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