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ON A CONJECTURE OF MA̧KOWSKI AND SCHINZEL

BY

GRAEME L. COHEN (SYDNEY, NEW SOUTH WALES)

1. Introduction. Let σ and φ denote the sum-of-divisors function and
Euler’s function, respectively. If otherwise unspecified, then, except for these,
Roman and Greek letters will denote natural numbers, with p, q, r reserved
for primes. We write Fi = 22i

+ 1 for i ≥ 0; these are Fermat numbers.
Ma̧kowski and Schinzel [5] conjectured in 1964 that

(1)
σ(φ(n))

n
≥ 1

2
for all n.

They noted that Mrs. K. Kuhn had shown the inequality to be true for all n
with at most six prime factors.

Pomerance [6] proved in 1989 that inf σ(φ(n))/n>0 and Balakrishnan [1]
recently verified (1) for squarefull values of n (satisfying p2 |n when p |n).
Filaseta, Graham and Nicol [2] have shown that (1) is true when n is the
product of the first k primes, for sufficiently large k. The Ma̧kowski–Schinzel
conjecture is included in B42 of Guy [3].

We shall prove here that the conjecture is true in general if it is true for
squarefree integers, and we shall verify the conjecture for various classes of
numbers, such as:

(i) All numbers of the form 2am, where the distinct prime factors of m
are Fermat primes or primes congruent to 1 (mod 3), with at most eight of
the latter.

(ii) Any product of any primes less than 1780.
(iii) All numbers of the form 2am, where m is a product of primes 1+2br,

for any b and any prime r. Thus m is any product of any primes in the set
{3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, . . .}.

Our proof will require the following three lemmas.

Lemma 1. (a) For any v, w with v |w, σ(v)/v ≤ σ(w)/w. There is
equality if and only if v = w.

(b) For any u, v, σ(uv) ≥ uσ(v). There is equality if and only if u = 1.
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P r o o f. (a) follows quickly from the observation that σ(w)/w =∑
d |w 1/d. Setting w = uv shows (b) to be equivalent to (a).

Lemma 2. If 0 ≤ d1 < d2 < . . . < dt, then

(2) 21+
∑t

i=1 2di − 1 ≥
t∏

i=1

(1 + 22di ).

Equality holds if and only if di = i− 1 for i = 1, . . . , t.

P r o o f. Multiply out the right-hand side of (2) and note that each sum-
mand is a divisor of N = 2

∑t
i=1 2di . The sum of all such divisors is σ(N),

the left-hand side of (2). Since all divisors are obtained on the right if and
only if di = i− 1 for each i, we obtain then the statement on equality.

Lemma 3. For any real number x > 1 and any natural number k,

xk+1 − 1
x− 1

≥ (x + z1)(x + z2) . . . (x + zk),

where z1, z2, . . . , zk are any positive real numbers such that z1 + z2 + . . .+ zk

≤ 1.

P r o o f. This follows from the following inequality given in Hardy [4,
p. 34]. If x1, x2, . . . , xk are all positive real numbers, and yk = x1 + x2 +
. . . + xk, then

(1 + x1)(1 + x2) . . . (1 + xk) ≤ 1 + yk +
y2

k

2!
+ . . . +

yk
k

k!
.

There is a well-known equivalent form of the conjecture in (1). It is an
easier form for our purposes and is proved here for completeness.

Lemma 4. We have σ(φ(n)) ≥ n/2 for all n if and only if

σ(φ(m)) ≥ m

for all odd m. We have σ(φ(n)) = n/2 if and only if n = 2m, m is odd , and
σ(φ(m)) = m.

P r o o f. Suppose σ(φ(n)) ≥ n/2 for all n, and let m be any odd number.
Then

σ(φ(m))
m

= 2
σ(φ(2m))

2m
≥ 2 · 1

2
= 1.

This shows also that if m is odd and σ(φ(m)) = m, then σ(φ(n)) = n/2,
where n = 2m.

Suppose next that σ(φ(m)) ≥ m for all odd m. Let n be any even
number, so n = 2am, say, where m is odd. Then φ(n) = 2a−1φ(m), so, by
Lemma 1(b), σ(φ(n)) ≥ 2a−1σ(φ(m)). Hence

σ(φ(n))
n

≥ 2a−1

2a
· σ(φ(m))

m
≥ 1

2
.

This shows also that if σ(φ(n)) = n/2 then a = 1 and σ(φ(m)) = m.
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2. Theorems

Theorem 1. We have σ(φ(m)) ≥ m whenever m is a product of Fermat
primes. For such a product , there is equality if and only if m = F0F1 . . . Fk

for 0 ≤ k ≤ 4.

P r o o f. Write m =
∏t

i=1 pai
i , where ai ≥ 1 and pi = 22di + 1 is prime,

for i = 1, . . . , t. Assume 0 ≤ d1 < d2 < . . . < dt, and set T =
∑t

i=1 2di . We
have

φ(m) =
t∏

i=1

(pi − 1)pai−1
i = 2T

t∏
i=1

pai−1
i ,

and

σ(φ(m)) = (2T+1 − 1)
t∏

i=1

pai
i − 1
pi − 1

.

Then
σ(φ(m))

m
= (2T+1 − 1)

t∏
i=1

1
pi

·
t∏

i=1

pai
i − 1

pai−1
i (pi − 1)

≥ 1,

by virtue of Lemma 2.
Furthermore, it follows from this and Lemma 2 that σ(φ(m)) = m if and

only if ai = 1 and di = i− 1 for each i. The latter requires pi = 22i−1
+ 1 =

Fi−1 and since F0, . . . , F4 are prime and F5 is not, we have σ(φ(m)) = m
if and only if m is one of the stated products. (These solutions were known
to Ma̧kowski and Schinzel [5].)

Theorem 2. The Ma̧kowski–Schinzel conjecture is true in general if it
is true for squarefree integers.

P r o o f. Write m =
∏t

i=1 qbi
i , for distinct odd primes q1, . . . , qt, and

m′ =
∏t

i=1 qi. For each i = 1, . . . , t, write

qi − 1 =
t∏

j=1

q
βij

j · wi,

where βij ≥ 0 and qj - wi for any i, j. Write W =
∏t

i=1 wi, and Bj =∑t
i=1 βij , for each j = 1, . . . , t. Then

φ(m′) =
t∏

i=1

(qi − 1) =
t∏

j=1

q
Bj

j ·W,

and qj - W for any j = 1, . . . , t, so that

σ(φ(m′)) =
t∏

j=1

q
Bj+1
j − 1
qj − 1

· σ(W ).
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We now have

φ(m) =
t∏

i=1

qbi−1
i

t∏
i=1

(qi − 1) =
t∏

j=1

q
bj+Bj−1
j ·W,

and then

σ(φ(m)) =
t∏

j=1

q
bj+Bj

j − 1
qj − 1

· σ(W ) =
t∏

j=1

q
bj+Bj

j − 1

q
Bj+1
j − 1

· σ(φ(m′)).

Hence

(3)
σ(φ(m))

m
=

t∏
j=1

q
bj+Bj

j − 1

q
bj−1
j (qBj+1

j − 1)
· σ(φ(m′))∏t

i=1 qi

≥ σ(φ(m′))
m′ .

Now let n be any even number and put n = 2am, with m and m′ as
before. If the Ma̧kowski–Schinzel conjecture is true for squarefree integers,
we then have

σ(φ(n))
n

=
σ(φ(2am))

2am
≥ σ(φ(m))

2m
≥ σ(φ(m′))

2m′ =
σ(φ(2m′))

2m′ ≥ 1
2
.

That is, the conjecture is true for all even integers, and clearly also for all
odd integers. Note, in particular, that there is strict inequality above if m
is not squarefree (that is, if bj ≥ 2 for at least one j = 1, . . . , t).

We now adopt an alternative notation and write

m =
∏

pi∈P

pai
i

∏
qi∈Q

qbi
i ,

where P is the set of Fermat primes that divide m and Q 6= ∅ is the set of
remaining distinct prime factors of m. For each pi ∈ P , set pi = 22di + 1,
and put T1 =

∑
pi∈P 2di . For each qi ∈ Q, suppose 2δi ‖ (qi − 1) (so that

2δi | (qi − 1), but 2δi+1 - (qi − 1)) and set T2 =
∑

qi∈Q δi.
From (3),

σ(φ(m))
m

≥
σ(2T1

∏
qi∈Q(qi − 1))∏

pi∈P pi

∏
qi∈Q qi

=
2T1+T2+1 − 1

2T2+1 − 1
·

σ(
∏

qi∈Q(qi − 1))∏
pi∈P pi

∏
qi∈Q qi

≥ 2T1+T2+1 − 1
(2T1+1 − 1)(2T2+1 − 1)

·
σ(

∏
qi∈Q(qi − 1))∏

qi∈Q qi
,

by Lemma 2, and, since T2 > 0,

(4)
σ(φ(m))

m
>

2T2

2T2+1 − 1
·
σ(

∏
qi∈Q(qi − 1))∏

qi∈Q qi
.
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Theorem 3. For each qi ∈ Q, write qi − 1 = 2δirili, where ri is an odd
prime and li is odd. Suppose, renumbering the qi ∈ Q if necessary , that

(5)
∏

qi∈Q

ri =
k∏

j=1

r
cj

j ,

where r1, . . . , rk are distinct. Use these primes to partition Q, so that , re-
naming the qi ∈ Q, qij = 1 + 2δij rj lij , where lij is odd , for j = 1, . . . , k and
i = 1, . . . , cj. Then σ(φ(m)) > m if

(6)
σ(rcj

j )

r
cj

j

cj∏
i=1

qij − 1
qij

≥ 1

for each j = 1, . . . , k.

P r o o f. With T2 as above, we have∏
qi∈Q

(qi − 1) = 2T2
∏

qi∈Q

ri

∏
qi∈Q

li,

so that, using Lemma 1(a),

σ(
∏

qi∈Q(qi − 1))∏
qi∈Q(qi − 1)

≥ 2T2+1 − 1
2T2

·
σ(

∏
qi∈Q ri)∏

qi∈Q ri
.

Then, continuing from (4) and using (5),

σ(φ(m))
m

>
2T2

2T2+1 − 1
·
σ(

∏
qi∈Q(qi − 1))∏

qi∈Q(qi − 1)

∏
qi∈Q

qi − 1
qi

≥
σ(

∏k
j=1 r

cj

j )∏k
j=1 r

cj

j

∏
qi∈Q

qi − 1
qi

=
k∏

j=1

σ(rcj

j )

r
cj

j

cj∏
i=1

qij − 1
qij

.

The result follows.

We remark that it is easy to see that (6) is always true when cj = 1
or 2. Also, the left-hand side of (6) is a decreasing function of cj provided
qcjj ≤ σ(rcj

j ), and this would appear to be generally the case.

Corollary. With the notation of Theorem 3, σ(φ(m)) > m if

rj

cj∑
i=1

1
qij − 1

≤ 1

for each j = 1, . . . , k.
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P r o o f. For each j = 1, . . . , k and i = 1, . . . , cj , set ξij = δij + log2 lij ,
so that qij = 1 + 2ξij rj . Then, from the proof of Theorem 3,

σ(φ(m))
m

>

k∏
j=1

r
cj+1
j − 1

r
cj

j (rj − 1)

cj∏
i=1

qij − 1
qij

=
k∏

j=1

r
cj+1
j − 1

r
cj

j (rj − 1)

cj∏
i=1

2ξij rj

1 + 2ξij rj

=
k∏

j=1

r
cj+1
j − 1
rj − 1

cj∏
i=1

1
rj + 2−ξij

≥ 1,

by Lemma 3, provided
∑cj

i=1 2−ξij ≤ 1 for each j = 1, . . . , k. The result
follows, since 2−ξij = rj/(qij − 1).

3. Applications. For the first example given in Section 1, all primes
q∈Q satisfy q ≡ 1 (mod 3) so that we may take k = 1 and r1 = 3. Write c
for c1 and qi for qi1, i = 1, . . . , c. Assume q1 < . . . <qc. If c≥9, then q1≥7,
q2 ≥ 13, q3 ≥ 19, q4 ≥ 31, q5 ≥ 37, q6 ≥ 43, q7 ≥ 61, q8 ≥ 67, q9 ≥ 73, . . .
Denote the primes on the right by q′1, q

′
2, . . . Then a simple computer run

gives us

σ(3c)
3c

c∏
i=1

qi − 1
qi

≥ σ(3c)
3c

c∏
i=1

q′i − 1
q′i

> 1

for c = 1, . . . , 8 (but the latter product is less than 1 for c = 9). That
completes the verification of example (i), using Theorem 3.

For example (ii), all primes q ∈ Q satisfy q < 1780. Partition these
primes according to the largest prime factor r of q − 1. If r = 3, 5, 7 or 11
then, respectively,

q ∈ {7, 13, 19, 37, 73, 97, 109, . . . , 1297, 1459} (with 16 elements);
q ∈ {11, 31, 41, 61, 101, . . . , 1601, 1621};
q ∈ {29, 43, 71, 113, . . . , 1373, 1471};
q ∈ {23, 67, 89, 199, 331, 353, 397, 463, 617, 661, 727, 881, 991, 1321,

1409, 1453};
and so on, for all r < 890. Then apply Theorem 3, as follows. Say r1 = 3.
Then c1 ≤ 16 and (assuming q11 < q21 < . . .) q11 ≥ 7, q21 ≥ 13, . . . Denote
the primes on the right by q′11, q

′
21, . . . A computer run gives us

σ(3c1)
3c1

c1∏
i=1

qi1 − 1
qi1

≥ σ(3c1)
3c1

c1∏
i=1

q′i1 − 1
q′i1

> 1

for c1 = 1, . . . , 16. The corresponding computation for each possible value
of r gives similar answers. The result is determined by the case r = 11:
if all 16 primes shown (23, 67, . . . , 1453) occur in Q then the corresponding
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product indeed exceeds 1, but if the next possibility (1783) is also included
then that product is less than 1.

For the third application, suppose in fact that qij = 1 + 2δij rj for each
j = 1, . . . , k and i = 1, . . . , cj . We may assume that q1j < . . . < qcjj for each
j, so, looking to the proof of the Corollary, ξij = δij ≥ i for i = 1, . . . , cj .
Then

rj

cj∑
i=1

1
qij − 1

=
cj∑

i=1

1
2ξij

≤
cj∑

i=1

1
2i

=
2cj − 1

2cj
< 1,

for each j = 1, . . . , k, so that σ(φ(m)) > m. This is example (iii) in Section 1:
taking Lemma 4 and the Fermat primes into account, the Ma̧kowski–Schinzel
conjecture holds for any product of any primes in the set

X = {2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, . . .}.

We can append further primes to the (presumably infinite) set X by
filling holes caused by non-prime values of 1 + 2irj . For example, 79 6∈ X
but, since 79 = 1 + 2 · 3 · 13 and 27 = 1 + 2 · 13 is not prime and 79 > 27,
if 79 |m we may take 79 as the first prime in the subset of primes in Q
determined by rj = 13. We may similarly let 43, 67 and 71 stand in place of
the composites 15, 45 and 57, respectively. The prime 19 can be appended
to X only at the expense of either 7 or 13. Finally, 31 could replace the
absent 21 or 25, 37 could replace 25, 61 could replace 21, 25 or 49, and 73
could replace 25 or 49.

The preceding paragraph may be summarised by saying that the Ma̧ko-
wski–Schinzel conjecture in (1) holds for any n which is a product of any
primes in the set X augmented by all other primes less than 100, except
that at most two of 7, 13 and 19, and at most three of 31, 37, 61 and 73
may be included as prime factors of n.

4. Notes. In Guy [3], 24 solutions are listed of the equation φ(σ(k)) = k.
Then of course there are 24 solutions of the equation σ(φ(m)) = m, given
by m = σ(k). The latter include m = 1 and the five solutions given in The-
orem 1; the others are all even. Ten further solutions of φ(σ(k)) = k were
found by Terry Raines: 28367213, 29345211231, 213335473, 213385·73, 213365·
7313, 213335474, 213385273, 21336527313, 221355 · 11331, and 221355211331.
We have found eight more: 213355474, 217310557311219, 217310557411219,
224395711 · 13, 225311567313231, 225311567413231, 226310557311219, and
226310557411219. We have confirmed that all solutions of φ(σ(k)) = k up to
109 are known.

I am grateful to Richard Guy and Carl Pomerance for discussions (via
electronic mail) in the course of the preparation of this paper.
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After submitting the paper, I was informed that Ram Gupta found the
following simple proof of Theorem 2. He uses the fact that φ(pa) = pφ(pa−1)
for a ≥ 2. Then, using also Lemma 1(b), if n > 1 is any integer and p |n,
we have

σ(φ(pn))
pn

=
σ(pφ(n))

pn
>

pσ(φ(n))
pn

=
σ(φ(n))

n
,

and the result follows.
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