COLLOQUIUM MATHEMATICUM

$\begin{array}{lll}\text { VOL. } 74 & 1997 & \text { NO. } 1\end{array}$

CONSTRUCTING THE DIRECTING COMPONENTS OF AN ALGEBRA

By
J. A. DE LA PEÑA and M. TAKANE (MÉXICO)

Let k be an algebraically closed field and A be a finite-dimensional k algebra. We may assume that $A=k Q / I$, where Q is a finite connected quiver and I is an admissible ideal of the path algebra $k Q$; see [5]. For our considerations we may assume that Q has no oriented cycles.

Consider the category $\bmod _{A}$ of finite-dimensional left A-modules. For each indecomposable non-projective A-module X, the Auslander-Reiten translate $\tau_{A} X$ is an indecomposable non-injective module; see $[1,5]$. The Auslander-Reiten quiver Γ_{A} has as vertices representatives of the isoclasses of finite-dimensional indecomposable A-modules and as many arrows from X to Y in Γ_{A} as the dimension of $\operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{A}^{2}(X, Y)$. An indecomposable A-module X is directing if there is no cycle of non-zero non-isomorphisms $X=X_{0} \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{s} \rightarrow X_{s+1}=X$ between indecomposable modules. A component \mathcal{C} of Γ_{A} is directing if all its modules are directing.

There are several important examples of directing components which have been extensively studied. Postprojective components are directing components \mathcal{P} such that each module in \mathcal{P} has only finitely many predecessors in the path order of \mathcal{P}. Algebras with such type of components are: algebras with the separation condition (in particular, tree algebras), and hereditary algebras (and more generally, tilted and quasi-tilted algebras [20, 3]). Recently, a criterion was given in [4] for the existence of postprojective components. For every tilted algebra A, the connecting component \mathcal{C} of Γ_{A} is a directing component; see [14].

Some general properties of directing components were studied in [9], [18] and [19]. The purpose of the present work is to describe properties of directing convex components of Γ_{A}. Such components are standard; they are sincere if and only if the number of τ_{A}-orbits is the number of vertices in the quiver Q. In Section 3 we describe an inductive procedure to construct all algebras A accepting a sincere convex directing component in Γ_{A}. Some of our results are related to [19].

We wish to acknowledge the support of DGAPA, UNAM and CONACyT , México.

1. Directing components

1.1. Let $A=k Q / I$ be an algebra as in the introduction. Let $Q_{0}=$ $\{1, \ldots, n\}$ be the set of vertices of Q. Denote by S_{j} the simple module associated to j, whose projective cover (resp. injective envelope) will be denoted by $P_{j}\left(\right.$ resp. $\left.I_{j}\right)$. The radical of P_{j} is $\operatorname{rad} P_{j}$. The Grothendieck group $K_{0}(A)$ is isomorphic to \mathbb{Z}^{n}; the class of a module X is its dimension vector $\operatorname{dim} X$. The Euler bilinear (non-symmetric) form $\langle-,-\rangle_{A}$ is defined by $\langle\operatorname{dim} X, \operatorname{dim} Y\rangle_{A}=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}(X, Y)$.

We start with recalling the following result.
Theorem [18]. Let \mathcal{C} be a directing component of Γ_{A}. Then \mathcal{C} has finitely many τ-orbits.

A full subquiver \mathcal{S} of a directing component \mathcal{C} of Γ_{A} is said to be a section in \mathcal{C} if the following are satisfied:
(i) \mathcal{S} is convex (= path closed) in \mathcal{C} and connected;
(ii) if $X \in \mathcal{S}$, then $\tau_{A} X \notin \mathcal{S}$;
(iii) if $X \rightarrow Y$ is an arrow in $\Gamma_{A}, X \in \mathcal{S}$ and $Y \notin \mathcal{S}$, then Y is nonprojective and $\tau_{A} Y \in \mathcal{S}$.

Moreover, \mathcal{S} is said to be a (+)-section (resp. (- -section) if it is a section and satisfies (iv) (resp. (iv) ${ }^{\prime}$):
(iv) there are no paths from a projective P_{j} or an injective I_{j} in \mathcal{C} to any module in \mathcal{S};
(iv)' there are no paths from a module in \mathcal{S} to a projective P_{j} or an injective I_{j} in \mathcal{C}.

Similar definitions have been considered before (see [11], [14], [16]).
Corollary. Let \mathcal{C} be a directing component of Γ_{A}. Then \mathcal{C} is infinite if and only if \mathcal{C} admits either $a(+)$-section or $a(-)$-section \mathcal{S}. In that situation, the underlying graph of \mathcal{S} is not a Dynkin diagram.

Proof. If \mathcal{S} is a (+)-section in \mathcal{C}, then for any $X \in \mathcal{S}$, all $\tau_{A}^{n} X, n \geq 0$, are well-defined pairwise non-isomorphic modules. Conversely, assume that \mathcal{C} is infinite. By the theorem, there is a module $X \in \mathcal{C}$ such that either all $\tau_{A}^{n} X$, $n \geq 0$, are well-defined or all $\tau_{A}^{-n} X, n \geq 0$, are well defined. Assume the first situation holds. Since \mathcal{C} is directing, there is some $Y=\tau_{A}^{n_{0}} X, n_{0} \geq 0$, such that Y has no predecessors in \mathcal{C} which are projective or injective. Denote by $\Sigma(\rightarrow Y)$ the full subquiver of \mathcal{C} formed by those modules Z which are predecessors of Y and such that $\tau_{A}^{-} Z$ is not a predecessor of Y. In [18] (or
see also [11], [9]) it is shown that $\Sigma(\rightarrow Y)$ is a section. It is a $(+)$-section by construction.

If \mathcal{S} is a $(+)$-section in \mathcal{C}, it is well-known that \mathcal{S} is not of Dynkin type; see [9].
1.2. Let $H=k \Delta$ be a hereditary algebra. We recall that a tilting module T of H is a module satisfying:
(i) $\operatorname{Ext}_{H}^{1}(T, T)=0$;
(ii) the number of indecomposable pairwise non-isomorphic direct summands of T is the number of vertices of Δ.

The algebra $\operatorname{End}_{H}(T)$ is then said to be a tilted algebra.
Part (i) of the following result is taken from [18] (see also [9]). For part (ii) see [9].

Proposition. Let \mathcal{C} be a directing component of Γ_{A} and \mathcal{S} be a (+)section. Consider the translation subquiver $\mathcal{C}^{+}(\mathcal{S})$ of \mathcal{C} formed by all predecessors of \mathcal{S}. Then:
(i) There is a hereditary algebra H of infinite representation type and a tilting module T of H without preinjective direct summands such that the tilted algebra $B=\operatorname{End}_{H}(T)$ is a full convex subcategory of A and $\mathcal{C}^{+}(\mathcal{S})$ is a translation subquiver of Γ_{B} closed with respect to predecessors.
(ii) There are functionals $f_{\mathcal{S}}^{+}, g_{\mathcal{S}}^{+}: K_{0}(A) \rightarrow \mathbb{R}$ such that for any indecomposable B-module X we have $X \in \mathcal{C}^{+}(\mathcal{S})$ if and only if $f_{\mathcal{S}}^{+}(\operatorname{dim} X)>0$ and $g_{\mathcal{S}}^{+}(\operatorname{dim} X)>0$.

Proof. We indicate the main steps of the proof.
(i) Let B be the full subcategory of A formed by the support of \mathcal{S}, that is, by those vertices $i \in Q_{0}$ such that $X(i) \neq 0$ for some $X \in \mathcal{S}$. By a well-known argument, B is convex in A. Then \mathcal{S} is a section in Γ_{B} and, in fact, a slice in the sense of [14]. Hence, B is a tilted algebra $\operatorname{End}_{H}(T)$ such that the vertices of \mathcal{S} are of the form $\operatorname{Hom}_{H}\left(T, I_{j}^{0}\right)$, where I_{j}^{0} is the indecomposable injective $H=k \Delta$-module corresponding to $j \in \Delta_{0}$ (see [14]). If a direct summand T_{j} of T is of the form $\tau_{H}^{n} I_{j}^{0}$, then $\operatorname{Hom}_{H}\left(T, T_{j}\right)$ is a projective in \mathcal{C} which is a predecessor of $\operatorname{Hom}_{H}\left(T, I_{j}^{0}\right) \in \mathcal{S}$, a contradiction. It is not difficult to see that $\mathcal{C}^{+}(\mathcal{S})$ is formed by B-modules (see [9]).
(ii) Let ϱ be the spectral radius of the Coxeter matrix ϕ_{Δ} of $H=k \Delta$ (see [12], [15] for definitions). If Δ is of extended Dynkin type, then $\varrho=1$; otherwise $\varrho>1$ (recall from 1.1 that Δ is not Dynkin). By [12] and [15], there is an eigenvector $y^{+} \in \mathbb{N}^{\Delta_{0}}$ of ϕ_{Δ} with eigenvalue ϱ, all of whose coordinates are positive. By [12], an indecomposable H-module N is preinjective if and only if $\left\langle y^{+}, \operatorname{dim} N\right\rangle_{H}>0$.

Since $B=\operatorname{End}_{H}(T)$ is a tilted algebra, there is an isometry $\sigma: K_{0}(H) \rightarrow$ $K_{0}(B), \operatorname{dim} N \mapsto \operatorname{dim} \operatorname{Hom}_{H}(T, N)-\operatorname{dim} \operatorname{Ext}_{H}^{1}(T, N)$, preserving the Eu-
ler bilinear form. Let $i: K_{0}(B) \rightarrow K_{0}(A)$ be the natural inclusion and define $f^{+}(z)=\left\langle i \sigma\left(y^{+}\right), z\right\rangle_{A}$. Further, we set $g^{+}(z)=\sum_{Y \in \mathcal{S}}\langle z, \operatorname{dim} Y\rangle_{A}$.

Let $X \in \mathcal{C}^{+}(\mathcal{S})$. Since X is a predecessor of \mathcal{S}, we have $X=\operatorname{Hom}_{H}(T, N)$ for some preinjective H-module N. Then $\operatorname{dim} X=i \sigma(\operatorname{dim} N)$, hence $f^{+}(\operatorname{dim} X)=\left\langle\sigma\left(y^{+}\right), \sigma(\operatorname{dim} N)\right\rangle_{B}=\left\langle y^{+}, \operatorname{dim} N\right\rangle_{H}>0 ;$ clearly, $g^{+}(\operatorname{dim} X)$ $=\sum_{j \in \Delta_{0}}\left\langle\operatorname{dim} N, \operatorname{dim} I_{j}^{0}\right\rangle_{H}>0$. Conversely, assume that for an indecomposable B-module X we have $f^{+}(\operatorname{dim} X)>0$ and $g^{+}(\operatorname{dim} X)>0$. Assume $X=\operatorname{Ext}_{H}^{1}(T, M)$ for some indecomposable H-module M. Then there is a path from M to some direct summand T_{j} of T. Since T_{j} is not preinjective by (i), neither is M. Hence $g^{+}(\operatorname{dim} X)=\sum_{j \in \Delta_{0}}\left\langle-\sigma(\operatorname{dim} M), \sigma\left(\operatorname{dim} I_{j}^{0}\right)\right\rangle_{B}$ <0, a contradiction. Then $X=\operatorname{Hom}_{M}(T, N)$ for some indecomposable H module N. Clearly, if N is not preinjective, then $f^{+}(\operatorname{dim} X)<0$. Therefore, N is preinjective and X is a predecessor of \mathcal{S} in \mathcal{C}. That is, $X \in \mathcal{C}^{+}(\mathcal{S})$ as desired.

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ be a set of $(+)$-sections intersecting exactly once all τ stable orbits of a directing component \mathcal{C}. We denote by \mathcal{C}^{+}the full translation subquiver of \mathcal{C} formed by the modules in $\bigcup_{i=1}^{m} \mathcal{C}^{+}\left(\mathcal{S}_{i}\right)$, and we call it the $(+)$-stable part of \mathcal{C}. Dually we define \mathcal{C}^{-}, the $(-)$-stable part of \mathcal{C}.
1.3. We recall that a connected component \mathcal{C} of Γ_{A} is called convex if any path $X=X_{0} \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{s}=Y$ between indecomposable modules in $\bmod _{A}$ with X and Y in \mathcal{C} has all its modules X_{i} in \mathcal{C}. Moreover, \mathcal{C} is said to be standard if the full subcategory $[\mathcal{C}]$ of $\bmod _{A}$ defined by \mathcal{C} is equivalent to the mesh category $k(\mathcal{C})$ of \mathcal{C} (see [14]).

As shown in [18], there are examples of directing components in Γ_{A} which are neither convex nor standard. Nevertheless, the following holds.

Proposition. Let \mathcal{C} be a directing component of Γ_{A}.
(a) If \mathcal{C} is convex, then \mathcal{C} is standard.
(b) Assume $\operatorname{Hom}_{A}\left(\mathcal{C}^{-}, P_{j}\right)=0$ for every projective P_{j}, then \mathcal{C} is convex.

Proof. (a) We define a functor $F: k(\mathcal{C}) \rightarrow[\mathcal{C}]$. We will consider each vertex x of \mathcal{C} as the isomorphism class of an indecomposable and we shall fix an indecomposable $F(x) \in x$. For each $Y \in x$ we set an isomorphism $\phi_{Y}: Y \rightarrow F(x)$. We shall define for each arrow $x \xrightarrow{\alpha} y$ in \mathcal{C} an irreducible map $F(\alpha): F(x) \rightarrow F(y)$ such that any mesh

is sent in $\sum_{i=1}^{s} F\left(\alpha_{i}\right) F\left(\beta_{i}\right)=0$. This is an easy task that we just sketch.

Let \mathcal{C}_{0} be a finite convex and connected subquiver of \mathcal{C} containing modules of all the τ-orbits in \mathcal{C} (this is possible because of 1.1). Since there are no cycles in \mathcal{C}_{0} we may explicitly define F in \mathcal{C}_{0} satisfying the above condition (see [14, 2.3] for indications how to proceed). Now assume we have defined finite connected convex subquivers $\mathcal{C}_{0}, \mathcal{C}_{1}^{+}, \ldots, \mathcal{C}_{n}^{+}$of \mathcal{C} satisfying $\mathcal{C}_{i-1}^{+} \cup \tau_{A} \mathcal{C}_{i-1}^{+} \subset \mathcal{C}_{i}^{+}$, for $i=1, \ldots, n ; F$ is defined in \mathcal{C}_{n}^{+}satisfying the mesh relations. Consider those y_{1}, \ldots, y_{s} in \mathcal{C} such that $y_{i} \notin \mathcal{C}_{n}^{+}$but $\tau_{A}^{-} y_{i} \in \mathcal{C}_{n}^{+}$; moreover, assume that $y_{i} \rightarrow y_{j}$ in \mathcal{C} implies $i<j$. For the mesh

all z_{1}, \ldots, z_{s} are in \mathcal{C}_{n}^{+}and $F\left(\beta_{i}\right)$ are defined. Take any Auslander-Reiten sequence $0 \rightarrow \tau_{A} F\left(\tau_{A}^{-} y_{1}\right) \xrightarrow{\left(f_{i}\right)_{i}} \bigoplus_{i=1}^{s} F\left(z_{i}\right) \rightarrow F\left(\tau_{A}^{-} y_{1}\right) \rightarrow 0$. Then we set $F\left(\alpha_{i}\right)=f_{i} \phi_{\tau_{A} F\left(\tau_{A}^{-} y_{1}\right)}^{-1}$. Inductively we define F in the quiver \mathcal{C}_{n+1}^{+}formed by \mathcal{C}_{n}^{+}and y_{1}, \ldots, y_{s}. In this way we define F in $\bigcup_{n \in \mathbb{N}} \mathcal{C}_{n}^{+}$, and dually in $\bigcup_{n \in \mathbb{N}} \mathcal{C}_{n}^{-}$, to get the desired functor $F: k(\mathcal{C}) \rightarrow[\mathcal{C}]$.

The proof that F is faithful is exactly as in [14]. We shall prove that F is full. We divide the proof in several steps.
(i) For $X, Y \in \mathcal{C}$, we have $\operatorname{rad}_{A}^{\infty}(X, Y)=0$.

Suppose that $h \in \operatorname{rad}_{A}^{\infty}(X, Y)$. Considering the source map $X=X_{0} \xrightarrow{s_{1}}$ E_{1}, there is a factorization $h=f_{1}^{\prime} s_{1}$. Hence there is an irreducible map $X_{0} \xrightarrow{\alpha_{1}} X_{1}$ and a non-zero map $f_{1} \in \operatorname{rad}_{A}^{\infty}\left(X_{1}, Y\right)$ with $f_{1} \alpha_{1} \neq 0$. Proceeding inductively we get a chain $X_{0} \xrightarrow{\alpha_{1}} X_{1} \xrightarrow{\alpha_{2}} X_{2} \rightarrow \ldots$ in \mathcal{C} and maps $0 \neq f_{i} \in \operatorname{rad}_{A}^{\infty}\left(X_{i}, Y\right)$ with $f_{i} \alpha_{i} \ldots \alpha_{1} \neq 0$. Then \mathcal{C} admits a $(-)$-section \mathcal{S} such that $X_{i} \in \mathcal{C}^{-}(\mathcal{S})$ for $i \geq N$ for some $N \in \mathbb{N}$.

Since $\operatorname{dim}_{k} Y<\infty$ we may assume that $\operatorname{Im} f_{i}=L$ for all $i \geq N$.
By 1.2, there is a hereditary algebra H and a tilting H-module T without postprojective direct summands such that $\mathcal{C}^{-}(\mathcal{S})$ is formed by postprojective B-modules, where $B=\operatorname{End}_{H}(T)$ is the corresponding tilted algebra. Since $\operatorname{Hom}_{B}\left(X_{i}, L\right) \neq 0$ for $i \geq N$, it follows that L is not postprojective as B-module. There is a regular B-module R such that f_{i} factorizes as $X_{i} \xrightarrow{f_{i}^{\prime}}$ $R \xrightarrow{f_{i}^{\prime \prime}} L$. Therefore $0 \neq f_{i}^{\prime \prime} f_{i}^{\prime} \alpha_{i} \ldots \alpha_{1}: X \rightarrow Y$ factorizes through R, which is not in \mathcal{C}. This contradicts the convexity of \mathcal{C}. Hence $\operatorname{rad}_{A}^{\infty}(X, Y)=0$.
(ii) Let $X, Y \in \mathcal{C}$ be such that $\operatorname{Hom}_{A}(X, Y) \neq 0$. We claim that there is a path $X=X_{0} \xrightarrow{\alpha_{1}} X_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{s}} X_{s}=Y$ in \mathcal{C}. Indeed, if $0 \neq h \in$ $\operatorname{rad}_{A}^{s}(X, Y)-\operatorname{rad}_{A}^{s+1}(X, Y)$, we may find a path of length s from X to Y in \mathcal{C}.
(iii) Let $0 \neq h \in \operatorname{Hom}_{A}(F(x), F(y))$ and let s be the maximal length of paths from x to y. By induction on s, we prove that $h=F(w)$ for some element $w \in k(\mathcal{C})(x, y)$.

If $s=0$, since \mathcal{C} is directing, $h=\lambda \mathbf{1}_{x}$ for some $\lambda \in k$ and $h=F\left(\lambda \mathbf{1}_{x}\right)$. If $s=1$, there are arrows $\alpha_{1}, \ldots, \alpha_{s}$ from x to y such that $F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{s}\right)$ are representatives of a basis of $\operatorname{rad}_{A}(F(x), F(y)) / \operatorname{rad}_{A}^{2}(F(x), F(y))$. Moreover, h is irreducible, since otherwise there is a path of length ≥ 2 from x to y. Hence $h=\sum_{i=1}^{s} \lambda_{i} F\left(\alpha_{i}\right)=F\left(\sum_{i=1}^{s} \lambda_{i} \alpha_{i}\right)$ for some $\lambda_{i} \in k$.

Assume $s>1$. Then h is not an isomorphism since X is directing. Consider the source map $F(x) \xrightarrow{\left(F\left(\alpha_{i}\right)\right)_{i}} \bigoplus_{i=1}^{s} F\left(y_{i}\right)$. There are maps $h_{i} \in$ $\operatorname{Hom}_{A}\left(F\left(y_{i}\right), F(y)\right)$ such that $h=\sum_{i=1}^{s} h_{i} F\left(\alpha_{i}\right)$. By induction hypothesis, $h_{i}=F\left(v_{i}\right)$ for some $v_{i} \in k(\mathcal{C})\left(y_{i}, y\right)$ and

$$
h=\sum_{i=1}^{s} F\left(v_{i}\right) \cdot F\left(\alpha_{i}\right)=F\left(\sum_{i=1}^{s} v_{i} \alpha_{i}\right)
$$

(b) Assume that $\operatorname{Hom}_{A}\left(\mathcal{C}^{-}, P_{j}\right)=0$ for all projectives P_{j}. Let $X=$ $Y_{0} \xrightarrow{f} Y_{1} \rightarrow \ldots \rightarrow Y_{s}=Y$ be a path in $\bmod _{A}$ between indecomposable modules with X and Y in \mathcal{C} and $Y_{1} \notin \mathcal{C}$. Hence $0 \neq f \in \operatorname{rad}_{A}^{\infty}\left(X, Y_{1}\right)$ and, as in part (i) of (a), we get a (-)-section \mathcal{S} in \mathcal{C}, a path $X_{0} \xrightarrow{\alpha_{1}}$ $X_{1} \xrightarrow{\alpha_{2}} X_{2} \rightarrow \ldots$ of irreducible maps in \mathcal{C} with $X_{i} \in \mathcal{C}^{-}(\mathcal{S})$ for $i \geq N$ and maps $0 \neq f_{i} \in \operatorname{rad}_{A}^{\infty}\left(X_{i}, Y_{1}\right)$ such that $0 \neq f_{i} \alpha_{i} \ldots \alpha_{1}$. Let $B=\operatorname{End}_{H}(T)$ be the tilted algebra such that $\mathcal{C}^{-}(\mathcal{S})$ is contained in the postprojective component of B, where T is a tilting H-module without postprojective direct summands. We shall show that for any Z which is a successor of \mathcal{S} in $\bmod _{B}$ and a map $0 \neq g: Z \rightarrow N$ between indecomposable A-modules we have $N \in \bmod _{B}$. In particular, this shows that X_{N} and Y_{1} belong to the postprojective component of B, which is a contradiction.

By $1.2, B$ is convex in A. Let D be the maximal convex subcategory of A containing B such that any successor of \mathcal{S} in $\bmod _{D}$ is a B-module. We shall show that $D=A$. Otherwise, there is a D-module M such that there is a convex subcategory E of A either of the form $D[M]$ or $[M] D$. In case $E=[M] D$ with $M=I_{y} /\left.\operatorname{soc} I_{y}\right|_{D}$, the maximality of D implies that there is a direct summand N of M which is a successor of \mathcal{S}; but then $\operatorname{Hom}_{D}(\mathcal{S}, N) \neq 0$ and $\mathcal{C}^{-}(\mathcal{S})$ should contain modules Z with $Z(y) \neq 0$, a contradiction. In case $E=D[M]$ with $M=\left.\operatorname{rad} P_{x}\right|_{D}$, the maximality of D implies that there is a summand N of M which is a successor of \mathcal{S} and then $\operatorname{Hom}_{A}\left(\mathcal{S}, P_{x}\right) \neq 0$, contradicting the hypothesis. Hence $D=A$ and we are done.
1.4. Of course, we say that a component is sincere when there are modules X_{1}, \ldots, X_{s} in \mathcal{C} such that $\bigoplus_{i=1}^{s} X_{i}$ is sincere.

Corollary 1. Let \mathcal{C} be a sincere directing component of Γ_{A}. Then \mathcal{C} is convex if and only if $\operatorname{Hom}_{A}\left(\mathcal{C}^{-}, P_{j}\right)=0$ for every projective P_{j}.

Proof. Assume that \mathcal{C} is convex and $\operatorname{Hom}_{A}\left(X, P_{j}\right) \neq 0$ for some $X \in$ \mathcal{C}^{-}. Since $P_{j} \notin \mathcal{C}^{-}$, we have $\operatorname{rad}_{A}^{\infty}\left(X, P_{j}\right) \neq 0$. If $P_{j} \in \mathcal{C}$, then \mathcal{C} is not standard, contradicting part (i) of Proposition 1.3. Then $P_{j} \notin \mathcal{C}$. But \mathcal{C} being sincere implies the existence of $Y \in \mathcal{C}$ with $\operatorname{Hom}_{A}\left(P_{j}, Y\right) \neq 0$ and hence \mathcal{C} is not convex.

Corollary 2. Let \mathcal{C} be a directing and convex component of Γ_{A}. Then:
(a) The number of τ-orbits of \mathcal{C} is at most n ($=$ number of vertices of Q_{0}).
(b) The number of τ-orbits of \mathcal{C} is exactly n if and only if \mathcal{C} is sincere.

Proof. (a) Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{s}$ be a set of (+)-sections such that $\mathcal{C}^{+}=$ $\bigcup_{i=1}^{s} \mathcal{C}^{+}\left(\mathcal{S}_{i}\right)$. Let $t\left(\mathcal{S}_{i}\right)$ be the set of τ-orbits of $\mathcal{S}_{i}, i=1, \ldots, s$. We may assume that $t\left(\mathcal{S}_{i}\right) \cap t\left(\mathcal{S}_{j}\right)=\emptyset$ for $i \neq j$. For $i \in\{1, \ldots, s\}$, 1.2 yields a tilted algebra B_{i} such that \mathcal{S}_{i} is a slice in $\Gamma_{B_{i}}$. Since \mathcal{C} is convex, the proof of Proposition 1.3(b) shows that any indecomposable A-module which is a predecessor of \mathcal{S}_{i} is indeed a B_{i}-module. Moreover, B_{i} and B_{j} have no common vertices for $i \neq j$. To prove the claim, it is enough to show that there are no projective B_{i}-modules P in \mathcal{C}. Otherwise, $\operatorname{Hom}_{A}(P, X) \neq 0$ for some indecomposable B_{i}-module $X \in \mathcal{C}^{+}\left(\mathcal{S}_{i}\right)$. Since by $1.3, \mathcal{C}$ is standard, there is a path in \mathcal{C} from P to X and $P \in \mathcal{C}^{+}\left(\mathcal{S}_{i}\right)$, which is a contradiction.
(b) By the construction above, if there are $n \tau$-orbits of \mathcal{C}, then for each indecomposable projective P_{j}, either $P_{j} \in \mathcal{C}$ or $\operatorname{Hom}_{A}\left(P_{j}, \mathcal{C}^{+}(\mathcal{S})\right) \neq 0$ for some $(+)$-section \mathcal{S} of \mathcal{C}. Hence \mathcal{C} is sincere. Conversely, assume $\operatorname{Hom}_{A}(P, \mathcal{C})$ $\neq 0$ for an indecomposable projective A-module $P \notin \mathcal{C}$. Then, clearly, $\operatorname{Hom}_{A}\left(P, \mathcal{C}^{+}(\mathcal{S})\right) \neq 0$ for some $(+)$-section \mathcal{S} of \mathcal{C}. Hence the result follows.

Corollary 3. The quiver Γ_{A} has at most two sincere directing convex components. If it has two, then A is a concealed algebra (and the two sincere directing convex components are the postprojective and the preinjective components).

Proof. Let \mathcal{C} be a sincere directing convex component. By $1.3, \mathcal{C}$ is generalized standard (in the sense of [17]), that is, $\operatorname{rad}_{A}^{\infty}(X, Y)=0$ for $X, Y \in \mathcal{C}$. Moreover, \mathcal{C} is faithful (since there are modules X_{1}, \ldots, X_{n} in \mathcal{C} admitting a monomorphism $\left.0 \rightarrow{ }_{A} A \rightarrow \bigoplus_{i=1}^{n} X_{i}\right)$. Hence Theorem 4 of [17] applies.
1.5. We shall deal with the directing convex components of Γ_{A}. We give the following characterization of these components.

The componental quiver $Q\left(\Gamma_{A}\right)$ has as vertices the components of Γ_{A} and there is an arrow $\mathcal{C} \rightarrow \mathcal{D}$ if there are modules $X \in \mathcal{C}$ and $Y \in \mathcal{D}$ such that $\operatorname{rad}_{A}^{\infty}(X, Y) \neq 0$ (see [6] and [16]).

Proposition. Let \mathcal{C} be a directing component of Γ_{A}. Then \mathcal{C} is convex if and only if \mathcal{C} is not in a cycle in the componental quiver $Q\left(\Gamma_{A}\right)$.

Proof. Assume that \mathcal{C} is directing and convex. If $\mathcal{C}=\mathcal{C}_{0} \rightarrow \mathcal{C}_{1} \rightarrow \mathcal{C}_{2} \rightarrow$ $\ldots \rightarrow \mathcal{C}_{s}=\mathcal{C}$ is a cycle in $Q\left(\Gamma_{A}\right)$, there are modules $X_{0} \in \mathcal{C}, X_{i} \in \mathcal{C}_{i}$ and $\operatorname{rad}_{A}^{\infty}\left(X_{i-1}, X_{i}\right) \neq 0, i=1, \ldots, s$. If $s=1$, this contradicts the fact that \mathcal{C} is standard (cf. 1.3). If $s>1$, this contradicts the convexity of \mathcal{C}.

Assume that \mathcal{C} is not in a cycle in $Q\left(\Gamma_{A}\right)$. Suppose that \mathcal{C} is directing and not convex. Let $X=X_{0} \xrightarrow{f} X_{1} \rightarrow \ldots \rightarrow X_{s}=Y$ be a path of non-zero maps in $\bmod _{A}$ between indecomposable modules with $X, Y \in \mathcal{C}$ and $X_{1} \notin \mathcal{C}$. As in part (i) of $1.3(\mathrm{a})$ we may construct a module L not in \mathcal{C} with $\operatorname{rad}_{A}^{\infty}(X, L) \neq 0$ and $\operatorname{Hom}_{A}\left(L, X_{1}\right) \neq 0$. This yields the desired cycle in $Q\left(\Gamma_{A}\right)$.

2. Some remarks about tilted algebras

2.1. We recall from [14] that a slice \mathcal{S} in a component \mathcal{C} of Γ_{A} is a section in \mathcal{C} (that is, satisfies conditions (i) to (iii) in 1.1) which is sincere and path closed in $\bmod _{A}$. The latter condition is obviously difficult to check. An algebra is tilted if and only if it admits a slice [14].

We rephrase here the following characterization of tilted algebras essentially proved in [11] and [17] (independently).

Theorem. Let A be an algebra. The following are equivalent:
(a) A is a tilted algebra.
(b) Γ_{A} admits a sincere directing convex component \mathcal{C} containing a section which intersects each τ-orbit of \mathcal{C}.
(c) Γ_{A} admits a directing convex component \mathcal{C} containing a sincere section.
(d) Γ_{A} admits a component \mathcal{C} having a faithful section \mathcal{S} such that $\operatorname{Hom}_{A}\left(X, \tau_{A} Y\right)=0$ for all modules X and Y in \mathcal{S}.
2.2. Let B be a tilted algebra of the form $\operatorname{End}_{H}(T)$, where T is a tilting module over the hereditary algebra H. Moreover, B is concealed if T is a direct sum of postprojective H-modules. A representation-infinite algebra B is concealed if and only if it has two components \mathcal{P} and \mathcal{I} of Γ_{B} admitting slices; in that case \mathcal{P} is postprojective and \mathcal{I} preinjective. Since postprojective (and, dually, preinjective) components of Γ_{B} are easy to identify and construct (see [4] and [9]), it follows that concealed algebras are easy to identify.

Theorem [20] (see also [10]). Let B be an algebra. The following are equivalent:
(a) B is tilted of the form $\operatorname{End}_{H}(T)$, where T is a tilting H-module without preinjective direct summands.
(b) B admits a convex subcategory C such that C is a concealed algebra and the postprojective component of Γ_{C} is also postprojective in Γ_{B}. Moreover, Γ_{B} has a connecting component without projective modules.

3. Construction of directing components

3.1. The main feature which will allow the inductive construction of algebras with directing components is the following.

Recall that A is a one-point extension of B by the B-module M if we may write $A=B[M]:=\left[\begin{array}{cc}B & M \\ O & k\end{array}\right]$ with the usual addition and multiplication of matrices. In this case $M=\operatorname{rad} P_{a}$ for some source a of Q.

Proposition. Let $A=B[M]$ with $M=\operatorname{rad} P_{a}$ and assume that P_{a} belongs to a sincere directing and convex component \mathcal{C} of Γ_{A}. Consider the decomposition of $B=B_{1} \amalg \ldots \amalg B_{s}$ into irreducible factor algebras and the corresponding decomposition $M=M_{1} \oplus \ldots \oplus M_{s}$ with $\operatorname{supp} M_{i} \subset B_{i}$. Then:
(a) there is a directing convex component \mathcal{C}_{i} of $\Gamma_{B_{i}}$ where all direct summands of M_{i} lie, $i=1, \ldots, s$;
(b) each \mathcal{C}_{i} is sincere in $\bmod _{B_{i}}, i=1, \ldots, s$.

Proof. (a) Let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{t}$ be all the components of $\Gamma_{B_{1}}$ intersecting \mathcal{C}. We shall show that all \mathcal{D}_{i} are directing convex components of $\Gamma_{B_{1}}$ and $t=1$.
(1) First observe that each component \mathcal{D}_{i} contains a direct summand of M.

Indeed, let $X \in \mathcal{D}_{i} \cap \mathcal{C}$ and a chain of irreducible maps $X=X_{0} \underline{\alpha_{i}}$ $X_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{s}} X_{s}=M^{\prime}$ in \mathcal{C}, where α_{i} has some orientation and M^{\prime} is an indecomposable direct summand of M. Assume $\operatorname{Hom}_{A}\left(P_{a}, X_{i}\right)=0$ for $i=0, \ldots, j$ and $\operatorname{Hom}_{A}\left(P_{a}, X_{j+1}\right) \neq 0$. Then we get a chain $X=X_{0} \underline{\alpha_{1}}$ $X_{1} \underline{\alpha_{2}} \ldots \stackrel{\alpha_{j}}{ } X_{j}$ of irreducible maps in $\Gamma_{B_{1}}$; moreover, there is a direct summand Y of the restriction of X_{j+1} to B_{1} such that $\operatorname{Hom}_{A}\left(X_{j}, Y\right) \neq 0$ or $\operatorname{Hom}_{A}\left(Y, X_{j}\right) \neq 0$ and $\operatorname{Hom}_{A}\left(M^{\prime \prime}, Y\right) \neq 0$ for some direct summand $M^{\prime \prime}$ of M. Hence, $M^{\prime \prime}$ is a B_{1}-module. Moreover, $M^{\prime \prime}$ lies in \mathcal{D}_{i}, since $\operatorname{rad}_{B_{1}}^{\infty}\left(M^{\prime \prime}, Y\right) \subset \operatorname{rad}_{A}^{\infty}\left(M^{\prime \prime}, X_{j+1}\right)=0$, by 1.3.
(2) Let $X \in \mathcal{D}_{1}$. We will show that for some $m_{0} \geq 0$, and every $m \geq m_{0}$, either $\tau_{B_{1}}^{m} X$ is projective or $\tau_{B_{1}}^{m} X \in \mathcal{C}^{+}$. For this purpose, let $X=\bar{Y}_{0} \underline{\beta_{1}}$ $Y_{1} \underline{\beta_{2}} \ldots \underline{\beta_{s}} Y_{s}=M^{\prime}$ be a chain of irreducible maps in \mathcal{D}_{1}, where M^{\prime} is an indecomposable direct summand of M (see (1)). We proceed by induction on s.

If $s=0$, then $X=M^{\prime}$ and all $\tau_{A}^{i} X(i \geq 0)$, if defined, belong to $\bmod _{B_{1}}$ (otherwise there would be a cycle through P_{a} in $\bmod _{A}$). Hence $\tau_{B_{1}}^{i} X=\tau_{A}^{i} X$ for all $i \geq 0$ where the last module is well defined. Thus the claim follows in this case. Assume that $s>0$ and that the claim holds for all $Y_{i}, 1 \leq i$ $\leq s$.

If $\tau_{B_{1}}^{m} Y_{1} \in \mathcal{C}^{+}$, then either one of $\tau_{B_{1}}^{j} X$ is projective for some $0 \leq j \leq m$, or $\tau_{B_{1}}^{m+1} X \in \mathcal{C}^{+}$. Otherwise, $\tau_{B_{1}}^{m} Y_{1}=P_{b}$ is projective for some m and we may assume that $Z=\tau_{B_{1}}^{m} X \rightarrow \tau_{B_{1}}^{m} Y_{1}=P_{b}$ is well defined. Since \mathcal{C} is sincere and $P_{b} \in \mathcal{D}_{1}$ we have $P_{b} \in \mathcal{C}$ (otherwise $0 \neq \operatorname{rad}_{A}^{\infty}\left(P_{b}, \mathcal{C}^{+}\right)=\operatorname{rad}_{B_{1}}^{\infty}\left(P_{b}, \mathcal{C}^{+}\right)$). Thus $Z \in \mathcal{C}$. We show that either $\tau_{B_{1}}^{i} Z$ is projective or $\tau_{B_{1}}^{i} Z \in \mathcal{C}$ for $i \geq 0$, hence proving our claim. Indeed, assume $\tau_{B_{1}}^{i} Z$ is non-projective in \mathcal{C} but $\tau_{B_{1}}^{i+1} Z \notin \mathcal{C}$. This means that there is some direct summand $M^{\prime \prime}$ of M with $\operatorname{Hom}_{B_{1}}\left(M^{\prime \prime}, \tau_{B_{1}}^{i+1} Z\right) \neq 0$. By convexity of \mathcal{C}, we should have $\tau_{B_{1}}^{i+1} Z \in \mathcal{C}$, a contradiction.
(3) We claim that \mathcal{D}_{1} (and also $\mathcal{D}_{2}, \ldots, \mathcal{D}_{t}$) is a directing convex component of $\Gamma_{B_{1}}$. Indeed, by (2), \mathcal{D}_{1} has only finitely many $\tau_{B_{1}}$-orbits. Moreover, we may assume that $\mathcal{D}_{1}^{+} \subset \mathcal{C}^{+}$.

Assume there is a cycle $X=X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{s}} X_{s}=X$ of morphisms between indecomposable B_{1}-modules and $X \in \mathcal{D}_{1}$. If no $f_{i} \in$ $\operatorname{rad}_{B_{1}}^{\infty}\left(X_{i-1}, X_{i}\right), i=1, \ldots, s$, then we may assume that the cycle is formed by irreducible maps.

Applying $\tau_{B_{1}}$ repeatedly, by (2), either we find a cycle through a projective $P_{b} \in \mathcal{C}$ or through some module in \mathcal{C}^{+}; in any case, a contradiction. Otherwise, we have $f_{j} \in \operatorname{rad}_{B_{1}}^{\infty}\left(X_{j-1}, X_{j}\right)$, which yields morphisms $0 \neq g \in \operatorname{rad}_{B_{1}}^{\infty}\left(X_{j-1}, Y\right)$ and $0 \neq h \in \operatorname{Hom}_{B_{1}}\left(Y, X_{j}\right)$ with $Y \in \mathcal{D}_{1}^{+} \subset \mathcal{C}^{+}$, also a contradiction.

The convexity of \mathcal{D}_{1} is shown in a similar way.
(4) Finally, we show that $t=1$. Indeed, assume $t>1$ and let $M^{\prime} \in \mathcal{D}_{1}$ and $M^{\prime \prime} \in \mathcal{D}_{2}$ be two indecomposable direct summands of M. Since B_{1} is connected, there are vertices b_{1}, \ldots, b_{m} different from a in B_{1} such that $\operatorname{Hom}_{B_{1}}\left(P_{b_{1}}, M^{\prime}\right) \neq 0, \operatorname{Hom}_{B_{1}}\left(P_{b_{m}}, M^{\prime \prime}\right) \neq 0$ and there is a chain of non-zero maps $P_{b_{1}} \xrightarrow{f_{1}} P_{b_{2}} \xrightarrow[f_{2}]{ } P_{b_{3}} \underline{f_{3}} \ldots \stackrel{f_{m-1}}{\underline{b_{b_{m}}}}$ (maps in some direction). If $P_{b_{1}} \notin$ \mathcal{C}, then $\operatorname{Hom}_{B_{1}}\left(P_{b_{1}}, \mathcal{D}_{1}^{+}\right) \neq 0$ and $b_{1} \in \operatorname{supp} \mathcal{D}_{1}$. Similarly, if $P_{b_{m}} \notin \mathcal{C}$, then $b_{m} \in \operatorname{supp} \mathcal{D}_{2}$ and $\operatorname{supp} \mathcal{D}_{1} \cap \operatorname{supp} \mathcal{D}_{2}=\emptyset$ by 1.3. Therefore, there is some $1 \leq j \leq m$ such that $b_{j-1} \in \operatorname{supp} \mathcal{D}_{1}, P_{b_{j}} \in \mathcal{C}$ and $b_{j+1} \in \operatorname{supp} \mathcal{D}_{2}$. Then we can find $Y_{1} \in \mathcal{D}_{1}$ and $Y_{2} \in \mathcal{D}_{2}$ with non-zero maps $Y_{1} \underline{g_{1}} P_{b_{j}} \underline{g_{2}} \quad Y_{2}$ (for example, if $\operatorname{Hom}_{B_{1}}\left(P_{b_{j-1}}, \mathcal{D}_{1}^{+}\right) \neq 0$ and $P_{b_{j_{1}}} \xrightarrow{f_{j}} P_{b_{j}}$, then f_{j} factorizes through \mathcal{D}_{1}^{+}). Using standardness of \mathcal{C} (cf. 1.3), it follows that $\mathcal{D}_{1}=\mathcal{D}_{2}$.
(b) follows immediately by counting orbits and by Corollary 3 in 1.4.

Remarks. (1) We can view 3.1 as a generalization of the corresponding representation-finite situation shown in [14, (6.5)].
(2) Sincerity in 3.1 is needed, as the following example shows. Let $A=$ $k Q / I$, where Q is as follows:

and $I=(\beta \alpha, \delta \beta, \delta \gamma)$. In this case $A=B[M]$ for $M=\operatorname{rad} P_{a}$ and B decomposes as four representation-finite algebras, one of which is not directing.
3.2. We need to recall some concepts. Following [8], we say that an A-module M with indecomposable decomposition $\bigoplus_{i=1}^{m} M_{i}$ is directing if there is no pair (i, j) and a non-projective module Y such that M_{i} is a predecessor of $\tau_{A} Y$ and Y a predecessor of M_{j} in $\bmod _{A}$.

We recall that if a is a source in $Q, M=\operatorname{rad} P_{a}$ and $A=B[M]$, then P_{a} is directing in $\bmod _{A}$ if and only if M is directing in $\bmod _{B}(c f .[8])$.

Let $A=B[M]$ be as above, and let $h: X \rightarrow Y$ be an irreducible map in $\bmod _{B}$. Following [4], we say that h is M-finite if $h \notin \operatorname{rad}_{A}^{\infty}(X, Y)$. An indecomposable B-module Y is M-finite if there is a walk $M^{\prime}=Y_{0} \xrightarrow{\alpha_{1}} Y_{1} \underline{\alpha_{2}}$ $\ldots \frac{\alpha_{s}}{} Y_{s}=Y$ in Γ_{B}, where M^{\prime} is an indecomposable direct summand of M and where each α_{i} is M-finite, $1 \leq i \leq s$.

Assume that the direct summands of M lie in directing convex components $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ of Γ_{B}. Then we may consider the vector space category $\operatorname{Hom}_{B}\left(M, \mathcal{C}^{\prime}\right)$, where $\mathcal{C}^{\prime}=\bigcup_{i=1}^{s} \mathcal{C}_{i}$; see [13, 14]. Define $|Y|=\operatorname{Hom}_{B}(M, Y)$ for $Y \in \mathcal{C}^{\prime}$. Then the full subcategory of $\operatorname{Hom}_{B}\left(M, \mathcal{C}^{\prime}\right)$ whose objects are those $Y \in \mathcal{C}^{\prime}$ with $|Y| \neq 0$, forms a poset \mathcal{C}_{M}^{\prime}. Indeed, $|X| \leq|Y|$ in \mathcal{C}_{M}^{\prime} implies that $X \leq Y$ in the path order of \mathcal{C}^{\prime}.

Lemma. Let $h: X \rightarrow Y$ be an irreducible map in \mathcal{C}^{\prime}. Then h is M infinite if and only if the following two conditions hold:
(i) there are infinitely many pairwise non-isomorphic indecomposable A-modules of the form $\left(V, L, \gamma: V \rightarrow \operatorname{Hom}_{B}(M, L)\right)$, where $V \in \bmod _{k}$ and L lies in a B-module with X as a direct summand and γ is linear;
(ii) there is a morphism $0 \neq g \in \operatorname{Hom}_{B}(M, X)$ with $h g=0$.

The proof is the same as the one given in [4, (2.2)] for the case where $\mathcal{C}^{\prime}=\mathcal{P}$ is a postprojective component.
3.3. We now prove the basic result on the "formation" of directing components by means of one-point extensions. Compare with [4, (2.3)] and [19, (2.8)].

Theorem. Let $A=B[M]$ be a one-point extension with $M=\operatorname{rad} P_{a}$. Assume $B=B_{1} \amalg \ldots \amalg B_{s}$ is a decomposition with irreducible factors and let $M=M_{1} \oplus \ldots \oplus M_{s}$ be the corresponding decomposition of M as in 3.1. Assume that for each $i=1, \ldots, s$, there is a directing convex and sincere component \mathcal{C}_{i} of $\Gamma_{B_{i}}$ such that every indecomposable direct summand of M_{i} lies in \mathcal{C}_{i}. Then P_{a} belongs to a sincere directing convex component of Γ_{A} if and only if the following conditions hold:
(i) M is directing as a B-module;
(ii) each indecomposable projective B_{i}-module $P_{y} \in \mathcal{C}_{i}$ is M-finite. Moreover, the set of predecessors of P_{y} in Γ_{A} which are not B-modules is finite and formed by directing modules.

Proof. Assume first that \mathcal{C} is a directing convex and sincere component of Γ_{A} containing P_{a}. Therefore M is directing in $\bmod _{B}\left(\right.$ cf. 3.2). Let $P_{y} \in \mathcal{C}_{i}$. Since \mathcal{C} is sincere, either $\operatorname{Hom}_{A}\left(P_{y}, \mathcal{C}^{+}\right) \neq 0$ or $P_{y} \in \mathcal{C}$. By the proof of 3.1(a), the first possibility implies $\operatorname{Hom}_{A}\left(P_{y}, \mathcal{C}_{i}^{+}\right) \neq 0$ and $P_{y} \notin \mathcal{C}_{i}$. Hence $P_{y} \in \mathcal{C}$. Therefore there is a walk $M^{\prime}=X_{0} \underline{\alpha_{1}} X_{1} \underline{\alpha_{2}} X_{2} \underline{\alpha_{3}} \ldots \underline{\alpha_{s}} X_{s}=P_{y}$ in Γ_{A}. We may assume that $\operatorname{Hom}_{A}\left(P_{a}, X_{j}\right) \neq 0$ and $\operatorname{Hom}_{A}\left(P_{a}, X_{i}\right)=0$ for $j+1 \leq$ $i \leq s$. Then there is an indecomposable direct summand Y of the restriction of X_{j} to B_{i} and a map $Y \underline{g} X_{j+1}$ in $\bmod _{B_{i}}$, and $\operatorname{Hom}_{B_{i}}\left(M^{\prime \prime}, Y\right) \neq 0$ for some indecomposable direct summand $M^{\prime \prime}$ of M. We get a chain of non-zero maps $M^{\prime \prime} \underline{f} Y \underline{g} X_{j+1} \stackrel{\alpha_{j+2}}{\underline{\alpha_{s}}} X_{s}=P_{y}$ in $\bmod _{B_{i}}$. Since $\operatorname{rad}_{B_{i}}^{\infty}\left(M^{\prime \prime}, Y\right) \subset \operatorname{rad}_{A}^{\infty}\left(M, X_{j}\right)=0$ by 1.3 , all these modules belong to \mathcal{C}_{i}. Again by 1.3 , this yields a walk of M-finite maps between $M^{\prime \prime}$ and P_{y}. Hence P_{y} is M-finite.

Finally, let X be a predecessor of P_{y} in Γ_{A} which is not a B-module. Therefore, $\operatorname{Hom}_{A}\left(P_{a}, X\right) \neq 0$ and by convexity of \mathcal{C}, we get $X \in \mathcal{C}$. Obviously, there are only finitely many such modules, all of them directing.

For the converse, assume that (i) and (ii) are satisfied. We proceed to prove the result in several steps.
(1) We construct the component \mathcal{C} of Γ_{A} where P_{a} lies and show that \mathcal{C} has no oriented cycles. Indeed, we will define inductively full convex subquivers \mathcal{C}_{n} of Γ_{A} satisfying:
(a) \mathcal{C}_{n} is connected, contains no oriented cycle and is closed under predecessors, and
(b) $\tau_{A}^{-1} \mathcal{C}_{n} \cup \mathcal{C}_{n} \subset \mathcal{C}_{n+1}$.

Moreover, $P_{a} \in \mathcal{C}_{0}$ and hence $\mathcal{C}=\bigcup_{n \in \mathbb{N}} \mathcal{C}_{n}$ has no oriented cycles (indeed, taking a finite walk $P_{a}-\ldots-Y-X$ in \mathcal{C}, we may assume $Y \in \mathcal{C}_{n}$ and $Y \rightarrow X$. If X is not projective, $X \in \tau_{A}^{-1} \mathcal{C}_{n} \subset \mathcal{C}_{n+1}$. If X is projective, then Y is not injective, $\tau_{A}^{-1} Y \in \mathcal{C}_{n+1}$ and $\left.X \in \mathcal{C}_{n+1}\right)$.

Define \mathcal{C}_{i}^{\prime} to be the maximal full convex connected subquiver of \mathcal{C}_{i} formed by all the predecessors of direct summands of M_{i} and modules which are noncomparable (in the path order of \mathcal{C}_{i}) with any direct summand of M_{i}. We form \mathcal{C}_{0} by attaching to the \mathcal{C}_{i} the irreducible maps from direct summands of M to P_{a}.

Before continuing the construction, let us check that indeed \mathcal{C}_{0} is a full subquiver of Γ_{A}. It is enough to show that $\operatorname{Hom}_{B_{i}}\left(M_{i}, \tau_{B_{i}} Y\right)=0$ for every $Y \in \mathcal{C}_{i}^{\prime}$. But otherwise, we would get two paths $M^{\prime} \rightarrow \ldots \rightarrow \tau_{B_{i}} Y$ and $Y \rightarrow \ldots \rightarrow M^{\prime \prime}$ in \mathcal{C}_{i}^{\prime}, with M^{\prime} and $M^{\prime \prime}$ direct summands of M, therefore contradicting assumption (i). Clearly, \mathcal{C}_{0} satisfies (a).

Assume \mathcal{C}_{n} is defined and let X_{1}, \ldots, X_{t} be those modules in \mathcal{C}_{n} with $\tau_{A}^{-1} X_{i} \notin \mathcal{C}_{n}$, numbered in such a way that $i<j$ whenever X_{i} precedes X_{j} in \mathcal{C}_{n}. Define $D_{0}=\mathcal{C}_{n}$, and D_{i+1} as the full subquiver of Γ_{A} consisting of D_{i} and the predecessors of $\tau_{A}^{-1} X_{i+1}$ in Γ_{A}, and $\mathcal{C}_{n+1}:=D_{t}$. It is enough to show inductively that D_{i} satisfies condition (a) above. Assume that D_{i} satisfies (a) and consider the almost split sequence $0 \rightarrow X_{i+1} \rightarrow X \rightarrow \tau_{A}^{-1} X_{i+1} \rightarrow 0$. We shall prove that each indecomposable direct summand Y of X has only finitely many predecessors in Γ_{A} which are not B-modules and there are no cycles in Γ_{A} passing through them.

Indeed, if Y is not projective, then Y belongs to D_{i} and we are done. Assume that Y is projective. By the arguments above we may assume that $Y=P_{b}$ with $b \neq a$. Since all the components \mathcal{C}_{i} are sincere, there is some j such that $P_{b} \in \mathcal{C}_{j}$. By (ii), P_{b} is M-finite and the set of predecessors in Γ_{A} which are not B-modules is finite and formed by directing modules. This concludes the construction of \mathcal{C}.
(2) We show that \mathcal{C} is directing convex and sincere. By (1), it is enough to show that \mathcal{C} is convex and sincere.

Let $X=X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{s}} X_{s}=Y$ be a sequence of non-zero maps in $\bmod _{A}$ between indecomposable modules with $X, Y \in \mathcal{C}$. We may assume that X_{1}, \ldots, X_{s-1} are not in \mathcal{C}. By construction of \mathcal{C}, there are only finitely many τ_{A}-orbits, hence there are non-zero maps $X_{s-1} \rightarrow Y^{\prime} \rightarrow Y$ with $Y^{\prime} \in \mathcal{C}^{+}$and we may assume $Y^{\prime} \in \mathcal{C}_{i}^{+}$. Without loss of generality we may also assume that $X \in \bmod _{B}\left(\right.$ otherwise $\operatorname{Hom}_{A}\left(M, X_{0}\right) \neq 0$, since $X_{0} \neq S_{a}$, and we may start the chain of maps with $M^{\prime} \xrightarrow{f_{0}} X_{0}$, where $M^{\prime} \in \mathcal{C}_{j}$). If all X_{i} are B-modules, then we get $X \in \mathcal{C}_{i}$ and by convexity $X_{j} \in \mathcal{C}_{i}$ for $0 \leq j \leq s$, and then we may assume that all f_{j} are irreducible. By induction we show that all $X_{j} \in \mathcal{C}(0 \leq j \leq s)$. Assume $X_{j} \in \mathcal{C}_{n}$
for $t \leq j \leq s$. Since \mathcal{C}_{n} is closed under predecessors in Γ_{A}, if $X_{j-1} \notin \mathcal{C}$, then $0 \neq \operatorname{rad}_{A}^{\infty}\left(X_{j-1}, \mathcal{C}^{+}\right)=\operatorname{rad}_{B_{i}}^{\infty}\left(X_{j-1}, \mathcal{C}_{i}^{+}\right)$, a contradiction. Hence also $X_{j-1} \in \mathcal{C}$. In the other case, there is some X_{i} not a B-module. We may choose the last j such that $\operatorname{Hom}_{A}\left(P_{a}, X_{j}\right) \neq 0$. Since also $X_{j} \neq S_{a}$, we have $\operatorname{Hom}_{B}\left(M^{\prime \prime}, Y\right) \neq 0$ and $\operatorname{Hom}_{B}\left(Y, X_{j+1}\right) \neq 0$ for some indecomposable direct summand Y of X_{j} and $M^{\prime \prime}$ of M. Then our path may be substituted by $M^{\prime \prime} \rightarrow Y \rightarrow X_{j+1} \rightarrow \ldots \rightarrow X_{s}=Y$ and we are as in the first situation. This shows that \mathcal{C} is convex.

To see that \mathcal{C} is sincere we shall prove that $P_{a} \in \mathcal{C}$ (by definition) and for all $P_{b} \in \mathcal{C}_{i}$, also $P_{b} \in \mathcal{C}$. But this follows from (ii). The proof is complete.
3.4. Clearly, 3.1 and 3.3 may be put together to provide the following method of construction of algebras with sincere directing convex components (and the components themselves).

Theorem. Let $A=k Q / I$ be a k-algebra such that Q is connected. Then the following are equivalent:
(a) Γ_{A} admits a sincere directing convex component.
(b) There is a sequence $A_{0}, A_{1}, \ldots, A_{s}=A$ of convex subcategories of A satisfying the following conditions:
(1) A_{0} is either the trivial algebra k or a tilted algebra with a connecting component without projective or injective modules;
(2i) each algebra A_{i} decomposes in a sum of irreducible factors $B_{1}^{i} \amalg$ $\ldots \amalg B_{s(i)}^{i}$ and each $\Gamma_{B_{j}^{i}}$ admits a sincere directing convex component $\mathcal{C}_{j}^{i}, j=1, \ldots, s(i)$.
For each $i=0, \ldots, s-1$, the condition (3i) or its dual (3i)* holds:
(3i) $A_{i+1}=A_{i}\left[M_{i}\right]$ is a one-point extension with $M_{i}=\operatorname{rad} P_{i}$, where M_{i} decomposes as $M_{1}^{i} \oplus \ldots \oplus M_{s(i)}^{i}$ with $M_{j}^{i} \in \bmod _{B_{j}}^{i}, j=$ $1, \ldots, s(i)$, and

- M_{i} is a directing A_{i}-module;
- each indecomposable projective B_{j}^{i}-module $P_{j} \in \mathcal{C}_{j}^{i}$ is $M_{i^{-}}$ finite. Moreover, the set of predecessors of P_{j} in $\bmod _{A_{i+1}}$ which are not B_{j}^{i}-modules is finite and formed by directing modules.
3.5. Finally, we prove that the fact that an indecomposable A-module X belongs to a directing convex component of \mathcal{C} can be read from the values of a finite set of (easily constructible) linear functionals (compare with [9] and [12]).

Let \mathcal{C} be a sincere directing convex component of Γ_{A}.
Let $\mathcal{S}_{1}^{+}, \ldots, \mathcal{S}_{t}^{+}$be a set of $(+)$-sections intersecting exactly once all the τ-stable orbits of \mathcal{C}. Let $\mathcal{S}_{1}^{-}, \ldots, \mathcal{S}_{m}^{-}$be the corresponding set of $(-)$-sections.

Let P be the direct sum of all projectives in \mathcal{C} and I be the direct sum of all injectives in \mathcal{C}.

Consider $i=1, \ldots, t$. Let B_{i}^{+}be the support algebra of $\mathcal{C}^{+}\left(\mathcal{S}_{i}^{+}\right)$. By 1.2 , there are functionals $f_{i}^{+}, g_{i}^{+}: K_{0}(A) \rightarrow \mathbb{R}$ such that an indecomposable B_{i}^{+}-module X lies in $\mathcal{C}^{+}\left(\mathcal{S}_{i}^{+}\right)$if and only if $f_{i}^{+}(\operatorname{dim} X)>0$ and $g_{i}^{+}(\operatorname{dim} X)>0$. Moreover, $g_{i}^{+}(z)=\sum_{Y \in \mathcal{S}_{i}^{+}}\langle z, \operatorname{dim} Y\rangle$. Dually, for $j=1, \ldots, m$ consider the support algebra B_{j}^{-}of $\mathcal{C}^{-}\left(\mathcal{S}_{j}^{-}\right)$and functionals $f_{j}^{-}, g_{j}^{-}: K_{0}(A) \rightarrow \mathbb{R}$ such that an indecomposable B_{j}^{-}-module Y lies in $\mathcal{C}^{-}\left(\mathcal{S}_{j}^{-}\right)$if and only if $f_{j}^{-}(\operatorname{dim} Y)>0$ and $g_{j}^{-}(\operatorname{dim} Y)>0$. Moreover, $g_{j}^{-}(z)=\sum_{X \in \mathcal{S}_{j}^{-}}\langle\operatorname{dim} X, z\rangle$.

We need also the functionals $p=\langle\operatorname{dim} P,-\rangle$ and $q=\langle-, \operatorname{dim} I\rangle$.
Theorem. An indecomposable A-module X lies in \mathcal{C} if and only if one of the following conditions holds:
(a) $p(\operatorname{dim} X)=0$ and for some $i=1, \ldots, t, f_{i}^{+}(\operatorname{dim} X)>0$ and $g_{i}^{+}(\operatorname{dim} X)>0$;
(b) $q(\operatorname{dim} X)=0$ and for some $j=1, \ldots, m, f_{j}^{-}(\operatorname{dim} X)>0$ and $g_{j}^{-}(\operatorname{dim} X)>0 ;$
(c) $p(\operatorname{dim} X)>0$ and for some $j=1, \ldots, m, g_{j}^{-}(\operatorname{dim} X)<0$;
(d) $q(\operatorname{dim} X)>0$ and for some $i=1, \ldots, t, g_{i}^{+}(\operatorname{dim} X)<0$;
(e) $p(\operatorname{dim} X)>0$ and $q(\operatorname{dim} X)>0$;
(f) for some $i=1, \ldots, t$ and $j=1, \ldots, m$, we have $g_{i}^{+}(\operatorname{dim} X)<0$ and $g_{j}^{-}(\operatorname{dim} X)<0$.

Proof. Let $X \in \Gamma_{A}$. We first show the following claim.
Claim. $X \in \mathcal{C}^{+}\left(\mathcal{S}_{i}^{+}\right)$if and only if $p(\operatorname{dim} X)=0, f_{i}^{+}(\operatorname{dim} X)>0$ and $g_{i}^{+}(\operatorname{dim} X)>0$.

Indeed, if $X \in \mathcal{C}^{+}\left(\mathcal{S}_{i}^{+}\right)$, then $p(\operatorname{dim} X)=\operatorname{dim}_{k} \operatorname{Hom}_{A}(P, X)=0$ by 1.3. Moreover, by definition, $f_{i}^{+}(\operatorname{dim} X)>0$ and $g_{i}^{+}(\operatorname{dim} X)>0$. For the converse, observe that $p(\operatorname{dim} X)=0$ implies that X is a module over $B_{1}^{+} \amalg \ldots \amalg B_{t}^{+}$. If $f_{i}^{+}(\operatorname{dim} X)>0$, then supp X intersects B_{i}^{+}and hence $X \in \bmod B_{i}^{+}$, and the result follows from the definitions.

Similarly, we have $X \in \mathcal{C}^{-}\left(\mathcal{S}_{j}^{-}\right)$for some $1 \leq j \leq m$ if and only if (b) holds.

Assume that X is in \mathcal{C} but not in any $\mathcal{C}^{+}\left(\mathcal{S}_{i}^{+}\right)$or $\mathcal{C}^{-}\left(\mathcal{S}_{j}^{-}\right)$.
Assume that $p(\operatorname{dim} X)>0$ but (e) does not hold. Then $\operatorname{Hom}_{A}(X, I)=0$ and X is a $B_{1}^{-} \amalg \ldots \amalg B_{m}^{-}$-module. Assume $X \in \bmod B_{j}^{-}$. Since $X \notin \mathcal{C}^{-}\left(\mathcal{S}_{j}^{-}\right)$, then either $f_{j}^{-}(\operatorname{dim} X)<0$ or $g_{j}^{-}(\operatorname{dim} X)<0$. In the first case X is not a preinjective B_{j}-module (see 1.2). In particular, X is a predecessor of \mathcal{S}_{j}^{-}in $\bmod _{B_{j}}$, which is impossible. Hence $g_{j}^{-}(\operatorname{dim} X)<0$ and we are in
situation (c). If $p(\operatorname{dim} X)=0$, by the dual argument we are either in case (d) or in case (f).

Conversely, assume X satisfies one of (a) to (f). In the situations (a) and (b) we apply 1.2. In the other cases we get modules Y_{1} and Y_{2} in \mathcal{C} such that $\operatorname{Hom}_{A}\left(Y_{1}, X\right) \neq 0$ and $\operatorname{Hom}_{A}\left(X, Y_{2}\right) \neq 0$. Then convexity implies that $X \in \mathcal{C}$.
3.6. Example. Consider the algebra $B=k Q / I$ given by the quiver

and the ideal I generated by $\beta \alpha$. The Auslander-Reiten quiver Γ_{B} admits a sincere directing convex component \mathcal{C} depicted below:

Consider the indecomposable B-modules $M_{1}=P_{3}$ and $M_{2}=\tau_{B}^{2} I_{8}$, both in \mathcal{C}. We consider the one-point extensions $A_{i}=B\left[M_{i}\right], i=1,2$.

First we observe that (i) and (ii) in Theorem 3.3 are satisfied by B and M_{1}. Indeed, M_{1} is directing, P_{1} and P_{2} are M_{1}-finite (since the maps $P_{3} \rightarrow P_{i}$ are irreducible in $\left.\bmod _{A_{1}}, i=1,2\right)$ and all their predecessors in $\Gamma_{A_{1}}$ are B-modules. Hence $\Gamma_{A_{1}}$ has a sincere directing convex component, which in fact is neither postprojective nor preinjective.

For $i=2$, we observe that h is not M_{2}-finite. Indeed, $\operatorname{dim}_{k} \operatorname{Hom}_{B}\left(M_{2}, I_{5}\right)$ $=2$ and $\operatorname{dim}_{k} \operatorname{Hom}_{B}\left(M_{2}, S_{4}\right)=1$ and therefore the conditions in 3.2 are satisfied. In particular, P_{3} is not M_{2}-finite and by $3.3, \Gamma_{A_{2}}$ does not admit a sincere directing convex component. It is easy to see that the component of $\Gamma_{A_{2}}$ containing M_{2} is directing and convex.

REFERENCES

[1] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[2] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (2) (1983), 212-220.
[3] F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, to appear.
[4] P. Dräxler and J. A. de la Peña, On the existence of postprojective components for algebras, Tsukuba J. Math. 20 (1996), 457-469.
[5] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I (Proc. ICRA II, Ottawa, 1979), Lecture Notes in Math. 831, Springer, 1980, 1-71.
[6] P. Gabriel and J. A. de la Peña, On algebras: wild and tame, in: Duration and Change. Fifty Years at Oberwolfach, Springer, 1994, 177-210.
[7] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.
[8] D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246.
[9] S. Kasjan and J. A. de la Peña, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), 793-807.
[10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
[11] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel) 61 (1993), 12-19.
[12] J. A. de la Peña and M. Takane, Spectral properties of Coxeter transformations and applications, ibid. 55 (1990), 120-134.
[13] C. M. Ringel, Tame algebras, in: Representation Theory I (Proc. ICRA II, Ottawa, 1979), Lecture Notes in Math. 831, Springer, 1980, 137-287.
[14] - , Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[15] -, The spectral radius of the Coxeter transformation for a generalized Cartan matrix, Math. Ann. 300 (1994), 331-339.
[16] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 424, Kluwer, 1994, 309-345.
[17] -, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math. 30 (1993), 515-527.
[18] A. Skowroński and S. Smalø, Directing modules, J. Algebra 147 (1992), 137-146.
[19] A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, ibid. 165 (1994), 507-530.
[20] H. Strauß, On the perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66.

Instituto de Matemáticas
UNAM
México 04510 DF
México
E-mail: jap@penelope.matem.unam.mx
takane@matem.unam.mx

Received 1 April 1996;
 revised 16 October 1996

