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TRANSFERENCE THEORY ON

HARDY AND SOBOLEV SPACES

BY

MARIA J. CARRO AND JAVIER SOR IA (BARCELONA)

We show that the transference method of Coifman and Weiss can be
extended to Hardy and Sobolev spaces. As an application we obtain the de
Leeuw restriction theorems for multipliers.

1. Introduction. In 1977, R. Coifman and G. Weiss (see [CW1]) proved
the transference theorem in the setting of Lp spaces for 1 ≤ p ≤ ∞. As a first
application of this result, they were able to show the classical theorem of K.
de Leeuw [D] on restriction of multipliers; namely, if m is a nice function such
that m ∈ Mp(R

N ), then its restriction (m(n))n is in Mp(Z
N ), with norm

bounded by ‖m‖Mp(RN ), where for a general locally compact group G, we
say that m ∈ Mp(G) if its inverse Fourier transform K =

̂

m is a convolution

operator on Lp(Ĝ), with Ĝ the dual group of G. In this case, the norm of
this convolution operator is denoted by either Np(K) or ‖m‖Mp(G).

This theory has been widely extended by N. Asmar, E. Berkson and
T. A. Gillespie in a collection of papers (see [ABG1] and [ABG2]) where
they carefully study transference for maximal operators and transference of
weak type inequalities.

On the other hand, L. Colzani (see [C]) proved, using direct arguments,
that if m is a multiplier on Hp(RN ) and m is a continuous function, then
(m(n))n is a multiplier on Hp(TN ), in the sense that the operator

(SP )(x) =

M∑

n=−M

m(n)ane2πinx

(with P the trigonometric polynomial P (x) =
∑M

n=−M ane2πinx) can be

extended to a bounded operator on Hp(TN ).
We shall see that this is a consequence of the fact that the transference

method of Coifman and Weiss can be applied to a more general class of
spaces than Lp, including Hardy spaces and Sobolev spaces.

1991 Mathematics Subject Classification: 42B30, 43A15.
This work has been partially supported by the DGICYT: PB94-0879.

[47]



48 M. J. CARRO AND J. SORIA

This paper is organized as follows: In Section 2, we give the definition
of transferred space and give several examples. Section 3 contains the main
result of this paper for the case p ≥ 1 and several applications. Section
4 is devoted to the case 0 < p < 1 and Section 5 to the case of maximal
operators and maximal spaces.

Although the theory can be developed for amenable groups ([CW1]),
we shall restrict our attention to locally compact abelian groups where our
theory can go a little further and where all of our examples belong.

As usual, f̃(u) = f(u−1), (τvf)(u) = f(uv−1), and constants such as C
may change from one occurrence to the next.

2. Transferred space. Let G be a locally compact abelian group
and let L0(G) denote the set of all measurable functions on G. Consider a
sublinear functional S : A → C, where A ⊂ L0(G).

Then, for 0 < p ≤ ∞, we define the space Hp(S) as the completion of

{f ∈ L1(G) : S(τ.f̃) ∈ Lp(G)}

with respect to the “quasi-norm” ‖f‖Hp(S) = ‖S(τ.f̃)‖Lp(G).

Consider now a σ-finite measure space (M, dx) and let R be a repre-
sentation of G on Lp(M) such that R is uniformly bounded (see [CW1]);
that is, there exists a constant A such that, for every f ∈ Lp(M) and every
u ∈ G,

(1) ‖Ruf‖Lp(M) ≤ A‖f‖Lp(M).

Definition 2.1. We define the transferred space Hp(S;R) of Hp(S) by
the representation R as the completion of

{f ∈ L1(M) : S(R̃uf(·)) ∈ Lp(M)}

with respect to the “quasi-norm” ‖f‖Hp(S;R) = ‖S(R̃uf(·))‖Lp(M).

Before going any further, we give some interesting examples of trans-
ferred spaces. Recall that the transferred operator TK is defined by (see
[CW1])

(TKf)(x) =
\
G

K(u)(Ru−1f)(x) du.

Examples 2.2. (1) If S(f) = |f(e)|, where e is the identity element,
then Hp(S) = Lp(G), and if R is any representation of G acting on Lp(M),
then one can easily check that the transferred space is equal to Lp(M).

(2) Consider G = R, M = T, (Ruf)(x) = f(x − u) and S(f) = |f(0)| +
|(Hf)(0)| where H is the Hilbert transform. Then

H1(S) = {f ∈ L1(R) : Hf ∈ L1(R)} = H1(R),
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and, following the computations in [CW1], we find that

S(R̃uf(x))

= |f(x)| +
∣∣∣ lim

N→∞

\
1/N≤|u|≤N

f(x − u)
du

u

∣∣∣

= |f(x)| +
∣∣∣ lim

N→∞

\
1/N≤|u|≤1

π cot(πs)f(x − s) ds
∣∣∣ = |f(x)| + |(Cf)(x)|,

where Cf is the conjugate function of f . Therefore,

H1(S;R) = {f ∈ L1(T) : Cf ∈ L1(T)} = H1(T).

Similarly, using Miyachi’s theorem (see [M]), we conclude that, for 0 <
p ≤ 1, Hp(S) = Hp(R), and Hp(S;R) = Hp(T).

(3) Consider G = R, M = T, (Ruf)(x) = f(x − u) and S(f) = |f(0)| +
|f ′(0)|. Then

Hp(S) = {f ∈ Lp(R) : f ′ ∈ Lp(R)} = Wp,1(R),

and

Hp(S;R) = {f ∈ Lp(T) : f ′ ∈ Lp(T)} = Wp,1(T).

That is, we get Sobolev spaces. Obviously, we can also obtain Wp,k(RN)
and Wp,k(TN ).

(4) Consider G = Z, (Rnf)(x) = f(T nx) with T an ergodic transfor-
mation and S((an)n) = |a0| + |

∑
n 6=0 an/n|. Then H1(S) = H1(Z) and

H1(S;R) turns out to be an ergodic Hardy space (see [CW2] and [CT])

H1(S;R) =

{
f ∈ L1(M) :

∑

n

1

n
f(T nx) ∈ L1(M)

}
.

(5) If G = R, (Rtf)(x) = w(T tx)
w(x) f(T tx) with T an ergodic transformation

on a measure space M and w a weight on M, then for S(f) = |f(0)| +
|(Hf)(0)|, the transferred space H1(S;R) is the space of all functions F ∈
L1(w) such that wF is in the ergodic Hardy space H1; this space can be
considered as a weighted ergodic Hardy space.

(6) Consider G = R
N , M = T

N , (Ruf)(x) = f(x − u) and Sf =
supt>0 |ϕt ∗ f(0)|, where ϕ ∈ S(RN ) and

T
ϕ = 1. Then Hp(S) = Hp(RN)

and Hp(S;R) = Hp(TN ).
(7) Let now G = R, M = R, the Bohr compactification of R (see [HR]),

and (Rtf)(x) = f(x− t). Then one can easily see that the transferred space
of the Hardy space H1(R) is the space of all functions in L1(R) such that∑

t∈R
sgn(t)f̂(t)eitx is in L1(R), which is H1(R).

(8) Let G = R
n, M = R

m with m < n and let R be the natural repre-
sentation defined by (R(x1,...,xn)f)(y1, . . . , ym) = f(y1 − x1, . . . , ym − xm).



50 M. J. CARRO AND J. SORIA

If TRn
j

is the transferred operator of the Riesz transform Rn
j (j = 1, . . . , n)

in R
n, then TRn

j
= 0 if j = m + 1, . . . , n and TRn

j
= Rm

j if j = 1, . . . ,m.

Therefore, the transferred space of Hp(Rn) by this representation is Hp(Rm)
for every 0 < p ≤ 1.

Many other examples can be given in the setting of Triebel–Lizorkin
spaces, Besov spaces, etc.

3. Main results for p ≥ 1. Throughout this section we shall denote by
K∗ the convolution operator with kernel K, TK the transferred operator,
Hp(S) will be denoted by Hp(K) and the transferred space Hp(S;R) by
Hp(TK), whenever Sf = K ∗ f .

Case of a finite family of kernels and p ≥ 1. Denote by Hp({Ki}i=1,...,n)
the completion of

{f ∈ L1(G) : Ki ∗ f ∈ Lp(G), ∀i = 1, . . . , n}

under the norm
∑

i ‖Ki ∗ f‖p, and similarly for Hp({TKi
}i=1,...,n).

Theorem 3.1. Let G be a locally compact abelian group and let 1 ≤ p.
Let K, {K1

i }i=1,...,n and {K2
j }j=1,...,m be a collection of functions in L1(G)

and assume that

K∗ : Hp({K1
i }i=1,...,n) → Hp({K2

j }j=1,...,m)

has the property that there exist positive constants {Ai}i such that

m∑

j=1

‖K2
j ∗ K ∗ f‖p ≤

n∑

i=1

Ai‖K
1
i ∗ f‖p.

Then the transferred operator

TK : Hp({TK1

i
}i) → Hp({TK2

j
}j)

is bounded , with
m∑

j=1

‖TK2

j
TKf‖p ≤ BA2

n∑

i=1

Ai‖TK1

i
f‖p,

where A is as in (1) and B depends only on n and m.

P r o o f. We prove this for m = 1. The proof for m > 1 is similar.
We first recall that since K ∈ L1(G), it is known (see [CW1]) that, for

every v ∈ G and every f ∈ Lp(M),

(2) (RvTKf)(x) =
\
G

K(u)(Rvu−1f)(x) du = (TKRvf)(x), a.e. x ∈ M.

Also, using the same idea, one can easily see that TKTK2
= TK∗K2

and
therefore, we can assume without loss of generality that Hp(K2) = Lp(G)
and Hp(TK2

) = Lp(M).
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Now, since K and K1
i = Ki are in L1(G) we can approximate them by

functions in L1(G) with compact support and hence standard arguments
show that for every ε > 0 we can find functions Kn, Ki,n in L1(G) with
compact support such that

‖Kn ∗ f‖p ≤
n∑

i=1

Ai‖Ki,n ∗ f‖p + ε‖f‖p.

Therefore, we can assume without loss of generality that K and Ki are
compactly supported functions in L1(G).

Let f ∈ Lp(M). By (1), we have

‖TKf‖p = ‖Rv−1RvTKf‖p ≤ A‖RvTKf‖p.

Now, as in [CW1], we consider a compact set C such that the identity
element e is in C, suppK ⊂ C and suppKi ⊂ C for every i = 1, . . . , n.
Also, take a neighborhood V of e such that

(3)
µ(V C−1C)

µ(V )
≤ 1 +

ε

max(1, (A‖f‖p‖Ki‖1)p)
.

Now, by (2),

‖TKf‖p
p ≤

Ap

µ(V )

\
V

‖RvTKf‖p
p dv

=
Ap

µ(V )

\
V

\
M

∣∣∣
\
G

K(u)(Rvu−1f)(x) du
∣∣∣
p

dxdv

=
Ap

µ(V )

\
V

\
M

∣∣∣
\
G

K(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dx dv

≤
Ap

µ(V )

\
M

[ \
G

∣∣∣
\
G

K(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

≤
ApB

µ(V )

\
M

∑

i

Ap
i ‖χV C−1(R.f)(x)‖p

Hp(Ki)
dx,

where the last inequality follows by applying the hypothesis to the function

hx(u) = χV C−1(u)(Ruf)(x).

The last step is to show that, for every i,

(4)
\
M

‖χV C−1(R.f)(x)‖p
Hp(Ki)

dx ≤ Apµ(V )‖f‖p
Hp(TKi

) + εµ(V ),

from which we can easily deduce the theorem.

To see this, we observe that ‖χV C−1(R.f)(x)‖Hp(Ki) = ‖Ki ∗ hx‖Lp(G).
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Now,\
M

‖Ki ∗ hx‖
p
Lp(G) dx

=
\
M

[ \
G

∣∣∣
\
G

Ki(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

=
\
M

[ \
V

∣∣∣
\
G

Ki(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

+
\
M

[ \
V C−1C\V

∣∣∣
\
G

Ki(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

= I + II,

where the last equality follows since V ⊂ V C−1C.
Let us first estimate I: since u ∈ C and v ∈ V , we have vu−1 ∈ V C−1

and therefore

I =
\
M

[ \
V

∣∣∣
\
G

Ki(u)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

=
\
V

[ \
M

∣∣∣
\
G

Ki(u)(Ru−1Rvf)(x) du
∣∣∣
p

dx
]
dv

≤
\
V

‖TKi
Rvf‖

p
p dv =

\
V

‖RvTKi
f‖p

p dv ≤ Apµ(V )‖TKi
f‖p

p.

To estimate II, we proceed as follows:

II =
\
M

[ \
V C−1V \V

∣∣∣
\
G

Ki(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

≤ ‖Ki‖
p−1
1

\
M

[ \
V C−1V \V

\
G

|Ki(u)| · |(Rvu−1f)(x)|p du dv
]
dx

≤ ‖Ki‖
p−1
1

\
G

|Ki(u)|
\

V C−1V \V

‖Rvu−1f‖p
p dv du

≤ Ap‖f‖p
p‖Ki‖

p
1µ(V C−1V \ V ).

Therefore,\
M

‖χV C−1(R.f)(x)‖p
Hp(Ki)

dx

≤ Apµ(V )‖TKi
f‖p

p + Ap‖f‖p
p‖Ki‖

p
1µ(V C−1C \ V ).

Now, since, for every i,

µ(V C−1C \ V ) = µ(V C−1C) − µ(V ) ≤
εµ(V )

(A‖f‖p‖Ki‖1)p
,
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we obtain\
M

‖χV C−1(R.f)(x)‖p
Hp(Ki)

dx ≤ Apµ(V )‖f‖p
Hp(TKi

) + εµ(V ),

as desired.

Remark 3.2. We observe that, as it happens in the transference theorem
of [CW1], the above theorem is not only a boundedness result, but the
important thing is the norm of the transferred operator.

Applications. We now apply the previous results to the setting of Sobolev
and Hardy spaces.

A. Sobolev spaces. Let K be a function in L1(G) such that

K∗ : Hp(K1) → Lp(G),

with norm Np(K), where K1 is not, in general, in L1.
Assume that there exists an approximation of the identity ϕn such that

ϕn ∈ L1(G) and K1 ∗ ϕn is a function in L1(G). Then, if we apply the
boundedness hypothesis to the function f ∗ ϕn we get

‖(K ∗ ϕn) ∗ f‖p ≤ Np(K)‖(K1 ∗ ϕn) ∗ f‖p,

where the kernels K ∗ϕn and K1 ∗ ϕn are functions in L1(G) and hence we
can transfer to deduce that

TK∗ϕn
: Hp(TK1∗ϕn

) → Lp(M)

is bounded with norm less than or equal to A2Np(K). The boundedness
of TK from Hp(TK1

) into Lp(M) can be deduced, in the case of Sobolev
spaces, by a limit process, since TK1∗ϕn

f converges to TK1
f in the Lp(M)

norm, for every p ≥ 1.

Theorem A.1. Let 1 ≤ p and r, s ∈ N. If m ∈ L∞
loc is a normalized

function such that K =

̂

m has the property that

K∗ : Wp,r(R
N ) → Wp,s(R

N )

is a bounded operator with norm Np(K), then the transferred operator

TK : Wp,r(T
N ) → Wp,s(T

N )

is given by TK(
∑

ane2πinx) =
∑

n m(n)ane2πinx and is a bounded operator

with norm less than or equal to CNp(K), with C only depending on s and r.

P r o o f. We prove this in the case s = 0. The case s ∈ N is similar.
Take ϕn(ξ) = nNϕ(nξ) where ϕ̂ ∈ D(RN) is such that

T
ϕ = 1 and ϕ ≥ 0.

In this case Ki = δ
(i)
0 for |i| ≤ r, and hence, Ki ∗ ϕn = ϕ

(i)
n ∈ L1(RN ).

Therefore we get the result in the case K ∈ L1(RN ).
Now, for the general case we proceed as in Lemma 3.5 of [CW1]. Since m

is normalized and m ∈ L∞
loc, we see that mn = (K ∗ϕn)∧ is also normalized,



54 M. J. CARRO AND J. SORIA

mn ∈ L∞ and we can find a sequence (mk
n)k such that mk

n(ξ) → mn(ξ) for

every ξ ∈ R
N and, if Kk

n =

̂

mk
n, then Kk

n ∈ L1, and Np(K
k
n) ≤ Np(K).

Also, mn(ξ) → m(ξ) for every ξ ∈ R
N . From this, we deduce that TK =

limn,k TKk
n

and since Kk
n satisfies the right hypothesis we obtain the desired

result.

Similarly, in the context of the Bohr compactification RN of R
N , we get

the following result:

Theorem A.2. Let 1 ≤ p and r, s ∈ N. If m ∈ L∞
loc is a normalized

function such that for K =

̂

m the operator

K∗ : Wp,r(R
N ) → Wp,s(R

N )

is bounded with norm Np(K), then the transferred operator

TK : Wp,r(RN ) → Wp,s(RN )

is given by TK(
∑

ate
2πitx) =

∑
t m(t)ate

2πitx and is bounded with norm less

than or equal to Cr,sNp(K).

Theorem A.3. Let 1 ≤ p, r, s ∈ N. If m ∈ L∞
loc is a normalized function

such that for K =

̂

m the operator

K∗ : Wp,r(R
N ) → Wp,s(R

N )

is bounded with norm Np(K), and K is a convolution kernel on R
M with

M < N and K̂(x) = m(x, 0) where x = (x, x∗) ∈ R
M × R

N−M , then the

operator

K∗ : Wp,r(R
M ) → Wp,s(R

M )

is bounded with norm less than or equal to Cr,sNp(K).

P r o o f. Observe that Wp,r(R
M ) is the transferred space of Wp,r(R

N)
under the representation of Example 2.2 (8), and argue as in Theorem A.1.

B. Hardy spaces (p = 1). Now assume that K is a function in L1(RN)
such that

(5) K∗ : H1(RN ) → H1(RN )

is bounded with norm N1(K). The previous argument cannot be applied
to this case because we cannot find an approximation of the identity ϕn

such that Hϕ is in L1 and
T
ϕ = 1. However, we obtain the following result

(see [C]).

Theorem B.1. If K is such that K̂ = m is a normalized function and

K∗ : H1(RN ) → H1(RN )

is bounded with norm N1(K), then the transferred operator

TK

( ∑
ane2πinx

)
=

∑
anm(n)e2πinx
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can be extended to a bounded operator from H1(TN ) into H1(TN ) with norm

less than or equal to N1(K).

P r o o f. First assume that K ∈ L1 and N = 1 (a similar proof works for
N > 1).

Let P be a trigonometric polynomial of degree j such that P (0) = 0.

Let φ ∈ H1(R) be such that φ̂(n) = 1 for every 0 < |n| ≤ j. Then both
K ∗ φ and Hφ are functions in L1(R) and therefore

‖TK∗φP‖H1(T) ≤ N1(K)(‖TφP‖1 + ‖THφP‖1).

Since TK∗φ = TKTφ, TφP = P and THφ = THTφ, we obtain the desired
result.

Finally, every convolution kernel on H1(R) is also a convolution kernel
on L2(R) and therefore m ∈ L∞(R). Moreover, ‖m‖∞ ≤ N1(K). Hence, if
a(x) = 1, then (TK)a(x) = m(0) and thus

‖TKa‖H1(T) = |m(0)| ≤ ‖m‖∞ ≤ N1(K).

To consider the general case K 6∈ L1, we need the following technical
lemma.

Lemma. If K∗ is a convolution operator on H1(RN ) with norm N1(K),
then there exists a sequence (Kn)n of compactly supported functions in

L1(RN ) such that mn(ξ) = K̂n(ξ) → m(ξ) for every ξ ∈ R
N and N1(Kn) ≤

N1(K).

P r o o f. We prove this for N = 1. The general case is similar. First, we
know that m is a continuous function on R\{0}. Let ϕ ∈ S(R) with compact
support and ϕ(ξ) = 1 for every ξ ∈ [−1, 1]. Define ϕk(x) = ϕ(x/k) and
ϕk(x) = ϕ(kx). Set mk(x) = m(x)ϕk(x)(1 − ϕk(x)). Then mk(x) → m(x)
as k → ∞ for every x 6= 0, and mk is a multiplier on H1(R) with norm less
than or equal to CN1(K), with C only depending on ϕ.

Choose Ψ ∈ S(R) with compact support such that Ψ(0) = 1 and set
Ψn(ξ) = Ψ(ξ/n). Let φn(ξ) = e−2πiξΨn(ξ), and consider

mn,k(x) =

∞\
−∞

x

s
φ̂n

(
x

s

)
mk(s)

ds

s
=

∞\
−∞

tφ̂n(t)mk

(
x

t

)
dt

t
.

Then

mn,k(x) − mk(x) =

∞\
−∞

tφ̂n(t)

(
mk

(
x

t

)
− mk(x)

)
dt

t

=

1−δ\
−∞

+

1+δ\
1−δ

+

∞\
1+δ

,

with δ to be chosen.
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Now, using the decay of φ̂n we obtain
∣∣∣∣
1−δ\
−∞

tφ̂n(t)

(
mk

(
x

t

)
− mk(x)

)
dt

t

∣∣∣∣ ≤ C‖m‖∞
1

nM−1

1−δ\
−∞

1

|t − 1|M
dt,

and the above expression converges to zero whenever M is large enough
and n tends to infinity. Similarly for

T∞
1+δ

. For the second term we use the
continuity of mk to deduce that given ε there exists δ such that for every
t ∈ (1 − δ, 1 + δ), |mk(x/t) − mk(x)| ≤ ε and hence

∣∣∣∣
1+δ\
1−δ

tφ̂n(t)

(
mk

(
x

t

)
− mk(x)

)
dt

t

∣∣∣∣ ≤ Cε

∞\
−∞

|φ̂n(t)| dt = Cε.

Now, since

Kn,k(x) =

̂

mn,k(x) =

∞\
−∞

φ′
n(sx)mk(s) ds,

φn has compact support and mk(s) = 0 in a neighborhood of zero and for
s large enough, we infer that Kn,k has compact support and obviously is in
L1(R). Finally,

‖Kn,k ∗ f‖1 =
\
R

∣∣∣
\
R

mn,k(ξ)f̂(ξ)e−2πixξ dξ
∣∣∣ dx

=
\
R

∣∣∣∣
\
R

[\
R

tφ̂n(t)mk(ξ/t)
dt

t

]
f̂(ξ)e−2πixξ dξ

∣∣∣∣ dx

=
\
R

∣∣∣
\
R

φ̂n(t)
[\

R

mk(ξ/t)f̂(ξ)e−2πixξ dξ
]
dt

∣∣∣ dx

≤
\
R

|φ̂n(t)|
\
R

∣∣∣
\
R

mk(ξ/t)f̂(ξ)e−2πixξ dξ
∣∣∣ dx dt

≤
\
R

|φ̂n(t)|
\
R

∣∣∣
\
R

mk(y)tf̂(ty)e−2πixty dy
∣∣∣ dx dt

≤ N1(Kk)‖f‖H1(R) ≤ CN1(K)‖f‖H1(R),

and hence, Kn,k satisfies the lemma.

The proof of Theorem B.1 now follows by standard approximation argu-
ments.

Similarly, we get

Theorem B.2. If m is a normalized function such that for K =

̂

m the

operator

K∗ : H1(RN ) → H1(RN )
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is bounded with norm N1(K), then the operator

TK : H1(RN ) → H1(RN )

defined by TK(
∑

ate
2πitx) =

∑
t m(t)ate

2πitx is bounded with norm less than

or equal to N1(K).

Theorem B.3. If m is a normalized function such that for K =

̂

m the

operator

K∗ : H1(RN ) → H1(RN )

is bounded with norm N1(K), and K is a convolution kernel on R
M with

M < N and K̂(x) = m(x, 0) where x = (x, x∗) ∈ R
M × R

N−M , then the

operator

K∗ : H1(RM ) → H1(RM )

is bounded with norm less than or equal to N1(K).

If we want to use the techniques of Theorem B.1 to cover the case of Ex-
ample 2.2(4), that is, to transfer the boundedness of a convolution operator
from H1(R) to an ergodic Hardy space H1(M), we observe that, in general,
it is not the case that, for every f in a dense set of H1(M), there exists
ϕ ∈ H1(R) such that Tϕf = f with Tϕ the transference operator of the
convolution operator ϕ ∗. Therefore, we can only show that, if N1(K) is the
norm of the convolution operator K∗ in H1(R), then, for every ϕ ∈ H1(R),

‖TK∗ϕf‖H1(M) ≤ N1(K)(‖Tϕf‖L1(M) + ‖TϕTHf‖L1(M)),

where TH is the transference operator of the Hilbert transform. From this,
we can deduce that if m =

̂

K has compact support away from zero, then

‖TKf‖H1(M) ≤ N1(K)‖ϕ‖1(‖f‖L1(M) + ‖THf‖L1(M)),

since, in this case, there exists ϕ ∈ H1(R) such that K ∗ ϕ = K.

4. Case of a finite family of kernels and 0 < p < 1. Now consider
a σ-finite measure space (M, dx) and let R be a representation of G on
Lp(M) and on L1(M) such that R is uniformly bounded; that is, there
exist constants A and B such that, for every f ∈ Lp(M) and every u ∈ G,

‖Ruf‖Lp(M) ≤ A‖f‖Lp(M),

and, for every f ∈ L1(M),

‖Ruf‖L1(M) ≤ B‖f‖L1(M).

Under this last condition, the transferred operator TK is well defined in
a dense subset of the transferred space.

We observe that in this case the boundedness of TK is not trivial even
in the case of K ∈ L1 with compact support since the Minkowski integral
inequality does not hold.
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This section is organized as follows: first we prove the transference the-
orem if one of the following conditions holds:

(a) G is compact.

(b) G is discrete.

(c) M is of finite measure.

Then, if G and M are either R
N , Z

m or T
k, we can transfer as in the

following diagram:

Z
m → R

N ↔ T
k ↔ Z

m

and hence it remains to transfer from R
N to Z

m, or more generally from
R

N to any measure space M.

The next step will be to show that under some conditions on the repre-
sentation we can transfer from R

N to any measure space M either via the
factorization

R
N → T

k → M

and/or using the dilation structure of the group R
N .

Theorem 4.1. Let G be either a compact or a discrete abelian group,
or let M be of finite measure, and let 0 < p < 1. Let K, {K1

i }i=1,...,n and

{K2
j }j=1,...,m be a collection of functions in L1(G) with compact support and

assume that

K∗ : Hp({K1
i }i=1,...,n) → Hp({K2

j }j=1,...,m)

has the property that there exist positive constants {Ai} such that

m∑

j=1

‖K2
j ∗ K ∗ f‖p ≤

n∑

i=1

Ai‖K
1
i ∗ f‖p.

Then the transferred operator

TK : Hp({TK1
i
}i) → Hp({TK2

j
}j)

is bounded , with

m∑

j=1

‖TK2

j
TKf‖p ≤ DA2

n∑

i=1

Ai‖TK1

i
f‖p,

where A is as in (1) and D depends only on n and m.

P r o o f. As in Theorem 3.1, we prove this for m = 1.

(a) Assume first that G is compact. Then we proceed as in Theorem 3.1
but, in this case, we can take V = G and then the term II is zero.
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(b) If G is discrete, and we argue as in Theorem 3.1, it remains to show
that II/µ(V ) can be made small enough. Now, since p < 1,

II =
\
M

[ \
V C−1V \V

∣∣∣
\
G

K1(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv
]
dx

≤
\
M

[ \
V C−1C\V

\
G

|K1(u)|p |(Rvu−1f)(x)|p du dx
]
dv

≤
\
G

|K1(u)|p
\

V C−1C\V

‖Rvu−1f‖p
p dv du

≤ Ap‖f‖p
p‖K1‖

p
1µ(C)1/(1/p)′µ(V C−1C \ V ),

and hence we can choose V in such a way that II/µ(V ) is arbitrarily small.

(c) If M is of finite measure, and we assume that R acts on L1(M), then

II ≤ (m(M)µ(V C−1C \ V ))1/(1/p)′

×
[ \
M

[ \
V C−1C\V

\
G

|K1(u)χV C−1(vu−1)(Rvu−1f)(x)| du dv
]
dx

]p

≤
(
m(M)µ(V C−1C \ V )

)1/(1/p)′

µ(V C−1V \ V )p‖K1‖
p
1‖Rvu−1f‖p

1

≤ m(M)µ(V C−1C \ V )‖K1‖
p
1B

p‖f‖p
1,

and this expression converges to zero on choosing V appropriately.

Transference from R
N to M. Let us now consider the case of transference

from R
N to a general measure space M. Let R be a representation from

R
N into Lp(M). Assume that one of the following two conditions hold:

(i) For every f in a dense subset of Hp({TKi
}i), there exists M > 0

such that RMf = f . Then, if we define (RM
θ f)(x) = (RMθf)(x) for

θ ∈ [−1/2, 1/2]N = T
N , we find that RM is a uniformly bounded repre-

sentation of T
N in Lp(M).

If (RMf)(x) = f(SMx), then M may also depend on f and x.

(ii) For every f in a dense subset of Hp({TKi
}i), there exist C > 0 and

M0 > 0 such that, for every M ≥ M0,\
M

(
1

MN

\
(−M,M)N

|(Ruf)(x)| du

)p

dx ≤ C.

In the first case, consider a kernel K ∈ L1(RN) and set KM (x) =
M−NK(x/M). Let

K̃M (θ) =
∑

m∈ZN

KM (θ + m)
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be the periodic extension. Then for the transferred operator we have

(T RM

K̃M
f)(x) =

\
TN

K̃M (θ)(RM
−θf)(x) dθ

=
\

TN

MN
∑

m

K(Mθ + Mm)(R−Mθf)(x) dθ

=
\

[−M/2,M/2]N

∑

m

K(u + Mm)(R−uf)(x) du

=
\

[−M/2,M/2]N

K(u)(R−uf)(x) du

+
\

[−M/2,M/2]N

∑

m 6=0

K(u + Mm)(R−uf)(x) du

= IM + IIM .

Now, since the representation R acts on L1(M) we see that, by the
Minkowski integral inequality,

‖IIM‖1 ≤ A‖f‖1

\
[−M/2,M/2]N

∑

m 6=0

|K(u + Mm)| du

= A‖f‖1

\
|u|≥M/2

|K(u)| du,

and therefore ‖IIM‖1 converges to zero as M tends to infinity. Therefore,
there exists a subsequence Mk such that IIMk

converges to zero almost
everywhere. Since IM converges to the transferred operator T R

K , we get

(T R
Kf)(x) = lim

k
(T RMk

K̃Mk

f)(x).

From this, we can deduce the following result,

Theorem 4.2. Let G = R
N and let M be a σ-finite measure space.

Let 0 < p < 1. Let K, {K1
i }i=1,...,n and {K2

j }j=1,...,m be a collection of

functions in L1(G) with compact support and assume that

K∗ : Hp({K1
i }i=1,...,n) → Hp({K2

j }j=1,...,m)

has the property that there exist positive constants {Ai}i such that

m∑

j=1

‖K2
j ∗ K ∗ f‖p ≤

n∑

i=1

Ai‖K
1
i ∗ f‖p.

If the representation R satisfies condition (i) then the transferred operator

TK : Hp({TK1
i
}i) → Hp({TK2

j
}j)
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is bounded , with
m∑

j=1

‖TK2

j
TKf‖p ≤ CA

n∑

i=1

Ai‖TK1

i
f‖p,

where A is as in (1) and C depends only on n and m.

P r o o f. As always, take m = 1 and Hp({K2
j }j=1,...,m) = Lp. Using the

dilation structure of R
N we see that, for every M > 0,

‖KM ∗ f‖p ≤
n∑

i=1

Ai‖(K
1
i )M ∗ f‖p.

Since T
N is a measure space of finite measure, we can apply Theorem 4.1

to deduce that we can transfer the boundedness of KM ∗ to Lp(TN ) via the
natural representation (Suf)(θ) = f(θ − u). Hence, for every M , T S

KM
is a

bounded operator with

‖T S
KM

f‖p ≤ CA2
∑

i

Ai‖T(K1

i )M
f‖p.

But, since K and K1
i have compact support, for M large enough we have

K̃M (x) = KM (x) for every x ∈ T
N and similarly for the kernels K1

i . Now,

since T S
K̃M

= K̃M ∗, we see that if we take M large enough such that this

condition holds and also that RMf = f , we get

‖TKf‖p
p =

∥∥∥
\

RN

K(y)(R−yf)(·) dy
∥∥∥

p

p
=

∥∥∥
\

TN

KM (y)(RM
−yf)(·) dy

∥∥∥
p

p

=
∥∥∥
\

TN

K̃M (y)(RM
−yf)(·) dy

∥∥∥
p

p
≤

∑

i

Ap
i

∥∥∥
\

TN

(K1
i )M (y)(RM

−yf)(·) dy
∥∥∥

p

p

=
∑

i

Ap
i

∥∥∥
\

RN

K1
i (y)(R−yf)(·) dy

∥∥∥
p

p
.

Theorem 4.3. Under the hypothesis of Theorem 4.2, if the representa-

tion R satisfies condition (ii), then the transferred operator

TK : Hp({TK1

i
}i) → Hp({TK2

j
}j)

is bounded , with
m∑

j=1

‖TK2
j
TKf‖p ≤ CA2

n∑

i=1

Ai‖TK1
i
f‖p,

where A is as in (1) and C depends only on n and m.

P r o o f. We follow the same steps as for Theorem 3.1.
Let f ∈ Lp(M). Take M large enough such that the supports of the

functions KM and (K1
i )M = (Ki)M are contained in (−ε, ε)N for ε > 0 and
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(ii) holds. Then, if V = (−1, 1)N , we get

‖TKf‖p
p

=
∥∥∥
\

RN

K(y)(R−yf)(·) dy
∥∥∥

p

p
=

∥∥∥
\

(−ε,ε)N

KM (y)(RM
−yf)(·) dy

∥∥∥
p

p

≤
Ap

µ(V )

\
V

\
M

∣∣∣
\

(−ε,ε)N

KM (y)(RM
v−yf)(x) dy

∣∣∣
p

dx dv

=
Ap

µ(V )

\
V

\
M

∣∣∣
\

(−ε,ε)N

KM (y)χ(−1−ε,1+ε)N (v − y)(RM
v−yf)(x) dy

∣∣∣
p

dx dv

≤
Ap

µ(V )

\
M

[ \
(−1,1)N

∣∣∣
\

(−ε,ε)N

KM (y)χ(−1−ε,1+ε)N (v − y)(RM
v−yf)(x) dy

∣∣∣
p

dv
]
dx

≤
ApC

µ(V )

\
M

∑

i

Ap
i ‖χ(−1−ε,1+ε)N (RM

. f)(x)‖p
Hp((Ki)M ) dx.

Now, if we take hx(y) = χ
(−1−ε,1+ε)N (y)(RM

y f)(x) and Vε = (−1 − 2ε,

1 + 2ε)N \ (−1, 1)N , we get\
M

‖(Ki)M ∗ hx‖
p
Lp(RN )

dx

=
\
M

[ \
RN

∣∣∣
\

(−ε,ε)N

(Ki)M (y)χ(−1−ε,1+ε)N (v − y)(RM
v−yf)(x) dy

∣∣∣
p

dv
]
dx

≤
\
M

[ \
(−1,1)N

∣∣∣
\

(−ε,ε)N

(Ki)M (y)(RM
v−yf)(x) dy

∣∣∣
p

dv
]
dx

+
\
M

[ \
Vε

∣∣∣
\

(−ε,ε)N

|(Ki)M (y)| · |(RM
v−yf)(x)| dy

∣∣∣
p

dv
]
dx

= I + II.

To estimate I we proceed as in Theorem 3.1, and for the second term,

II ≤ |Vε|
1−p

\
M

[ \
Vε

\
(−ε,ε)N

|(Ki)M (y)| · |(RM
v−yf)(x)| dy dv

]p

dx

≤ CεN‖Ki‖
p
1

\
M

( \
(−2,2)N

|(RM
y f)(x)| dy

)p

dx

= CεN‖Ki‖
p
1

\
M

(
1

MN

\
(−2M,2M)N

|(Ryf)(x)| dy

)p

dx ≤ C(f)‖Ki‖
p
1ε

N .

Letting ε tend to zero, we are done.
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For the examples, it will be very convenient to get rid of the hypothesis
of K being with compact support. Because of the lack of the Minkowski
integral inequality, we cannot argue as in the case p ≥ 1. However, we are
going to show that whenever M is of finite measure we do not need that
condition on K. Then we shall prove that under certain conditions on the
representation we can restrict ourselves to this case.

Assume then that M is of finite measure. Then, if Kn is a sequence of
functions in L1(G) such that Kn has compact support and Kn converges to
K in the L1 norm, we have

‖TKf‖p
p ≤ ‖TK−Kn

f‖p
p + ‖TKn

f‖p
p ≤ D‖TK−Kn

f‖p
1 + ‖TKn

f‖p
p

≤ Dε‖f‖1 + ‖TKn
f‖p

p.

Now,

‖TKn
f‖p

p

≤ D
1

µ(V )

\
V

\
M

∣∣∣
\
G

Kn(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dx dv

≤ D
1

µ(V )

[ \
M

\
V

∣∣∣
\
G

(Kn − K)(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv dx

+
\
M

\
V

∣∣∣
\
G

K(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv dx
]

≤ D
1

µ(V )
µ(V )1−p‖Kn − K‖p

1

( \
M

∣∣∣
\

V C−1

(Ruf)(x) du
∣∣∣ dx

)p

+ D
1

µ(V )

∑

i

Ap
i

\
M

\
G

∣∣∣
\
G

Ki(u)χV C−1(vu−1)(Rvu−1f)(x) du
∣∣∣
p

dv dx.

Following the ideas in Theorem 3.1 and using the fact that, by density,
we can consider f ∈ L1(M), we get the result by letting ε tend to zero.

Definition 4.4. We say that R acts locally on Lp(M) if the following
condition holds: Given a compact set C, and given ε > 0, there exists V such
that µ(V C−1) ≤ (1 + ε)µ(V ) and, for every finite family {Ki}i of kernels
in L1, there exists a positive constant B such that, given any measurable set
M in M of finite measure and given any u ∈ G, there exists a measurable set
Mu such that ‖Ruf‖Lp(M) ≤ B‖f‖Lp(Mu) for every f in a dense subset of
Hp(TKi

) and, for every neighborhood V of the identity there exists another
measurable set MV such that Mv ⊂ MV for every v ∈ V and

|MV |1−pµ(V C−1C \ V )

µ(V )
≤ ε.

In this case, we can reduce ourselves to the case of M of finite measure
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and therefore we do not need the hypothesis of K being of compact support.
To see this we just have to start computing ‖TKf‖Lp(M) for any M of finite
measure. Then

‖TKf‖p
Lp(M) ≤ Ap 1

µ(V )

\
V

‖RvTKf‖p
Lp(M

v−1 ) dv

≤ Ap 1

µ(V )

\
V

‖RvTKf‖p
Lp(MV ) dv,

and the rest of the proof follows as usual.

One can easily check that if R is the representation of Example 2.2(8),
then R acts locally on Lp(Rm), and therefore, we can transfer from R

N to
R

m (m < N) with 0 < p < 1.

C. Hardy spaces (p < 1). Let K be such that m =

̂

K is a normalized
function with m(0) = 0. Assume that

‖K ∗ f‖p ≤ C‖Hf‖p,

for some p < 1. As in Theorem B.1, let P be a trigonometric polynomial of
degree j such that P (0) = 0. Let φ ∈ H1(RN ) be such that φ̂(n) = 1 for
every 0 < |n| ≤ j. Take φn converging to φ in the L1 norm and such that
Hφn has compact support for every n. Then K ∗φn and Hφn are functions
in L1(RN ) and the latter has compact support. Therefore

‖TK∗φn
P‖Hp(TN ) ≤ C‖THφn

P‖p.

But, since m is normalized, we have TK∗φn
= TKTφn

. Taking the limit
as n → ∞ and using the fact that TφP = P , we get the following result:

Proposition C.1. Let K be such that m =

̂

K is a normalized function

with m(0) = 0. If ‖K ∗ f‖p ≤ C‖Hf‖p, then
∥∥∥

∑
m(n)ane2πinx

∥∥∥
Lp(T)

≤ C
∥∥∥

∑
sgn(n)ane2πinx

∥∥∥
Lp(T)

.

5. Maximal operators and maximal spaces. In this section, we
consider the case where the operator S is determined by an infinite collection
of kernels Ki in L1(G) with compact support; namely Sf = supi |Ki ∗f(0)|.
In this case, we write Hp(S) = Hp({Ki}i).

Hence, if we have two collections of functions satisfying the above con-
ditions, {K1

i }i and {K2
j }j , and K ∈ L1(G) has the property that the con-

volution operator

K∗ : Hp({K1
i }i) → Hp({K2

j }j)
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is bounded with norm less than or equal to Np(K), then the maximal oper-
ator

sup
j

|K2
j ∗ | : Hp({K1

i }i) → Lp(G)

is bounded with norm less than or equal to Np(K).

Therefore, we can reduce ourselves to the case of a maximal operator
acting on a maximal space. Obviously this maximal space can be Lp(G)
and then our case will include the maximal transference of [ABG1]. For
that reason, throughout this section we consider only representations such
that

(i) Ru is separation-preserving for every u ∈ G,

(ii) there exists B such that ‖Ruf‖Hp({T
K1

i

}i) ≤ B‖f‖Hp({T
K1

i

}i) for

every u ∈ G and every f ∈ Lp(M), and

(iii) if 0 < p < 1, then the representation R also acts into L1(M).

Theorem 5.1. Let G be a compact abelian group and let 0 < p < ∞.

Let K2
j and K1

i be two collections of functions in L1(G) and let Np(K) be

the norm of the convolution operator

sup
j

|K2
j ∗ | : Hp({K1

i }i) → Lp(G).

If R is a representation from G into Lp(M) satisfying (i)–(iii), then the

transferred operator

sup
j

|TK2
j
| : Hp({TK1

i
}i) → Lp(M)

is bounded , with norm less than or equal to ABNp(K), where A is as in (1)
and B as in (ii).

P r o o f. Since R is separation-preserving, we get (see [ABG1])

Rv(sup
j

|(TK2
j
f)(x)|) ≤ sup

j
|(TK2

j
Rvf)(x)|,

and therefore

‖sup
j

|TK2
j
f | ‖p

p ≤ Ap
\
G

‖sup
j

|TK2
j
Rvf | ‖p

p dv

= Ap
\
G

\
M

sup
j

∣∣∣
\
G

K2
j (u)(Rvu−1f)(x) du

∣∣∣
p

dx dv

≤ Ap
\
M

[ \
G

sup
j

∣∣∣
\
G

K2
j (u)(Rvu−1f)(x) du

∣∣∣
p

dv
]
dx

≤ (ANp(K))p
\
M

‖(R.f)(x)‖p
Hp({K1

i }i)
dx,
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where the last inequality follows by applying the hypothesis to the function

hx(u) = (Ruf)(x).

The last step is to show that\
M

‖(R.f)(x)‖p
Hp({K1

i }i)
dx ≤ Bp‖f‖p

Hp({T
K1

i

}i)
.

Now,\
M

‖(R.f)(x)‖p
Hp({K1

i }i)
dx =

\
M

[ \
G

sup
i

∣∣∣
\
G

K1
i (u)(Rvu−1f)(x) du

∣∣∣
p

dv
]
dx

≤
\
G

[ \
M

sup
i

∣∣∣
\
G

K1
i (u)(Ru−1Rvf)(x) du

∣∣∣
p

dx
]
dv

=
\
G

‖Rvf‖p
Hp({T

K1

i

}i)
dv ≤ Bp‖f‖p

Hp({T
K1

i

}i)
,

where the last inequality follows by (ii).

If the group G is not compact, the proof is not so clear. Moreover, the
natural extension of Theorem 3.1 does not work in general since condition (4)
fails. However, we can formulate a quite general result that will be useful
for our purpose.

Theorem 5.2. Let G be a locally compact abelian group and let 0<p <∞.

Let K2
j and K1

i be two collections of compactly supported functions in L1(G)
and let Np(K) be the norm of the convolution operator

sup
j

|K2
j ∗ | : Hp({K1

i }i) → Lp(G).

Let R be a representation from G into Lp(M) satisfying (i)–(iii). Let f ∈
Hp({TK1

i
}i) satisfy the following condition: there exists B > 0 so that , for

every compact E ⊂ G large enough, there exists ϕE such that ϕE(u) = 1 for

every u ∈ E, and

(6)
\
M

‖ϕE(R.f)(x)‖p
Hp({K1

i }i)
dx ≤ Bpµ(E)‖f‖p

Hp({T
K1

i

}i)
.

Then

‖sup
j

|TK2

j
f |‖p ≤ BA2‖f‖Hp({T

K1

i

}i),

with B as in (6) and A as in (1).

P r o o f. First, by Fatou’s lemma, it is enough to estimate the norm
‖supj=1,...,N |TK2

j
f |‖p. Consider C such that suppK2

j ⊂ C for every j =

1, . . . , N . Then we can adapt the proof of Theorem 3.1 quite easily to get
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‖ sup
j=1,...,N

|TK2
j
f | ‖p

≤
Ap

µ(V )

\
V

‖ sup
j=1,...,N

|TK2
j
Rvf | ‖

p
Hp({T

K1

i

}i)
dv

=
Ap

µ(V )

\
V

\
M

sup
j=1,...,N

∣∣∣
\
G

K2
j (u)(Rvu−1f)(x) du

∣∣∣
p

dx dv

=
Ap

µ(V )

\
V

\
M

sup
j=1,...,N

∣∣∣
\
G

K2
j (u)ϕV C−1(vu−1)(Rvu−1f)(x) du

∣∣∣
p

dx dv

≤
Ap

µ(V )

\
M

[ \
G

sup
j

∣∣∣
\
G

K2
j (u)ϕV C−1(vu−1)(Rvu−1f)(x) du

∣∣∣
p

dv
]
dx

≤
(ANp(K))p

µ(V )

\
M

‖ϕV C−1(R.f)(x)‖p
Hp({K1

i }i)
dx,

where the last inequality follows by applying the hypothesis to the function

hx(u) = ϕV C−1(u)(Ruf)(x).

The last step is to show that\
M

‖ϕV C−1(R.f)(x)‖p
Hp({K1

i })
dx ≤ BpApµ(V )(1 + ε)‖f‖p

Hp({T
K1

i

}i)
,

but this follows by (6) and the choice of V such that µ(V C−1)/µ(V ) ≤
1 + ε.

As in Sections 2 and 4, if p ≥ 1 or if M is of finite measure (or it can
be reduced to this case) and p < 1, we do not need the hypothesis on the
support of K2

j but we do need it for the support of K1
i (see also [ABG1]).

D. Maximal spaces and maximal operators. We start with the result of
[C] we mentioned in the introduction.

Theorem D.1. Let 0 < p < 1. If K is such that K̂ = m is a normalized

function and the operator

K∗ : Hp(RN ) → Hp(RN )

is bounded with norm Np(K), then the operator

TK

( ∑
ane2πix

)
=

∑
anm(n)e2πix

with m = K̂ can be extended to a bounded operator from Hp(TN ) into

Hp(TN ) with norm less than or equal to Np(K).

P r o o f. As for the case p = 1, first assume that K ∈ L1.
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Since K∗ is a convolution kernel in L2, we see by interpolation that K∗
is also a convolution kernel in H1.

Now, since we are transferring to a measure space of finite measure, we
do not need any condition on the support of K but, if we want to apply
Theorem 4.1, we need to have that restriction on the kernels that define the
space Hp(RN ). Since these kernels do not have compact supports, we are
forced to use Theorem 5.2.

Take a to be an atom in Hp(TN ). Then either a = 1 or a is a (p, q)-atom.
For the first case, we proceed as in Theorem B.1, since

‖TKa‖Hp(TN ) = |m(0)| ≤ ‖m‖∞ ≤ Np(K),

and for a general atom we observe that if T
N = (−1, 1)N , then the function

χ
(−M,M)N a is an atom in Hp(RN ) and

‖χ(−M,M)N a‖Hp(RN ) ≤ CMN‖a‖Hp(TN )

and therefore condition (6) holds. Hence

‖TKa‖Hp(TN ) ≤ Np(K)‖a‖Hp(TN ).

For the general case of a normalized multiplier we argue as in Theorem B.1.
Take a trigonometric polynomial P in Hp(TN ) with P (0) = 0 and degree
j and let φ be as in B.1. Then K ∗ φ is in L1 and since TφP = P and P
satisfies condition (6), we can apply Theorem 5.2 to obtain the result.

Similarly, we can obtain the analogue to Theorem B.3 for 0 < p < 1
observing that if a ∈ Hp(R) is a (p,∞)-atom and for every compact E ⊂ R

2

we define ϕE(u1, u2) = 1 whenever (u1, u1) ∈ E and ϕE(u1, u2) = 0

if (u1, u1) ∈ Ẽ, where Ẽ = E + (0, n) is such that E ∩ Ẽ = ∅, then
ϕE(u1, u2)a(x − u1) is a (p,∞)-atom of Hp(R2) satisfying condition (6).

A final application we want to mention is the following: Assume that we
have two equivalent norms in a fixed space Hp. Then we can try to transfer
the identity operator to obtain two equivalent norms in the transferred space.
We illustrate this situation with the following example.

Let ϕ ∈ L1 with compact support and consider the atomic and maximal
versions of the space Hp(RN ) which of course are equivalent. Then, if
Hp(RN ) denotes the atomic space, the operator

sup
t

|ϕt ∗ ·| : Hp(RN ) → Lp(RN )

is bounded.
Now, since the atomic version of Hp(TN ) satisfies condition (6) we can

transfer this maximal operator to obtain

‖sup
t

|ϕ̃t ∗ F |‖Lp(TN ) ≤ C‖F‖Hp(TN ),

which is a well-known result.
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