ON A CONJECTURE OF MA̧KOWSKI AND SCHINZEL
 BY

GRAEME L. COHEN (SYDNEY, NEW SOUTH WALES)

1. Introduction. Let σ and ϕ denote the sum-of-divisors function and Euler's function, respectively. If otherwise unspecified, then, except for these, Roman and Greek letters will denote natural numbers, with p, q, r reserved for primes. We write $F_{i}=2^{2^{i}}+1$ for $i \geq 0$; these are Fermat numbers.

Mąkowski and Schinzel [5] conjectured in 1964 that

$$
\begin{equation*}
\frac{\sigma(\phi(n))}{n} \geq \frac{1}{2} \quad \text { for all } n \tag{1}
\end{equation*}
$$

They noted that Mrs. K. Kuhn had shown the inequality to be true for all n with at most six prime factors.

Pomerance [6] proved in 1989 that $\inf \sigma(\phi(n)) / n>0$ and Balakrishnan [1] recently verified (1) for squarefull values of n (satisfying $p^{2} \mid n$ when $p \mid n$). Filaseta, Graham and Nicol [2] have shown that (1) is true when n is the product of the first k primes, for sufficiently large k. The Mąkowski-Schinzel conjecture is included in B42 of Guy [3].

We shall prove here that the conjecture is true in general if it is true for squarefree integers, and we shall verify the conjecture for various classes of numbers, such as:
(i) All numbers of the form $2^{a} m$, where the distinct prime factors of m are Fermat primes or primes congruent to $1(\bmod 3)$, with at most eight of the latter.
(ii) Any product of any primes less than 1780 .
(iii) All numbers of the form $2^{a} m$, where m is a product of primes $1+2^{b} r$, for any b and any prime r. Thus m is any product of any primes in the set $\{3,5,7,11,13,17,23,29,41,47,53,59,83,89,97, \ldots\}$.

Our proof will require the following three lemmas.
Lemma 1. (a) For any v, w with $v \mid w, \sigma(v) / v \leq \sigma(w) / w$. There is equality if and only if $v=w$.
(b) For any $u, v, \sigma(u v) \geq u \sigma(v)$. There is equality if and only if $u=1$.

Proof. (a) follows quickly from the observation that $\sigma(w) / w=$ $\sum_{d \mid w} 1 / d$. Setting $w=u v$ shows (b) to be equivalent to (a).

Lemma 2. If $0 \leq d_{1}<d_{2}<\ldots<d_{t}$, then

$$
\begin{equation*}
2^{1+\sum_{i=1}^{t} 2^{d_{i}}}-1 \geq \prod_{i=1}^{t}\left(1+2^{2^{d_{i}}}\right) \tag{2}
\end{equation*}
$$

Equality holds if and only if $d_{i}=i-1$ for $i=1, \ldots, t$.
Proof. Multiply out the right-hand side of (2) and note that each summand is a divisor of $N=2^{\sum_{i=1}^{t} 2^{d_{i}}}$. The sum of all such divisors is $\sigma(N)$, the left-hand side of (2). Since all divisors are obtained on the right if and only if $d_{i}=i-1$ for each i, we obtain then the statement on equality.

Lemma 3. For any real number $x>1$ and any natural number k,

$$
\frac{x^{k+1}-1}{x-1} \geq\left(x+z_{1}\right)\left(x+z_{2}\right) \ldots\left(x+z_{k}\right)
$$

where $z_{1}, z_{2}, \ldots, z_{k}$ are any positive real numbers such that $z_{1}+z_{2}+\ldots+z_{k}$ ≤ 1.

Proof. This follows from the following inequality given in Hardy [4, p. 34]. If $x_{1}, x_{2}, \ldots, x_{k}$ are all positive real numbers, and $y_{k}=x_{1}+x_{2}+$ $\ldots+x_{k}$, then

$$
\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{k}\right) \leq 1+y_{k}+\frac{y_{k}^{2}}{2!}+\ldots+\frac{y_{k}^{k}}{k!}
$$

There is a well-known equivalent form of the conjecture in (1). It is an easier form for our purposes and is proved here for completeness.

Lemma 4. We have $\sigma(\phi(n)) \geq n / 2$ for all n if and only if

$$
\sigma(\phi(m)) \geq m
$$

for all odd m. We have $\sigma(\phi(n))=n / 2$ if and only if $n=2 m$, m is odd, and $\sigma(\phi(m))=m$.

Proof. Suppose $\sigma(\phi(n)) \geq n / 2$ for all n, and let m be any odd number. Then

$$
\frac{\sigma(\phi(m))}{m}=2 \frac{\sigma(\phi(2 m))}{2 m} \geq 2 \cdot \frac{1}{2}=1
$$

This shows also that if m is odd and $\sigma(\phi(m))=m$, then $\sigma(\phi(n))=n / 2$, where $n=2 m$.

Suppose next that $\sigma(\phi(m)) \geq m$ for all odd m. Let n be any even number, so $n=2^{a} m$, say, where m is odd. Then $\phi(n)=2^{a-1} \phi(m)$, so, by Lemma $1(\mathrm{~b}), \sigma(\phi(n)) \geq 2^{a-1} \sigma(\phi(m))$. Hence

$$
\frac{\sigma(\phi(n))}{n} \geq \frac{2^{a-1}}{2^{a}} \cdot \frac{\sigma(\phi(m))}{m} \geq \frac{1}{2}
$$

This shows also that if $\sigma(\phi(n))=n / 2$ then $a=1$ and $\sigma(\phi(m))=m$.

2. Theorems

Theorem 1. We have $\sigma(\phi(m)) \geq m$ whenever m is a product of Fermat primes. For such a product, there is equality if and only if $m=F_{0} F_{1} \ldots F_{k}$ for $0 \leq k \leq 4$.

Proof. Write $m=\prod_{i=1}^{t} p_{i}^{a_{i}}$, where $a_{i} \geq 1$ and $p_{i}=2^{2^{d_{i}}}+1$ is prime, for $i=1, \ldots, t$. Assume $0 \leq d_{1}<d_{2}<\ldots<d_{t}$, and set $T=\sum_{i=1}^{t} 2^{d_{i}}$. We have

$$
\phi(m)=\prod_{i=1}^{t}\left(p_{i}-1\right) p_{i}^{a_{i}-1}=2^{T} \prod_{i=1}^{t} p_{i}^{a_{i}-1}
$$

and

$$
\sigma(\phi(m))=\left(2^{T+1}-1\right) \prod_{i=1}^{t} \frac{p_{i}^{a_{i}}-1}{p_{i}-1}
$$

Then

$$
\frac{\sigma(\phi(m))}{m}=\left(2^{T+1}-1\right) \prod_{i=1}^{t} \frac{1}{p_{i}} \cdot \prod_{i=1}^{t} \frac{p_{i}^{a_{i}}-1}{p_{i}^{a_{i}-1}\left(p_{i}-1\right)} \geq 1
$$

by virtue of Lemma 2.
Furthermore, it follows from this and Lemma 2 that $\sigma(\phi(m))=m$ if and only if $a_{i}=1$ and $d_{i}=i-1$ for each i. The latter requires $p_{i}=2^{2^{i-1}}+1=$ F_{i-1} and since F_{0}, \ldots, F_{4} are prime and F_{5} is not, we have $\sigma(\phi(m))=m$ if and only if m is one of the stated products. (These solutions were known to Mąkowski and Schinzel [5].)

Theorem 2. The Makowski-Schinzel conjecture is true in general if it is true for squarefree integers.

Proof. Write $m=\prod_{i=1}^{t} q_{i}^{b_{i}}$, for distinct odd primes q_{1}, \ldots, q_{t}, and $m^{\prime}=\prod_{i=1}^{t} q_{i}$. For each $i=1, \ldots, t$, write

$$
q_{i}-1=\prod_{j=1}^{t} q_{j}^{\beta_{i j}} \cdot w_{i}
$$

where $\beta_{i j} \geq 0$ and $q_{j} \nmid w_{i}$ for any i, j. Write $W=\prod_{i=1}^{t} w_{i}$, and $B_{j}=$ $\sum_{i=1}^{t} \beta_{i j}$, for each $j=1, \ldots, t$. Then

$$
\phi\left(m^{\prime}\right)=\prod_{i=1}^{t}\left(q_{i}-1\right)=\prod_{j=1}^{t} q_{j}^{B_{j}} \cdot W
$$

and $q_{j} \nmid W$ for any $j=1, \ldots, t$, so that

$$
\sigma\left(\phi\left(m^{\prime}\right)\right)=\prod_{j=1}^{t} \frac{q_{j}^{B_{j}+1}-1}{q_{j}-1} \cdot \sigma(W)
$$

We now have

$$
\phi(m)=\prod_{i=1}^{t} q_{i}^{b_{i}-1} \prod_{i=1}^{t}\left(q_{i}-1\right)=\prod_{j=1}^{t} q_{j}^{b_{j}+B_{j}-1} \cdot W
$$

and then

$$
\sigma(\phi(m))=\prod_{j=1}^{t} \frac{q_{j}^{b_{j}+B_{j}}-1}{q_{j}-1} \cdot \sigma(W)=\prod_{j=1}^{t} \frac{q_{j}^{b_{j}+B_{j}}-1}{q_{j}^{B_{j}+1}-1} \cdot \sigma\left(\phi\left(m^{\prime}\right)\right)
$$

Hence

$$
\begin{equation*}
\frac{\sigma(\phi(m))}{m}=\prod_{j=1}^{t} \frac{q_{j}^{b_{j}+B_{j}}-1}{q_{j}^{b_{j}-1}\left(q_{j}^{B_{j}+1}-1\right)} \cdot \frac{\sigma\left(\phi\left(m^{\prime}\right)\right)}{\prod_{i=1}^{t} q_{i}} \geq \frac{\sigma\left(\phi\left(m^{\prime}\right)\right)}{m^{\prime}} . \tag{3}
\end{equation*}
$$

Now let n be any even number and put $n=2^{a} m$, with m and m^{\prime} as before. If the Mąkowski-Schinzel conjecture is true for squarefree integers, we then have

$$
\frac{\sigma(\phi(n))}{n}=\frac{\sigma\left(\phi\left(2^{a} m\right)\right)}{2^{a} m} \geq \frac{\sigma(\phi(m))}{2 m} \geq \frac{\sigma\left(\phi\left(m^{\prime}\right)\right)}{2 m^{\prime}}=\frac{\sigma\left(\phi\left(2 m^{\prime}\right)\right)}{2 m^{\prime}} \geq \frac{1}{2}
$$

That is, the conjecture is true for all even integers, and clearly also for all odd integers. Note, in particular, that there is strict inequality above if m is not squarefree (that is, if $b_{j} \geq 2$ for at least one $j=1, \ldots, t$).

We now adopt an alternative notation and write

$$
m=\prod_{p_{i} \in P} p_{i}^{a_{i}} \prod_{q_{i} \in Q} q_{i}^{b_{i}},
$$

where P is the set of Fermat primes that divide m and $Q \neq \emptyset$ is the set of remaining distinct prime factors of m. For each $p_{i} \in P$, set $p_{i}=2^{2^{d_{i}}}+1$, and put $T_{1}=\sum_{p_{i} \in P} 2^{d_{i}}$. For each $q_{i} \in Q$, suppose $2^{\delta_{i}} \|\left(q_{i}-1\right)$ (so that $2^{\delta_{i}} \mid\left(q_{i}-1\right)$, but $\left.2^{\delta_{i}+1} \nmid\left(q_{i}-1\right)\right)$ and set $T_{2}=\sum_{q_{i} \in Q} \delta_{i}$.

From (3),

$$
\begin{aligned}
\frac{\sigma(\phi(m))}{m} & \geq \frac{\sigma\left(2^{T_{1}} \prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{p_{i} \in P} p_{i} \prod_{q_{i} \in Q} q_{i}} \\
& =\frac{2^{T_{1}+T_{2}+1}-1}{2^{T_{2}+1}-1} \cdot \frac{\sigma\left(\prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{p_{i} \in P} p_{i} \prod_{q_{i} \in Q} q_{i}} \\
& \geq \frac{2^{T_{1}+T_{2}+1}-1}{\left(2^{T_{1}+1}-1\right)\left(2^{T_{2}+1}-1\right)} \cdot \frac{\sigma\left(\prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{q_{i} \in Q} q_{i}},
\end{aligned}
$$

by Lemma 2 , and, since $T_{2}>0$,

$$
\begin{equation*}
\frac{\sigma(\phi(m))}{m}>\frac{2^{T_{2}}}{2^{T_{2}+1}-1} \cdot \frac{\sigma\left(\prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{q_{i} \in Q} q_{i}} \tag{4}
\end{equation*}
$$

TheOrem 3. For each $q_{i} \in Q$, write $q_{i}-1=2^{\delta_{i}} r_{i} l_{i}$, where r_{i} is an odd prime and l_{i} is odd. Suppose, renumbering the $q_{i} \in Q$ if necessary, that

$$
\begin{equation*}
\prod_{q_{i} \in Q} r_{i}=\prod_{j=1}^{k} r_{j}^{c_{j}} \tag{5}
\end{equation*}
$$

where r_{1}, \ldots, r_{k} are distinct. Use these primes to partition Q, so that, renaming the $q_{i} \in Q, q_{i j}=1+2^{\delta_{i j}} r_{j} l_{i j}$, where $l_{i j}$ is odd, for $j=1, \ldots, k$ and $i=1, \ldots, c_{j}$. Then $\sigma(\phi(m))>m$ if
(6)

$$
\frac{\sigma\left(r_{j}^{c_{j}}\right)}{r_{j}^{c_{j}}} \prod_{i=1}^{c_{j}} \frac{q_{i j}-1}{q_{i j}} \geq 1
$$

for each $j=1, \ldots, k$.
Proof. With T_{2} as above, we have

$$
\prod_{q_{i} \in Q}\left(q_{i}-1\right)=2^{T_{2}} \prod_{q_{i} \in Q} r_{i} \prod_{q_{i} \in Q} l_{i}
$$

so that, using Lemma 1(a),

$$
\frac{\sigma\left(\prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{q_{i} \in Q}\left(q_{i}-1\right)} \geq \frac{2^{T_{2}+1}-1}{2^{T_{2}}} \cdot \frac{\sigma\left(\prod_{q_{i} \in Q} r_{i}\right)}{\prod_{q_{i} \in Q} r_{i}} .
$$

Then, continuing from (4) and using (5),

$$
\begin{aligned}
\frac{\sigma(\phi(m))}{m} & >\frac{2^{T_{2}}}{2^{T_{2}+1}-1} \cdot \frac{\sigma\left(\prod_{q_{i} \in Q}\left(q_{i}-1\right)\right)}{\prod_{q_{i} \in Q}\left(q_{i}-1\right)} \prod_{q_{i} \in Q} \frac{q_{i}-1}{q_{i}} \\
& \geq \frac{\sigma\left(\prod_{j=1}^{k} r_{j}^{c_{j}}\right)}{\prod_{j=1}^{k} r_{j}^{c_{j}}} \prod_{q_{i} \in Q} \frac{q_{i}-1}{q_{i}}=\prod_{j=1}^{k} \frac{\sigma\left(r_{j}^{c_{j}}\right)}{r_{j}^{c_{j}}} \prod_{i=1}^{c_{j}} \frac{q_{i j}-1}{q_{i j}}
\end{aligned}
$$

The result follows.
We remark that it is easy to see that (6) is always true when $c_{j}=1$ or 2. Also, the left-hand side of (6) is a decreasing function of c_{j} provided $q_{c_{j} j} \leq \sigma\left(r_{j}^{c_{j}}\right)$, and this would appear to be generally the case.

Corollary. With the notation of Theorem $3, \sigma(\phi(m))>m$ if

$$
r_{j} \sum_{i=1}^{c_{j}} \frac{1}{q_{i j}-1} \leq 1
$$

for each $j=1, \ldots, k$.

Proof. For each $j=1, \ldots, k$ and $i=1, \ldots, c_{j}$, set $\xi_{i j}=\delta_{i j}+\log _{2} l_{i j}$, so that $q_{i j}=1+2^{\xi_{i j}} r_{j}$. Then, from the proof of Theorem 3,

$$
\begin{aligned}
\frac{\sigma(\phi(m))}{m} & >\prod_{j=1}^{k} \frac{r_{j}^{c_{j}+1}-1}{r_{j}^{c_{j}}\left(r_{j}-1\right)} \prod_{i=1}^{c_{j}} \frac{q_{i j}-1}{q_{i j}}=\prod_{j=1}^{k} \frac{r_{j}^{c_{j}+1}-1}{r_{j}^{c_{j}}\left(r_{j}-1\right)} \prod_{i=1}^{c_{j}} \frac{2^{\xi_{i j}} r_{j}}{1+2^{\xi_{i j}} r_{j}} \\
& =\prod_{j=1}^{k} \frac{r_{j}^{c_{j}+1}-1}{r_{j}-1} \prod_{i=1}^{c_{j}} \frac{1}{r_{j}+2^{-\xi_{i j}}} \geq 1
\end{aligned}
$$

by Lemma 3 , provided $\sum_{i=1}^{c_{j}} 2^{-\xi_{i j}} \leq 1$ for each $j=1, \ldots, k$. The result follows, since $2^{-\xi_{i j}}=r_{j} /\left(q_{i j}-1\right)$.
3. Applications. For the first example given in Section 1, all primes $q \in Q$ satisfy $q \equiv 1(\bmod 3)$ so that we may take $k=1$ and $r_{1}=3$. Write c for c_{1} and q_{i} for $q_{i 1}, i=1, \ldots, c$. Assume $q_{1}<\ldots<q_{c}$. If $c \geq 9$, then $q_{1} \geq 7$, $q_{2} \geq 13, q_{3} \geq 19, q_{4} \geq 31, q_{5} \geq 37, q_{6} \geq 43, q_{7} \geq 61, q_{8} \geq 67, q_{9} \geq 73, \ldots$ Denote the primes on the right by $q_{1}^{\prime}, q_{2}^{\prime}, \ldots$ Then a simple computer run gives us

$$
\frac{\sigma\left(3^{c}\right)}{3^{c}} \prod_{i=1}^{c} \frac{q_{i}-1}{q_{i}} \geq \frac{\sigma\left(3^{c}\right)}{3^{c}} \prod_{i=1}^{c} \frac{q_{i}^{\prime}-1}{q_{i}^{\prime}}>1
$$

for $c=1, \ldots, 8$ (but the latter product is less than 1 for $c=9$). That completes the verification of example (i), using Theorem 3.

For example (ii), all primes $q \in Q$ satisfy $q<1780$. Partition these primes according to the largest prime factor r of $q-1$. If $r=3,5,7$ or 11 then, respectively,

$$
\begin{aligned}
q \in & \{7,13,19,37,73,97,109, \ldots, 1297,1459\} \quad \text { (with } 16 \text { elements); } \\
q \in & \{11,31,41,61,101, \ldots, 1601,1621\} ; \\
q \in & \{29,43,71,113, \ldots, 1373,1471\} ; \\
q \in & \{23,67,89,199,331,353,397,463,617,661,727,881,991,1321 \\
& 1409,1453\}
\end{aligned}
$$

and so on, for all $r<890$. Then apply Theorem 3, as follows. Say $r_{1}=3$. Then $c_{1} \leq 16$ and (assuming $q_{11}<q_{21}<\ldots$) $q_{11} \geq 7, q_{21} \geq 13, \ldots$ Denote the primes on the right by $q_{11}^{\prime}, q_{21}^{\prime}, \ldots$ A computer run gives us

$$
\frac{\sigma\left(3^{c_{1}}\right)}{3^{c_{1}}} \prod_{i=1}^{c_{1}} \frac{q_{i 1}-1}{q_{i 1}} \geq \frac{\sigma\left(3^{c_{1}}\right)}{3^{c_{1}}} \prod_{i=1}^{c_{1}} \frac{q_{i 1}^{\prime}-1}{q_{i 1}^{\prime}}>1
$$

for $c_{1}=1, \ldots, 16$. The corresponding computation for each possible value of r gives similar answers. The result is determined by the case $r=11$: if all 16 primes shown $(23,67, \ldots, 1453)$ occur in Q then the corresponding
product indeed exceeds 1 , but if the next possibility (1783) is also included then that product is less than 1.

For the third application, suppose in fact that $q_{i j}=1+2^{\delta_{i j}} r_{j}$ for each $j=1, \ldots, k$ and $i=1, \ldots, c_{j}$. We may assume that $q_{1 j}<\ldots<q_{c_{j} j}$ for each j, so, looking to the proof of the Corollary, $\xi_{i j}=\delta_{i j} \geq i$ for $i=1, \ldots, c_{j}$. Then

$$
r_{j} \sum_{i=1}^{c_{j}} \frac{1}{q_{i j}-1}=\sum_{i=1}^{c_{j}} \frac{1}{2^{\xi_{i j}}} \leq \sum_{i=1}^{c_{j}} \frac{1}{2^{i}}=\frac{2^{c_{j}}-1}{2^{c_{j}}}<1
$$

for each $j=1, \ldots, k$, so that $\sigma(\phi(m))>m$. This is example (iii) in Section 1 : taking Lemma 4 and the Fermat primes into account, the Ma̧kowski-Schinzel conjecture holds for any product of any primes in the set

$$
X=\{2,3,5,7,11,13,17,23,29,41,47,53,59,83,89,97, \ldots\}
$$

We can append further primes to the (presumably infinite) set X by filling holes caused by non-prime values of $1+2^{i} r_{j}$. For example, $79 \notin X$ but, since $79=1+2 \cdot 3 \cdot 13$ and $27=1+2 \cdot 13$ is not prime and $79>27$, if $79 \mid m$ we may take 79 as the first prime in the subset of primes in Q determined by $r_{j}=13$. We may similarly let 43,67 and 71 stand in place of the composites 15,45 and 57 , respectively. The prime 19 can be appended to X only at the expense of either 7 or 13 . Finally, 31 could replace the absent 21 or 25,37 could replace 25,61 could replace 21,25 or 49 , and 73 could replace 25 or 49 .

The preceding paragraph may be summarised by saying that the Mąko-wski-Schinzel conjecture in (1) holds for any n which is a product of any primes in the set X augmented by all other primes less than 100, except that at most two of 7,13 and 19 , and at most three of $31,37,61$ and 73 may be included as prime factors of n.
4. Notes. In Guy [3], 24 solutions are listed of the equation $\phi(\sigma(k))=k$. Then of course there are 24 solutions of the equation $\sigma(\phi(m))=m$, given by $m=\sigma(k)$. The latter include $m=1$ and the five solutions given in Theorem 1 ; the others are all even. Ten further solutions of $\phi(\sigma(k))=k$ were found by Terry Raines: $2^{8} 3^{6} 7^{2} 13,2^{9} 3^{4} 5^{2} 11^{2} 31,2^{13} 3^{3} 5^{4} 7^{3}, 2^{13} 3^{8} 5 \cdot 7^{3}, 2^{13} 3^{6} 5$. $7^{3} 13,2^{13} 3^{3} 5^{4} 7^{4}, 2^{13} 3^{8} 5^{2} 7^{3}, 2^{13} 3^{6} 5^{2} 7^{3} 13,2^{21} 3^{5} 5 \cdot 11^{3} 31$, and $2^{21} 3^{5} 5^{2} 11^{3} 31$. We have found eight more: $2^{13} 3^{5} 5^{4} 7^{4}, 2^{17} 3^{10} 5^{5} 7^{3} 11^{2} 19,2^{17} 3^{10} 5^{5} 7^{4} 11^{2} 19$, $2^{24} 3^{9} 5^{7} 11 \cdot 13,2^{25} 3^{11} 5^{6} 7^{3} 13^{2} 31,2^{25} 3^{11} 5^{6} 7^{4} 13^{2} 31,2^{26} 3^{10} 5^{5} 7^{3} 11^{2} 19$, and $2^{26} 3^{10} 5^{5} 7^{4} 11^{2} 19$. We have confirmed that all solutions of $\phi(\sigma(k))=k$ up to 10^{9} are known.

I am grateful to Richard Guy and Carl Pomerance for discussions (via electronic mail) in the course of the preparation of this paper.

After submitting the paper, I was informed that Ram Gupta found the following simple proof of Theorem 2. He uses the fact that $\phi\left(p^{a}\right)=p \phi\left(p^{a-1}\right)$ for $a \geq 2$. Then, using also Lemma $1(\mathrm{~b})$, if $n>1$ is any integer and $p \mid n$, we have

$$
\frac{\sigma(\phi(p n))}{p n}=\frac{\sigma(p \phi(n))}{p n}>\frac{p \sigma(\phi(n))}{p n}=\frac{\sigma(\phi(n))}{n}
$$

and the result follows.

REFERENCES

[1] U. Balakrishnan, Some remarks on $\sigma(\phi(n))$, Fibonacci Quart. 32 (1994), 293-296.
[2] M. Filaseta, S. W. Graham and C. Nicol, On the composition of $\sigma(n)$ and $\phi(n)$, unpublished; S. W. Graham, M. Filaseta and C. Nicol, On $\sigma \phi(n)$ (Preliminary Report), Abstracts Amer. Math. Soc. 13.4 (1992), 357.
[3] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994.
[4] G. H. Hardy, A Course of Pure Mathematics, Cambridge Univ. Press, 1960.
[5] A. Ma̧kowski and A. Schinzel, On the functions $\phi(n)$ and $\sigma(n)$, Colloq. Math. 13 (1964/65), 95-99.
[6] C. Pomerance, On the composition of the arithmetic functions σ and ϕ, ibid. 58 (1989), 11-15.

School of Mathematical Sciences
University of Technology, Sydney
P.O. Box 123

Broadway, New South Wales 2007
Australia
E-mail: glc@maths.uts.edu.au
Web: http://www.maths.uts.edu.au/staff/glc/glc.html

