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REPRESENTATION RING OF THE SEQUENCE
OF ALTERNATING GROUPS

BY

STANIS LAW B A L C E R Z Y K (TORUŃ)

1. Introduction. It is known (see [L]) that the sequence S1, S2, . . .
of symmetric groups and canonical inclusion maps Sp × Sq → Sp+q gives
rise to a graded bicommutative Hopf algebra (R(S∞), φ, ψ), where R(S∞) =⊕∞

n=0R(Sn) is the direct sum of the additive groups of the complex rep-
resentation rings of Sn (in degree 2n), R(S0) = Z. The multiplication
φ : R(S∞)⊗R(S∞) → R(S∞) comes from the induction maps

IndSp+q

Sp×Sq
: R(Sp)⊗R(Sq) ≈ R(Sp × Sq) → R(Sp+q)

and the comultiplication ψ : R(S∞) → R(S∞) ⊗ R(S∞) comes from the
restriction maps

ResSp+q

Sp×Sq
: R(Sp+q) → R(Sp × Sq) ≈ R(Sp)⊗R(Sq).

The Hopf algebra (R(S∞), φ, ψ) is isomorphic to the Hopf algebra
Z[y1, y2, . . .] with the usual multiplication (y1, y2, . . . being algebraically in-
dependent over Z); moreover, ψ(yn) =

∑
p+q=n yp ⊗ yq, each yn has degree

2n and corresponds to a trivial representation of Sn.
In the present paper we apply a similar construction to the sequence

A1, A2, . . . of alternating groups. The canonical inclusion maps Ap ×Aq →
Ap+q, Aq × Ap → Ap+q are not conjugate (for odd p, q), as they are in
the case of symmetric groups. This results in the non-commutativity of
the ring R(A∞) =

⊕∞
n=0R(An). The structure of this ring is described in

Theorems 1 and 2. It is also shown that the canonical comultiplication does
not induce a Hopf algebra structure on R(A∞).

2. Notations. We denote by An, n = 1, 2, . . . , the group of even per-
mutations on n letters. The canonical inclusion maps Ap×Aq → Ap+q give
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rise to the induction maps

IndAp+q

Ap×Aq
: R(Ap)⊗R(Aq) ≈ R(Ap ×Aq) → R(Ap+q)

which are associative in an obvious sense; thus we have the graded ring
R(A∞) =

⊕∞
n=0R(An), where R(An) is the additive group of the complex

representation ring of the group An, having degree 2n, R(A0) = Z and
multiplication R(A∞)⊗R(A∞) → R(A∞) comes from the above induction
maps.

For any partition α of n (written α ` n) let α′ denote the conjugate
partition and let [α] be the corresponding equivalence class of an irreducible
representation of Sn in R(Sn) which is a free Z-module with basis {[α]}α`n.
The maps ωn : R(Sn) → R(Sn), [α] 7→ [α′], determine an automorphism
ω =

⊕
ωn of the Hopf algebra R(S∞) (see [L]).

We denote by ιn : R(An) → R(Sn) and rn : R(Sn) → R(An) the induc-
tion and restriction maps. It is clear that ι =

⊕
ιn : R(A∞) → R(S∞) is a

ring homomorphism. It is well known (see [JK, 2.5.7]) that for α ` n,

(1) if α 6= α′ then rn([α]) = rn([α′]) is the class of an irreducible rep-
resentation of An; we denote it by aα = aα′ ([α] ↓ An in the notation of
[JK]);

(2) if α = α′ and n ≥ 2 then rn([α]) is a sum of two distinct classes of
irreducible representations of An which we denote by a+

α and a−α ([α]+, [α]−

in the notation of [JK]).

In this way, for α ` n we get all classes of irreducible representations of
An. Moreover,

(1′) if α 6= α′ then ιn(aα) = [α] + [α′];
(2′) if α = α′ and n > 2 then ιn(a+

α ) = ιn(a−α ) = [α].

To describe the characters ζα+
, ζα− of the representations a+

α , a−α let
h(α) = (hα

1 , . . . , h
α
s ) be the decreasing sequence of the lengths of the main

hooks (i.e. (i, i)-hooks) of the Young diagram associated with α. The con-
jugacy class Ch(α) of Sn, consisting of all permutations with cycle partition
h(α), is the only class which splits over An into two classes Ch(α)+ , Ch(α)−

on which each of the characters ζα+
, ζα− takes distinct values. The class

Ch(α)+ contains an element (1, 2, . . . , h1)(h1 +1, . . . , h1 +h2) . . . and Ch(α)−

is conjugate to Ch(α)+ by any transposition. We have (see [JK, 2.5.13])

(3) ζα±

h(α)+ = uα ± vα, ζα±

h(α)− = uα ∓ vα,

where uα = 1
2ζ

α
h(α), vα = 1

2 (ζα
h(α)

∏s
i=1 h

α
i )1/2 and ζα

γ denotes the value of
the character ζα of [α] on the conjugacy class Cγ of Sn and similarly for
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ζα± . Moreover,

(4) ζα±

γ = ζα
γ /2 for γ 6= h(α).

For a finite group G we denote by R(G) the complex representation ring
of G and by ( , )G, or briefly ( , ), the Schur inner product of representations
as well as that of their classes or characters. The classes of irreducible
representations form an orthonormal basis of R(G) with respect to this
product.

3. Lemmas. A crucial role is played by the following

Lemma 1. Let ξ, η be irreducible characters of the groups Ap, Aq and
let ζε+

, ζε− be the irreducible characters of Ap+q corresponding to a self-
conjugate partition ε = ε′ of p+ q. Let h(ε) = (hε

1, . . . , h
ε
k) be the decreasing

sequence of the lengths of the main hooks of the Young diagram associated
with ε. Denote by ξη the character induced on Ap+q by the character ξ ⊗ η
of Ap ×Aq.

If p ≥ 2 and q ≥ 2 then

(5) (ξη, ζε+
− ζε−)Ap+q = (±1)α(±1)β sgn(I, J)

for ξ = ζα± , η = ζβ± , where α, β are self-conjugate partitions α = α′ ` p,
β = β′ ` q with h(α) = (hε

i1
, . . . , hε

is
), h(β) = (hε

j1
, . . . , hε

jr
) such that

I = {i1, . . . , is}, J = {j1, . . . , jr} form a decomposition of {1, . . . , k}. For
all other pairs of characters ξ, η the inner product (5) is zero.

If hε
k = 1 and either p ≥ 2, q = 1 or p = 1, q ≥ 2 then for a self-conjugate

partition γ such that h(γ) = (hε
1, . . . , h

ε
k−1) we have

(ζγ±ζ1, ζε+
− ζε−) = (±1)γ = (−1)k−1(ζ1ζγ± , ζε+

− ζε−),

where ζ1 denotes a trivial character of A1.
If either hε

k > 1 or ξ is an irreducible character different from ζγ± then

(ξζ1, ζε+
− ζε−) = (ζ1ξ, ζε+

− ζε−) = 0.

P r o o f. To simplify notation we write hi instead of hε
i . Since the char-

acters ζε+
, ζε− differ only on elements of Ch(ε), by Frobenius reciprocity we

get

(ξη, ζε+
− ζε−)Ap+q = (IndAp+q

Ap×Aq
(ξ ⊗ η), ζε+

− ζε−)Ap+q

= (ξ ⊗ η,ResAp+q

Ap×Aq
(ζε+

− ζε−))Ap×Aq

= mpq

∑
ξ(t′)η(t′′)[ζε+

(t)− ζε−(t)],

where mpq = |Ap ×Aq|−1 and t = (t′, t′′) runs over (Ap ×Aq) ∩ Ch(ε).
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Define C+ = (Ap × Aq) ∩ Ch(ε)+ and C− = (Ap × Aq) ∩ Ch(ε)− . Then
(3) implies

(ξη, ζε+
− ζε−) = mpq

[ ∑
C+

ξ(t′)η(t′′)2vε +
∑
C−

ξ(t′)η(t′′)(−2vε)
]

= 2vεmpq

[ ∑
C+

ξ(t′)η(t′′)−
∑
C−

ξ(t′)η(t′′)
]
.

To compute this sum we shall represent C+ and C− as unions of products
of conjugacy classes of Ap and of Aq.

It is clear that if hi1+. . .+his
6= p for each sequence 1 ≤ i1 < . . . < is ≤ k

then the set (Ap ×Aq) ∩Ch(ε) is empty and thus the inner product is zero.
Let us denote by I the set of all sequences I = {1 ≤ i1 < . . . < is ≤ k} such
that hi1 + . . .+ his = p. Any such sequence has a complementary sequence
J = {1 ≤ j1 < . . . < jr ≤ k} such that r + s = k, hj1 + . . .+ hjr = q.

Consider a fixed sequence I. The conjugacy class Ch(ε)+ of Ap+q is
determined by its element

(6) tp+q(ε) = (1, 2, . . . , h1)(h1 + 1, . . . , h1 + h2) . . . (. . . , p+ q)

and consists of all elements of the form (tp+q(ε))σ for σ ∈ Ap+q; the class
Ch(ε)− consists of all elements of the same form for σ ∈ Sp+q\Ap+q and
Ch(ε)− = (Ch(ε)+)τ ′ , where τ ′ = (1, 2) is a transposition.

For I ∈ I, denote by h(I) the partition (hi1 , . . . , his) of p and by h(J)
the partition (hj1 , . . . , hjr ) of q. They determine, as in (6), elements

t′p = t′p(I) = (1, 2, . . . , hi1) . . . (. . . , p) ∈ Ch(I)+ ⊆ Ap × {1},

t′′q = t′′q (J) = (p+ 1, . . . , p+ hj1) . . . (. . . , p+ q) ∈ Ch(J)+ ⊆ {1} ×Aq.

The element t′p(I)t
′′
q (J) has the same cycle partition as tp+q(ε). Hence it is

equal to (tp+q(ε))τ for some τ ∈ Sp+q. It is easy to check that since all hi

are odd, we have sgn(τ) = sgn(I, J) = sgn(i1, . . . , is, j1, . . . , jr).
Assume now that p and q are both ≥ 2. In this case we have

(Ap ×Aq) ∩ Ch(ε) =
⋃
Ch(I) × Ch(J)

=
⋃

(Ch(I)+ × Ch(J)+ ∪ Ch(I)− × Ch(J)−)

∪
⋃

(Ch(I)+ × Ch(J)− ∪ Ch(I)− × Ch(J)+),

where I runs over I and it is easy to verify that if sgn(I, J) = 1 (resp. −1)
then the first union is contained in C+ (resp. C−) and the second one in

C− (resp. C+). Moreover, we know that Ch((I)− = (Ch(I)+)
τ ′

, Ch(J)− =

(Ch(J)+)
τ ′′

, where τ ′ = (1, 2) and τ ′′ = (p+ q− 1, p+ q) are transpositions.
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We can continue the computation of the inner product:

(ξη, ζε+
− ζε−)Ap+q

= 2vεmpq

∑
I∈I

sgn(I, J)
∑

[ξ(t′)η(t′′) + ξ((t′)τ ′)η((t′′)τ ′′)

− ξ(t′)η((t′′)τ ′′)− ξ((t′)τ ′)η(t′′)]

= 2vεmpq

∑
I∈I

sgn(I, J)
∑

[ξ(t′)− ξ((t′)τ ′)][η(t′′)− η((t′′)τ ′′)],

where (t′, t′′) runs over (Ch(I)+)× (Ch(J)+).
An irreducible character ξ of the group Ap satisfies ξ(t′) = ξ((t′)τ ′)

for t′ ∈ Ap with the only exception when ξ = ζγ± and t′ belongs to the
conjugacy class Ch(γ) of elements with cycle partition h(γ); similarly for
η. Hence a summand in the last sum corresponding to I is non-zero only
if ξ = ζα± and η = ζβ± , where α denotes a self-conjugate partition of p
with main hook lengths h(α) = h(I) and β ` q is similarly related to J ,
h(β) = h(J). In this case all the remaining terms are zero. For ξ = ζα± ,
η = ζβ± we get

(ξη, ζε+
− ζε+

)

= 2vεmpq sgn(I, J)
1
2
|Ch(α)|1

2
|Ch(β)|[ξ(t′p)− ξ((t′p)

τ ′)][η(t′′q )− η((t′′q )τ ′′)].

Using (3) and the formulas

ζα
h(α) = (−1)(p−s)/2, |Ch(α)| = p!

/ s∏
m=1

him

and a similar one for β (see [JK, 2.5.12 and 1.2.15]) we get

(ζα±ζβ± , ζε+
− ζε−) = (±1)α(±1)β sgn(I, J)

and the first part of the lemma is proved.
A similar computation applies also to the second part of the lemma. If

q = 1 and hk = 1 then C+ = Ch(γ)+ × A1 and C− = Ch(γ)− × A1. If p = 1
and hk = 1 then we have C+ = A1 × Ch(γ)+ and C− = A1 × Ch(γ)− when
k is odd, and C+, C− are to be interchanged for even k.

R e m a r k 1. In the notation of Lemma 1 we have s≡p and r≡q (mod 2)
because all hi are odd. Thus the relations sgn(I, J) = (−1)sr sgn(I, J)
= (−1)pq sgn(I, J) and (5) imply that ζα± and ζβ± do not commute if p, q
are odd. Consequently, the ring R(A∞) is not commutative.

Using the Littlewood–Richardson Rule one can prove by an easy induc-
tion on r + s the following
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Lemma 2. If ε, α, β are as in Lemma 1 then ([α][β], [ε]) = 1.

4. The ring R(A∞). We compute the structure constants of the ring
R(A∞) in terms of those of the ring R(S∞) using the above lemmas.

Theorem 1. The structure constants of the ring R(A∞) in the basis
consisting of elements 1, a1 ∈ R(A1), a+

ε , a
−
ε for ε = ε′ ` n, n = 3, 4, . . . and

elements aδ = aδ′ for δ 6= δ′ ` n, n = 2, 3, . . . are as follows.
Let p, q be positive integers, α ` p, β ` q, ε, δ ` (p+ q), ε = ε′, δ 6= δ′.
(i) If α = α′, β = β′, p ≥ 2, q ≥ 2 then

(a±αa
±
β , aδ) = ([α][β], [δ]).

If the Young diagrams associated with α and β have all main hooks of
distinct lengths and α, β, ε are related as in the first part of Lemma 1 then
(a±αa

±
β , a

%
ε) = 1 and (a±αa

±
β , a

−%
ε ) = 0 for % = (±1)α(±1)β sgn(I, J).

In the opposite case we have

(a±αa
±
β , a

±
ε ) = 1

2 ([α][β], [ε]).

(ii) If α = α′, β 6= β′, p ≥ 2 then

(a±αaβ , aδ) = (aβa
±
α , aδ) = ([α]([β] + [β′]), [δ]),

(a±αaβ , a
±
ε ) = (aβa

±
α , a

±
ε ) = ([α][β], [ε]),

and consequently a±αaβ = aβa
±
α .

(iii) If α 6= α′, β 6= β′ then

(aαaβ , aδ) = (aβaα, aδ) = (([α] + [α′])([β] + [β′]), [δ]),
(aαaβ , a

±
ε ) = (aβaα, a

±
ε ) = ([α]([β] + [β′]), [ε]) = (([α] + [α′])[β], [ε]),

and consequently aαaβ = aβaα.
(iv) If γ = γ′ ` p, p ≥ 2 then

(a±γ a1, aδ) = (a1a
±
γ , aδ) = ([γ][1], [δ]).

If the Young diagram associated with γ does not have a main hook of
length one and γ, ε are related as in the second part of Lemma 1 then

(a±γ a1, a
λ
ε ) = 1 and (a±γ a1, a

−λ
ε ) = 0 for λ = (±1)γ ;

(a1a
±
γ , a

µ
ε ) = 1 and (a1a

±
γ , a

−µ
ε ) = 0 for µ = (±1)γ(−1)k−1.

In the opposite case we have

(a±γ a1, a
+
ε ) = (a±γ a1, a

−
ε ) = (a1a

±
γ , a

+
ε ) = (a1a

±
γ , a

−
ε ) = 0.

(v) a1a1 = a2, where a2 denotes the class of trivial representations of A2.

P r o o f. Let x ∈ R(Ap), y ∈ R(Aq) and suppose xy ∈ R(Ap+q) has in
our basis a representation

xy =
∑

(m+
ε a

+
ε +m−

ε a
−
ε ) +

∑
mδaδ for m+

ε ,m
−
ε ,mδ ∈ Z.
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Since ιp+q(xy) = ιp(x)ιq(y), by (1′), (2′) we get

ιp(x)ιq(y) =
∑

(m+
ε +m−

ε )[ε] +
∑

mδ([δ] + [δ′])

and consequently

(7)
m+

ε +m−
ε = (xy, a+

ε + a−ε ) = (ιp(x)ιq(y), [ε]),
mδ = (xy, aδ) = (ιp(x)ιq(y), [δ]) = (ιp(x)ιq(y), [δ′]).

Hence the first formula in (i) follows immediately. To prove the second
one we use Lemma 1 to get (a±αa

±
β , a

+
ε − a−ε ) = %. Since by (7) and by

Lemma 2 we have
(a±αa

±
β , a

+
ε + a−ε ) = ([α][β], [ε]) = 1,

our result follows. The last formula in (i) follows from Lemma 1, because in
this case we have (a±αa

±
β , a

+
ε − a−ε ) = 0 and (a±αa

±
β , a

+
ε + a−ε ) = ([α][β], [ε]).

The remaining parts of the theorem can be proved in the same way
using Lemma 1, the equality ([α][β], [γ]) = ([α′][β′], [γ′]) and the Littlewood–
Richardson Rule.

The next theorem presents a better insight into the structure of the ring
R(A∞).

Let
∧

=
∧

(z1, z3, z5, . . .) be the graded exterior Z-algebra on a free
Z-module with a basis {z1, z3, z5, . . .} and grading deg z2j+1 = 2(2j + 1),
j = 0, 1, . . . Let Γ be an ideal of

∧
with a Z-basis consisting of all monomials

2zl1 ∧ zl2 ∧ . . . ∧ zlk in
∧

such that l1 > . . . > lk and either k > 1, or k = 1
and l1 > 1. We define a homomorphism of Z-modules g : Γ → R(A∞) by
the formula

g(2zl1 ∧ zl2 ∧ . . . ∧ zlk) = a+
α − a−α ,

where α denotes the self-conjugate partition of l1 + . . .+ lk with main hook
lengths l1, . . . , lk.

Theorem 2. The image of the homomorphism

ι =
⊕

ιn : R(A∞) → R(S∞)

is a subring T =
⊕∞

n=0 Tn of the ring R(S∞), where

Tn = {xn ∈ R(Sn) : ωn(xn) = xn}

is a free Z-module with the basis consisting of the elements of the form [ε]
for ε = ε′ ` n and [δ] + [δ′] for δ 6= δ′ ` n.

The kernel L =
⊕∞

n=3 Ln of the homomorphism ι is a free Z-module with
basis consisting of the elements of the form a+

ε − a−ε for all self-conjugate
partitions ε. The homomorphism of Z-modules g : Γ → R(A∞) maps Γ
onto L and induces a ring isomorphism of Γ and L.
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P r o o f. The formulas ωn([β]) = [β′] and (1′), (2′) imply the first part of
the theorem and the description of L. Hence g induces an isomorphism of
Z-modules Γ and L. To prove that it is an isomorphism of rings (without
unity) it is sufficient to prove that

(8) (a+
α − a−α )(a+

β − a−β ) = 0

if α, β are self-conjugate partitions and hα
i = hβ

j for some i, j and

(9) (a+
α − a−α )(a+

β − a−β ) = 2 sgn(I, J)(a+
ε − a−ε )

if the self-conjugate partitions α, β, ε satisfy the conditions of the first part
of Lemma 1. Theorem 1(i) implies that in case (8) we have

(a+
α − a−α )a+

β = (a+
α − a−α )a−β = 0

and the formula follows.
To prove (9) let us remark that since L is an ideal, (a+

α −a−α )(a+
β −a

−
β ) is

a linear combination of a+
γ −a−γ for self-conjugate partitions γ. Theorem 1(i)

implies that the only term that can occur with a non-zero coefficient corre-
sponds to γ = ε. Define % = sgn(I, J) (in the notation of Lemma 1). Then
we have

((a+
α − a−α )(a+

β − a−β ), a%
ε) = (a+

αa
+
β + a−αa

−
β − a−αa

+
β − a+

αa
−
β , a

%
ε) = 2

because (a+
αa

+
β , a

%
ε) = (a−αa

−
β , a

%
ε) = 1 and (a−αa

+
β , a

%
ε) = (a+

αa
−
β , a

%
ε) = 0.

Hence the formula follows.

R e m a r k 2. The natural comultiplication ψ : R(A∞) → R(A∞) ⊗
R(A∞) induced by the restriction maps R(Ap+q) → R(Ap) ⊗ R(Aq) is not
a ring homomorphism, thus R(A∞) is not a Hopf algebra. In fact, we
have a2 = a1a1 and ψ(a2) = a2 ⊗ 1 + a1 ⊗ a1 + 1 ⊗ a2 but ψ(a1)ψ(a1) =
a1a1 ⊗ 1 + 2a1 ⊗ a1 + 1⊗ a1a1 hence ψ(a1a1) 6= ψ(a1)ψ(a1).

R e m a r k 3. The ring T ⊂ R(S∞) is not closed with respect to the
comultiplication ψ of R(S∞). In fact, we have

ψ([2, 2]) = [2, 2]⊗ 1 + 1⊗ [2, 2] + [2, 1]⊗ [1]
+ [1]⊗ [2, 1] + [2]⊗ [2] + [1, 1]⊗ [1, 1]

by general formulas or by an easy computation. The component in R(S2)⊗
R(S2) of this element is

(10) [2]⊗ [2] + [1, 1]⊗ [1, 1] = y2
1 ⊗ y2

1 − y2
1 ⊗ y2 − y2 ⊗ y2

1 + 2y2 ⊗ y2

because [2] + [1, 1] = y2
1 and [2] = y2. The component T2 is generated by y2

1

hence (10) does not belong to T2 ⊗ T2.

R e m a r k 4. The ring T is not generated by [ε] for self-conjugate ε,
neither are these elements algebraically independent. In fact, there are six
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monomials in [ε]’s which belong to T6, namely

[1]6, [2, 1][1]3, [2, 1]2, [2, 2][1]2, [3, 1, 1][1], [3, 2, 1],

and we have a relation of linear dependence among them:

[3, 2, 1] + [2, 1]2 = [2, 2][1]2 + [3, 1, 1][1].

Nevertheless T6 is a free Z-module on six free generators.
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