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Let Ω ⊂ R
n be a bounded, connected, open set, and let X1, . . . ,Xp be

real smooth vector fields defined in a neighborhood of Ω. We will say that
X1, . . . ,Xp satisfy Hörmander’s condition of order m, or that they are of

type m, if X1, . . . ,Xp together with their commutators of length at most m
span R

n at each point of Ω. It is well known that it is possible to associate
with X1, . . . ,Xp a canonical metric ̺ as follows ([FP], [NSW]): we say that
an absolutely continuous curve γ : [0, T ] → Ω is a subunit curve if

|〈γ′(t), ξ〉|2 ≤
∑

j

|〈Xj(γ(t)), ξ〉|2

for all ξ ∈ R
n and a.e. t ∈ [0, T ], and we define ̺(x, y) for x, y ∈ Ω by

̺(x, y)=inf{T : ∃ a subunit curve γ : [0, T ]→Ω with γ(0)=x, γ(T )=y}.
The geometry of the metric space (Ω, ̺) is fully described in [NSW]; in

particular, it is shown there that (Ω, ̺) is a metric space of homogeneous
type with respect to Lebesgue measure, i.e. and there exist C > 0 and
δ0 > 0 such that

(1) |B(x, 2δ)| ≤ C|B(x, δ)|
for all x ∈ Ω and δ < δ0, where B(x, r) = {y ∈ Ω : ̺(x, y) < r} is a metric
ball, and for any measurable set E, |E| denotes its Lebesgue measure. In
particular, it follows from the doubling property (1) that there exist α ≥ n
and c > 0 such that

(2) |B(x, δt)| ≥ ctα|B(x, δ)|
for all x ∈ Ω, t ∈ (0, 1) and δ < δ0.
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The exponent α in (2) plays an important role in many critical inequal-
ities associated with the vector fields, by replacing the dimension n of Ω as
a manifold. In particular, in the last few years, isoperimetric inequalities
have been proved for (Ω, ̺) in which α gives an estimate of the isoperimet-
ric dimension ([FGaW1,2], [FLW], [CDG], [G]). In its simplest form, the
isoperimetric inequality can be stated as follows:

Theorem 0. Let E be an open, bounded , connected subset of Ω whose

boundary ∂E is an oriented C1 manifold such that E lies locally on one side

of ∂E. If r0 is sufficiently small and B = B(x, r) is any ball with x ∈ Ω
and 0 < r < r0, then

(3) min{|B ∩ E|, |B \ E|}(α−1)/α ≤ c
\

∂E∩B

(∑

j

〈Xj , ν〉2
)1/2

dHn−1,

where α is the exponent in (2), ν is the unit normal to ∂E, and the constants

c, r0 are independent of E and B.

It is possible to show that if the exponent α is sharp in (2), then the
isoperimetric inequality cannot be improved. However, the result is not
in general fully satisfying because the dimension can change from point to
point, so that a global result can only be expressed in terms of the “worst
exponent”. To illustrate this phenomenon, let us consider the following two
situations, which exemplify the “good” situation and the “bad” situation.
First of all, let n = 3, and putX1 = ∂1+2x2∂3,X2 = ∂2−2x1∂3 (Heisenberg
group). Here it is easy to see by Theorem 1 of [NSW] that |B(x, δ)| ∼ δ4 for
x ∈ Ω, so that the dimension is uniformly equal to 4 and the isoperimetric
inequality is satisfying. Next choose n = 2, X1 = ∂1, X2 = xβ

1∂2 for β ∈ N

(Grushin vector fields). In this case, |B(x, δ)| ∼ δ2(|x1|β+δβ) if x = (x1, x2),
so that in order to obtain a global estimate we must choose α = 2+β. This
exponent cannot be improved if we consider sets around the origin as in
[FGaW1,2], but it is not sharp for small balls away from the line x1 = 0,
where the natural dimension is 2.

If we try to sharpen the estimate (3) by working locally, i.e., by allowing
α to depend on the size and position of the ball B, then the constant c
that appears on the right side of (3) may also vary. In fact, the argument
in [FLW] shows that this constant can be chosen independent of B only by
using a value of α which works globally. By re-examining the argument in
[FLW], we find in the general case that, for a given ball B = B(x, r), the
corresponding value of the constant c in (3) is actually c1r|B|−1/α, where c1
depends only on Ω, r0 and the constant c in (2) restricted to subballs of B.
This “constant” clearly varies with α and B. For example, in the Grushin
case mentioned above,

(4) c1r|B|−1/α = c1r[r
2(|x1| + r)β ]−1/α;
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if α = 2 + β, then c1 can be chosen independent of x1 and r, and (4) equals

c1(|x1|/r + 1)−β/(2+β) ≤ c1,

but if α = 2 and r is small compared to |x1|, then (4) is essentially c1|x1|−β/2

with c1 independent of x1.

The fact that the constant c on the right in (3) can be chosen to be
c1r|B|−1/α (= c1r|B|(1/q)−1 in the notation of [FLW]) is not explicitly stated
in [FLW] but can be proved by following the reasoning there. In particular,
we use the estimate preceding (4.3) of [FLW] but leave that estimate in
terms of B rather than the larger balls of radius r0 described there.

In general, we can then localize (3), and so obtain a more precise esti-
mate, by dividing both sides of (3) by r|B|−1/α and rewriting the estimate
as

(3)′
|B|1/α

r
min{|B ∩ E|, |B \ E|}(α−1)/α

≤ c1
\

∂E∩B

(∑

j

〈Xj , ν〉2
)1/2

dHn−1

where c1 depends only on Ω, r0 and the constant c in (2) restricted to
subballs of B. The value of α may of course vary with B.

By applying the weighted isoperimetric inequalities proved in [FGaW1,2]
and [FLW], we will show that there are cases when it is possible to stabilize
(3)′ by replacing the left side by

min{µ(B ∩ E), µ(B \ E)}1/s,

where µ is a fixed measure and s is chosen globally with s > 1. Moreover,
the constant on the right side of the estimate will be a global constant. This
occurs when there exists what we shall call a compensation couple (µ, s). The
aim of the paper is to discuss this idea and to show that such a couple exists
in many important examples, such as the case of the Grushin vector fields
we considered above. Compensation couples also exist for vector fields of the
type studied in [F], which are not smooth and so not of Hörmander type (see
the remark after the proof of Proposition 5 below). Whenever |B ∩ E| and
|B \E| are comparable, the version of the isoperimetric inequality involving
(µ, s) will be equivalent to (3)′, and we will eventually show there are cases
when it is better. On the other hand, there are also situations when the
Lebesgue estimate (3)′ is sharper.

At this point, we make a short remark intended to help avoid misinter-
pretation of our starting inequality (3) in Riemannian settings. We would
like to point out that the volume which appears in the isoperimetric inequal-
ity (3) does not coincide with the Riemannian volume when the distance ̺
comes from a Riemannian metric, i.e., when p = n and X1, . . . ,Xp are
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linearly independent. In fact, the Riemannian measure in this case is ab-
solutely continuous with respect to Lebesgue measure with a density given
by the square root of the reciprocal of the determinant of the matrix as-
sociated with the quadratic form

∑
j〈Xj , ξ〉2. On the other hand, in more

general situations which are not Riemannian in nature, this natural weight
is not suitable, since it is easy to see in many elementary situations (e.g.,
the Heisenberg group in R

3 with its two standard vector fields) that such
a weight would be identically ∞. This surprising phenomenon can be ex-
plained in two ways: first, the Lebesgue measure which appears in (3) reflects
the fact that Lebesgue measure appears in Sobolev and Poincaré inequali-
ties associated with the vector fields, and this measure in turn arises from
the weak formulation of the equation

∑
j X

2
j = f ∈ L2(Ω). But perhaps a

deeper explanation of the reason that the natural volume form is infinite lies
in the fact that the “true” dimension of (Ω, ̺) is in general much larger than
its dimension n as a manifold (as we can see in all our dimensional inequal-
ities); thus, it is not surprising that the formal n-dimensional Riemannian
measure, which is a lower dimensional measure, is infinite.

We will further discuss some facts and examples related to the two
isoperimetric estimates in §2. A point x0 ∈ ∂E is called a characteristic

point of ∂E for {Xj} if ∂E is a C1 manifold in a neighborhood of x0 and if
each Xj(x0) lies in the tangent space of ∂E at x0, i.e., if

∑

j

〈Xj(x0), ν(x0)〉2 = 0,

where ν(x0) is the unit normal to ∂E at x0. We will give a simple proof of
the fact that the characteristic points of a smooth manifold are few in the
sense that the set of characteristic points has Hausdorff dimension at most
n − 2 (see Theorem 8). Moreover, in Theorem 7, we will show that if B is
a small ball centered at a noncharacteristic point of ∂E, then |B ∩ E| and
|B \ E| are comparable, and consequently the two isoperimetric estimates
for B are the same. Examples showing when these two estimates are not
comparable are given at the end of the paper.

Finally, we note that the existence of a compensation couple can be
used in other situations to deal with problems arising from the fact that
the isoperimetric dimension fails to be constant. For instance, some of the
estimates in [FGuW] that involve studying the continuity of operators of
potential type whose kernels are related to strong-A∞ weights rely on the
existence of a compensation couple (µ = λm/(N−1) and s = N/(N − 1) in
the notation used there).

1. Facts about compensation couples. First of all, let us recall
the formula given in Theorem 1 of [NSW] which expresses the measure of a
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generic ball B(x, r). In order to state this formula, let {Y1, . . . , Yq} be the set
of all commutators of X1, . . . ,Xp of order ≤ m, and let us set length Yj = dj ;
if I = (i1, . . . , in) is an n tuple of indices in {1, . . . , q}, set |I| = di1 +. . .+din

.
Then we have, for a suitable L ≥ n,

(5) 0 < c1 ≤ |B(x, δ)|
∑L

j=n λj(x)δj
≤ c2,

where

(6) λj(x) =
( ∑

|I|=j

[det(Yi1 , . . . , Yin
)(x)]2

)1/2

.

Note that each λj is continuous since the Yj are smooth, and that λj(x) ≥ 0.
Throughout this paper, if w is a weight function (i.e., w∈L1

loc(Ω), w ≥ 0)
we put w(E) =

T
E
w dx for any measurable set E. Moreover, if f ∈ L1

loc(E),
we put

4
E
f(x) dx = (1/|E|)

T
E
f(x) dx.

We can now define the notion of a compensation couple.

Definition. Let µ ∈ L1
loc(Ω) be a nonnegative function, and let s > 1

be a real number. We say that (µ, s) is a compensation couple if there exist
constants c, C > 0 such that

(7) c(|B|/δ)s ≤
\
B

µ(y) dy ≤ C(|B|/δ)s

for every ball B = B(x, δ), x ∈ Ω, δ < δ0.

A motivation for the definition is that in case |B ∩ E| and |B \ E| are
comparable (and so are each comparable to |B|), (7) implies that the left
side of (3)′ is µ(B)1/s for any value of α.

Although we restrict our attention to metrics in Euclidean space asso-
ciated with Hörmander vector fields, a similar definition could be given in
any space of homogeneous type in the sense of [CW].

With the notation of (5), (6), we have:

Proposition 1. Let d = min{j ∈ {n, . . . , L} : λj(x) 6≡ 0 in Ω}. If a

compensation couple (µ, s) exists, then s = d/(d − 1) and we can choose

µ(x) = λd(x)
1/(d−1).

P r o o f. Let x be a Lebesgue point of µ such that λd(x) 6= 0. Then by
(7) and (5) we have

µ(x) = lim
δ→0

<
B(x,δ)

µ(y) dy ∼ lim
δ→0

L∑

j=d

λj(x)
s−1δj(s−1)−s.

Since µ(x) < ∞, we must have d(s − 1) ≥ s, i.e., s ≥ d/(d − 1). On the
other hand, since the equivalence above holds at any Lebesgue point of µ,
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if we had s > d/(d− 1) then µ would vanish a.e. on Ω, which is impossible
by (7). Thus, s = d/(d − 1) and µ(x) ∼ λd(x)

s−1 = λd(x)
1/(d−1) a.e.

By A∞ and Ap, 1 ≤ p <∞, we mean the corresponding weight function
classes with respect to metric balls, and we refer to [C] for a discussion of
these classes. We also say that µ ∈ RH∞ with respect to metric balls if

(RH∞) ess sup
B

µ ∼
<
B

µdy;

see [F], [FGuW] and [CUN] for facts about this class.

Proposition 2. If (µ, s) is a compensation couple, then µ ∈ RH∞ with

respect to metric balls. In particular , µ ∈ A∞ with respect to metric balls.

P r o o f. Let y ∈ B = B(x, δ). By Proposition 1,

µ(y) = λd(y)
1/(d−1) = δ−d/(d−1)[δdλd(y)]

1/(d−1)

≤ cδ−d/(d−1)|B(y, δ)|1/(d−1)

≤ cδ−s|B|1/(d−1) by (5) and doubling

≤ c|B|−s
\
B

µ · |B|1/(d−1) by (7)

= c
1

|B|
\
B

µ,

and the result follows.

Proposition 3. With the notation of (5) and (6), if a compensation

couple exists, then for any j ∈ {d, . . . , L} we have

(8) δj
( <

B

λj(y)
1/(d−1) dy

)d−1

≤ cδd
( <

B

λd(y)
1/(d−1) dy

)d−1

for any metric ball B = B(x, δ), x ∈ Ω, δ < δ0. Conversely , if (8) holds for

all j, then (λ
1/(d−1)
d , d/(d − 1)) is a compensation couple. Moreover , (8) is

equivalent to

(8)′ sup
y∈B(x,δ)

δjλj(y) ≤ cδd
( <

B(x,δ)

λd(y)
1/(d−1) dy

)d−1

.

P r o o f. By (5), for all y ∈ B = B(x, δ),

λj(y)δ
j ≤ 1

c1
|B(y, δ)| ≤ c|B|

by doubling. Hence, taking the power 1/(d− 1) and integrating over B, we
get

(9) δj/(d−1)
<
B

λj(y)
1/(d−1) dy ≤ c|B|1/(d−1).
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If a compensation couple (µ, s) exists, then by Proposition 1 and (7),

|B|1/(d−1) = δs |B|s−1

δs
≤ cδd/(d−1)

<
B

λd(y)
1/(d−1) dy,

and the first assertion follows.
Suppose now that (8) holds. By (9) with j = d and B = B(x, δ),\

B

λd(y)
1/(d−1) dy ≤ c(|B|/δ)d/(d−1).

Thus it will be enough to prove the reverse inequality. Again by (5) and
doubling,

|B|1/(d−1) ≤ c
∑

j

λj(y)
1/(d−1)δj/(d−1), y ∈ B.

Integrating over B, we get

|B|d/(d−1) ≤ c
∑

j

\
B

λj(y)
1/(d−1) dy · δj/(d−1)

≤ cδd/(d−1)
\
B

λd(y)
1/(d−1) dy by (8),

and the second assertion follows.
Finally, to see that (8) implies the stronger estimate (8)′, note that since

δjλj(y) ≤ c|Bδ(y)| ≤ c|Bδ(z)| for all y, z ∈ B(x, δ) = B, we have

sup
B
δjλj(y) ≤ c

( <
B

|Bδ(z)|1/(d−1) dz
)d−1

≤ cδd
( <

B

λd(z)
1/(d−1) dz

)d−1

if (8) holds,

which gives (8)′. This completes the proof of Proposition 3.

Compensation couples do not always exist. Consider for instance the
following simple situation in R

3: X1 = ∂1 + 2x2∂3,X2 = ∂2 − 2x1∂3,X3 =
x1∂2. Then [X1,X2] = −4∂3 and

|B(x, δ)| ∼ x2
1δ

3 + δ4,

so that if a compensation couple exists, then by Proposition 1, s = 3/2
and µ(x) = |x1|. Choose now a ball B(0, δ); by [NSW], Theorem 7, we can
assume that

B(0, δ) = (−δ, δ) × (−δ, δ) × (−δ2, δ2),
so that \

B(0,δ)

|x1| dx ∼ δ5, whereas (|B(0, δ)|/δ)3/2 ∼ δ9/2.



16 B. FRANCHI AND R. L. WHEEDEN

We now give some examples of vector fields for which compensation
couples exist.

Proposition 4. Suppose the vector fields Y1, . . . , Yq are free of order

m, i.e., the commutators of length at most m satisfy no linear relationships

other than antisymmetry and the Jacobi identity. Then (1, Q/(Q − 1)) is

a compensation couple, where Q =
∑m

i=1 imi, mi denoting the number of

linearly independent commutators of length i.

P r o o f. The proof is trivial once we note that λj(x) = 0 if j < Q.

Proposition 5. Suppose that X1, . . . ,Xp satisfy Hörmander’s condi-

tion with p = n and Xj = µj(x)∂j , j = 1, . . . , n. Then (
∏

j |µj(x)|1/(n−1),
n/(n−1)) is a compensation couple. Moreover , |µj | ∈ RH∞ for j = 1, . . . , n.

P r o o f. We can use the characterization of metric balls given in [F],
Theorem 2.3. To this end, if x ∈ Ω, r > 0 and j = 1, . . . , n, let

cj(x, r) = {uj(t) : 0 ≤ t ≤ r, where u = (u1, . . . , un)

is any subunit curve with u(0) = x}.
Then we set

Mk(x, r) = sup
{
|µk(s)| : s ∈

n∏

j=1

cj(x, r)
}
,

Q(x, r) =

n∏

k=1

(xk − rMk(x, r), xk + rMk(x, r)).

It follows from [F], Theorem 2.3, that there exists b > 1 such that

(10) Q(x, r/b) ⊂ B(x, r) ⊂ Q(x, r)

for any x ∈ Ω, r < r0.
We will prove that

(11) B(x, r) ⊂
∏

j

cj(x, r) ⊂ B(x, 2br).

Obviously, B(x, r) ⊂ ∏
j cj(x, r). Let us now show that

∏
j cj(x, r) ⊂

Q(x, r); then (11) will follow from (10). Arguing by contradiction, suppose
that this assertion does not hold. Then there would be j ∈ {1, . . . , n} and a
subunit curve γ : [0, T ] → R

n such that γ(0) = x and γ(T ) = y with T ≤ r

and |xj − yj | > rMj(x, r). Then y 6∈ Q(x, r), but y ∈ B(x, r) ⊂ Q(x, r),
which is a contradiction. This proves (11).

By (11), if k ∈ {1, . . . , n},
sup

B(x,r)

|µk(y)| ≤ sup
∏

j cj(x,r)

|µk(y)| = Mk(x, r),
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and

sup
B(x,r)

|µk(y)| ≥ sup
∏

j cj(x,r/(2b))

|µk(y)| = Mk(x, r/(2b)).

On the other hand, Mk(x, r) is doubling in r uniformly with respect to x
since

Mk(x, 2r) =
|Q(x, 2r)|

(4r)n
∏

j 6=k Mj(x, 2r)
≤ |B(x, 2br)|

(4r)n
∏

j 6=k Mj(x, 2r)

≤ c
|B(x, r)|

rn
∏

j 6=k Mj(x, 2r)
≤ c

|Q(x, r)|
rn

∏
j 6=k Mj(x, r)

≤ cMk(x, r).

Hence,

(12) cMk(x, r) ≤ sup
B(x,r)

|µk| ≤Mk(x, r),

and therefore

(13) |B(x, r)| ∼ rn
n∏

k=1

sup
B(x,r)

|µk|.

Due to the diagonal nature of the Xk and the Hörmander condition, it
follows that Mk(x, r0) ≥ c > 0 for some c and all x ∈ Ω and k ∈ {1, . . . , n}.
Therefore, by the doubling property of Mk(x, r) in r, there exists αk ≥ 0 so
that

(14) Mk(x, r) ≥ crαk for all x ∈ Ω and r < r0.

Using the Taylor expansion of µk with center x and order ν − 1 = [αk], we
have

µk(y) = Pν(x; y) +Rν(x; y),

with

|Rν(x; y)| ≤ c|x− y|ν for all y ∈ Ω,

so that

(15)
\

B(x,r)

|µk(y)| dy ≥
\

B(x,r)

|Pν(x; y)| dy − c
\

B(x,r)

|x− y|ν dy.

On the other hand, by (10),

Φk(x, r) := sup
B(x,r)

|µk(y)| ≤ sup
Q(x,r)

|µk(y)| ≤ sup
Q(x,r)

|Pν(x; y)| + c sup
Q(x,r)

|x− y|ν

≤ sup
Q(x,r)

|Pν(x; y)| + crν ,

since Q(x, r) ⊂ B(x, br) ⊂ Beuc(x, cr), where for the last inclusion we use
the fact that ̺(x, y) ≥ c|x − y| by Proposition 1.1 of [NSW]. By (12) and
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(14), and since ν = ε+ αk where ε = [αk] − αk + 1 > 0, there exists r0 > 0
such that if r < r0 then Crν < 1

2Φk(x, r), and hence

(16) Φk(x, r) ≤ 2 sup
Q(x,r)

|Pν(x; y)|.

Analogously,

(17)
\

Q(x,r)

|x− y|ν dy ≤ c|B(x, r)|rν ≤ crε|B(x, r)|Φk(x, r).

Now, since the space of all polynomials of degree ≤ ν − 1 on {|ηj | ≤ 1 : j =
1, . . . , n} is finite-dimensional and hence all norms are equivalent, we have\

Q(x,r/b)

|Pν(x; y)| dy =
\

|yj−xj |<(r/b)Mj(x,r/b)

∣∣∣∣
∑

|β|<ν

Dβµk(x)

β!
(y − x)β

∣∣∣∣ dy.

On putting yj = xj + ηj(r/b)Mj(x, r/b), j = 1, . . . , n, this equals

crn
∏

i

Mi(x, r/b)
\

|ηj |≤1

∣∣∣∣
∑

|β|<ν

Dβµk(x)

β!

(
r

b

)|β|

×Mβ1

1 (x, r/b) · · ·Mβn
n (x, r/b)ηβ1

1 · · · ηβn
n

∣∣∣∣ dη

≥ c|B(x, r)|
∑

|β|<ν

∣∣∣∣
Dβµk(x)

β!

∣∣∣∣r
|β|Mβ1

1 (x, r/b) · · ·Mβn
n (x, r/b)

≥c|B(x, r)| sup
Q(x,r)

|Pν(x; y)|.

Hence by (15), (10) and (17),<
B(x,r)

|µk(y)| dy ≥ 1

|B(x, r)|
\

Q(x,r/b)

|Pν(x; y)| dy − crεΦk(x, r)

≥ c1 sup
Q(x,r)

|Pν(x; y)| − crεΦk(x, r)

≥ c1
2
Φk(x, r) − crεΦk(x, r) by (16)

≥ c1
4
Φk(x, r) =

c1
4

sup
B(x,r)

|µk|,

if r < r0, r0 sufficiently small. This proves the last assertion in Proposition 5.
Now, if B = B(x, r),\

B

|µ1 · · ·µn|1/(n−1) dy ≤ (sup
B

|µn| · · · sup
B

|µn|)1/(n−1)|B|

≤ c(|B|/r)n/(n−1) by (13),
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and then the second inequality in the definition of compensation couple is
proved.

To prove the opposite inequality, recall the following facts shown in
[FGuW], Proposition 2.3:

(i) if w ∈ RH∞ and u ∈ A∞, then wu ∈ A∞;
(ii) if w ∈ RH∞, then wβ ∈ RH∞ for any β > 0.

Hence we can write\
B

|µ1 · · ·µn|1/(n−1) dy =
\
B

|µ1|1/(n−1)|µ2 · · ·µn|1/(n−1) dy,

where |µ1|1/(n−1)∈RH∞, |µ2 · · ·µn|1/(n−1)∈A∞, and thus |µ2 · · ·µn|1/(n−1)

∈ Ap for some p ≥ 1. Then\
B

|µ1|1/(n−1)|µ2 · · ·µn|1/(n−1) dy

≥ c
( <

B

|µ1|1/p(n−1) dy
)p \

B

|µ2 · · ·µn|1/(n−1) dy

≥ c(sup
B

|µ1|)1/(n−1)
\
B

|µ2 · · ·µn|1/(n−1) dy by (ii)

≥ c(sup
B

|µ1| · · · sup
B

|µn|)1/(n−1)|B| by iterating the same argument

≥ c(|B|/r)n/(n−1) by (13),

and Proposition 5 is completely proved.

R e m a r k. It follows from the proof of the previous result that the exis-
tence of a compensation couple for Hörmander vector fields µ1∂1, . . . , µn∂n

relies on the fact that the functions |µ1|, . . . , |µn| are RH∞ weights with
respect to the metric ̺, and the main point of the proof consists in show-
ing that the supremum of |µj | on a metric ball is bounded by its average
on the same ball. Thus, a compensation couple still exists if we drop the
smoothness assumptions on µ1, . . . , µn provided that the metric ̺ associ-
ated with them is finite and continuous with respect to the Euclidean topol-
ogy, and that |µ1|, . . . , |µn| are weight functions in RH∞. This happens
for instance if µ1, . . . , µn satisfy the assumptions (H2), (H3) and (H4) of
[F]. The continuity of ̺ follows in fact from Remark 4, p. 133, therein.
Thus, let us prove that µj (≥0) belongs to RH∞ for j = 1, . . . , n. Let
u = (1/

√
n, . . . , 1/

√
n), and denote by D the set of points ξ of the form

ξ = λη, with λ > 0, |η − u| < 1/(2
√
n) and such that 1/2 ≤ |ξ| ≤ 1. If

|η − u| < 1/(2
√
n), then ηj ≥ 1/(2

√
n); on the other hand, if ξ = λη ∈ D,

then 1/2 ≤ |ξ| ≤ λ|η| ≤ 3λ/2, so that 1 ≥ ξj ≥ 1/σ
√
n = ε0, and then, with

the notations of [F], D ⊂ B(0, 1) ∩∆ε0
.
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Now, by [F], Remark 3 on p. 133 and Proposition 3.1, we have for x ∈ Ω
and δ ∈ (0, δ0),<

B(x,δ)

µj(y) dy ≥ 1

|B(x, δ)|
\

H(δ/
√

n,x,D)

µj(y) dy

=
1

|B(x, δ)|
\
D

∣∣∣∣det
∂H

∂ξ
(δ/

√
n, x, ξ)

∣∣∣∣µj(H(δ/
√
n, x, ξ)) dξ

≥ c
\
D

µj(H(δ/
√
n, x, ξ)) dξ

= c
\

D∩Sn−1

dω

1\
1/2

µj(H(δ/
√
n, x, ̺ω)) d̺

= c
\

D∩Sn−1

dω

1\
1/2

µj(H(̺δ/
√
n, x, ω)) d̺,

since H(θs, x, ξ) = H(s, x, θξ), by the definition of H and the uniqueness of
the Cauchy problem. On the other hand, putting ̺δ/

√
n = s, we see that

the last integral is bounded below by

c1δ

\
D∩Sn−1

dω

δ/
√

n\
0

µj(H(s, x, ω)) ds

≥ cMj(x, δ/
√
n) by hypothesis (H.4) in [F]

≥ cMj(x, δ),

by doubling ([F], Proposition 2.5). Since all constants in the above inequality
are independent of δ and (locally) of x, we have proved that |µj | ∈ RH∞
for j = 1, . . . , n.

2. Isoperimetric estimates. Let us now show how the existence of
a compensation couple can be used to improve the isoperimetric inequal-
ity (3)′. We first recall from [FLW] that if w1, w2 are doubling weights
such that w1 is continuous and belongs to A1, and w2 is doubling (i.e., the
measure w2(x) dx is doubling), then the isoperimetric inequality (3)′ can be
replaced by

(3∗)
w1(B)

rw2(B)1/q
min{w2(B ∩E), w2(B \ E)}1/q

≤ c1
\

∂E∩B

(∑

j

〈Xj , ν〉2
)1/2

w1 dHn−1
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where q is such that

(18)
r(I)

r(J)

(
w2(I)

w2(J)

)1/q

≤ c
w1(I)

w1(J)

for all metric balls I, J with I ⊂ J ⊂ B, where r(I) denotes the radius
of I and c1 depends only on the constant c in (18) corresponding to the
particular ball B, and the (local) A1 constant of w1 and doubling constant
of w2. Again, as in the case when w1 = w2 ≡ 1, this estimate is not explicitly
stated in [FLW], but it follows for two weights w1, w2 in the same way that
we indicated in the introduction when w1, w2 ≡ 1.

If (µ, s) is a compensation pair and we choose w1 ≡ 1 and w2 = µ (which
is doubling since it belongs to A∞), then (18) takes the form

(19)

(
r(J)

|J | · |I|
r(I)

)(s/q)−1

≤ c1,

which is trivially satisfied uniformly in B if q = s. Thus we have the
following result.

Theorem 6. Let E,B and ν be as in Theorem 0. If a compensation

couple (µ, s) exists, then

(20) min
{ \

B∩E

µ(y) dy,
\

B\E

µ(y) dy
}1/s

≤ c
\

∂E∩B

( ∑

j

〈Xj , ν〉2
)1/2

dHn−1

with c independent of E and B.

Starting from the relative isoperimetric inequality (20), by a covering ar-
gument, we can pass to a global one. This global result can also be obtained
directly from the corresponding weighted global inequalities in [FGaW1,2].

We now discuss some facts concerning relationships between the two
isoperimetric estimates (3)′ and (20). As mentioned earlier, the two are
equivalent if |B∩E| and |B\E| are comparable. We first prove the following
result concerning the noncharacteristic points of a smooth boundary ∂E. As
always, {Xj} denotes the fixed collection of Hörmander vector fields.

Theorem 7. Let Σ denote the boundary of E, where E is a bounded ,
connected subset of Ω lying on one side of Σ. If x0 ∈ Σ,Σ is of class C1

in a neighborhood U of x0, and x0 is not a characteristic point of Σ for

{Xj} (i.e.,
∑

j〈Xj(x0), ν(x0)〉2 > 0, where ν(x0) is the outer unit normal

to Σ), then |B(x0, r)∩E| and |B(x0, r)\E| are comparable to |B(x0, r)| for

sufficiently small r > 0.
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P r o o f. Without loss of generality, we may assume that x0 = 0. Let
D(0) denote the vector space generated byX1(0), . . . ,Xp(0). By hypothesis,
ν(0) is not orthogonal to D(0), so that if we express

ν(0) = νX + u with νX ∈ D(0), u ⊥ D(0),

then νX 6= 0.

Let ψ solve the Cauchy problem ψ̇ =
∑

j λjXj(ψ), ψ(0) = 0, where the
λj are chosen so that νX =

∑
j λjXj(0). We will prove that deuc(ψ(r), Σ∩U)

∼ r as r → 0+, where deuc denotes the usual Euclidean distance. Using a
rotation and shrinking U if necessary, we may assume that there exists
f ∈ C1(U,R) such that Σ ∩ U = {x ∈ U : f(x) = 0} and ∇f(0) = en =
(0, . . . , 0, 1). Then νX = (ξ′, θ), with ξ′ ∈ Rn−1 and θ ∈ R, θ 6= 0: indeed, if
θ = 0, then we would have

0 = 〈ν(0), νX 〉 = |νX |2 + 〈νX , u〉 = |νX |2,
a contradiction. Thus we can consider the map F : U → R

n defined by

F (x1, . . . , xn) = (x1, . . . , xn−1, f(x)).

Keeping in mind that the Jacobian matrix of F at x = 0 is the identity, and
by shrinking U if necessary, we obtain

|F (x) − F (y)| ∼ |x− y| if x, y ∈ U.

It is easy to see that F (Σ ∩ U) = F (U) ∩ {yn = 0} and that

deuc(F (ψ(r)), F (Σ ∩ U)) = f(ψ(r)) = r〈∇f(ψ(tr)), ψ̇(tr)〉
for a suitable tr ∈ (0, r). But when r → 0+,

〈∇f(ψ(tr)), ψ̇(tr)〉 → 〈∇f(0), νX〉 = θ 6= 0,

and then deuc(ψ(r), Σ ∩ U) ∼ r as r → 0+.

On the other hand, by definition of ψ, there exists a positive constant c
such that ψ(ct) is a subunit curve, and then

̺(ψ(r), 0) ≤ c1r

(in fact, it is easy to see that ̺(ψ(r), 0) ∼ r). For σ, ε > 0 to be chosen,

consider the ball B̃ = B(ψ(εr), σr). If y ∈ B̃, then

̺(y, 0) ≤ ̺(y, ψ(εr)) + ̺(ψ(εr), 0) < σr + c1εr < r

if σ, ε are small enough, and hence B̃ ⊂ B(0, r). Also, since |x − y| ≤
c2̺(x, y), B̃ ⊂ Beuc(ψ(εr), c2σr). Thus, for any y ∈ B̃ and z ∈ U ∩ Σ, we
have

|y − z| ≥ |z − ψ(εr)| − |ψ(εr) − y| ≥ |z − ψ(εr)| − c2σr

≥ c3εr − c2σr ≥ 1
2
c3εr > 0
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if σ is small enough. Hence, B̃ ∩ Σ = ∅ and then B̃ ⊂ B(0, r) \ E. On

the other hand, by doubling, |B̃| ∼ |B(0, r)|. We may repeat the same
argument with ν(0) replaced by −ν(0), and then we have proved that both
|B(0, r)∩E| and |B(0, r)\E| are equivalent to |B(0, r)|. This completes the
proof of Theorem 7.

Let us now prove a result concerning the size of the set of characteristic
points. We use Hγ to denote γ-dimensional Hausdorff measure in R

n.

Theorem 8. Let Σ be a C1 manifold of codimension 1 in R
n, and let

Σ0 be the set of characteristic points of Σ (i.e., the set of points x ∈ Σ such

that Xj(x) is tangent to Σ at x for j = 1, . . . , p). If n > 2, then for any

ε > 0,Hn−2+εp(Σ0) = 0. If n = 2, the set Σ0 consists of isolated points.

Moreover , these results are sharp.

P r o o f. To show that the result is sharp, we consider the following
example in R

3:

X1 = ∂1, X2 = x1∂2, X3 = ∂3

and Σ = {x2 = 0}. In this case, Σ0 = {x1 = x2 = 0} is a linear manifold of
dimension 1 in R

3.

Let x ∈ Σ0 be a characteristic point. By a local change of variables, we
can map x into the origin and Σ into {xn = 0}. Thus, since the Hörmander
condition is invariant under diffeomorphisms, we can restrict ourselves to
proving the assertion in a neighborhood U of the origin whereΣ = {xn = 0},
so that if we use the notation x = (x′, xn) with x′ ∈ R

n−1, xn ∈ R, and let
cnj(x) denote the coefficient of ∂n in Xj , then Σ0 is given by

Σ0 = {x = (x′, 0) ∈ U : cn1(x
′, 0) = . . . = cnp(x

′, 0) = 0}.
Next, we will prove that there exists at least one index i ∈ {1, . . . , p}

and a multi-index β ∈ (N ∪ {0})n−1 such that

(21) Dβ
x′cni(0) 6= 0.

To show this, we will argue by contradiction, proving that if this statement
does not hold, then the Hörmander condition fails to be true at the origin.
More precisely, we will prove that each iterated commutator of X1, . . . ,Xp

has zero nth component at the origin, and so lies in Σ, a contradiction since
then ∂n does not belong to the Lie algebra generated by X1, . . . ,Xp at 0. It
will be enough to prove the following assertion:

Let X =
∑

l cl∂l and Y =
∑

l dl∂l be smooth vector fields. If Dα
x′cn(0) =

Dα
x′dn(0) = 0 for every α ∈ (N ∩ {0})n−1, then the same is true for [X,Y ],

i.e.,

Dα
x′([X,Y ]n)(0) = 0 for every α ∈ (N ∪ {0})n−1.
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Now

Dα
x′ [X,Y ]n = Dα

x′

(∑

l

cl(∂ldn)
)
−Dα

x′

(∑

l

dl(∂lcn)
)

= I1 − I2.

Let us prove that, for instance, I1 vanishes at x = 0. By Leibniz’ formula,

I1 =
∑

γ≤α

(
α

γ

)∑

l

(Dγ
x′cl)(D

α−γ
x′ ∂ldn)

=
∑

l≤n−1

∑

γ≤α

(
α

γ

)
(Dγ

x′cl)(D
α−γ
x′ ∂ldn)

+
∑

γ≤α

(
α

γ

)
(Dγ

x′cn)(Dα−γ
x′ ∂ndn) = 0

at x = 0, since (Dγ
x′cn)(0) = 0 and (Dα−γ

x′ ∂ldn)(0) = 0 where l ≤ n − 1,
since the derivative is taken only with respect to the first n − 1 variables.
Thus (21) is proved.

Suppose now n > 2. Since Σ0 ⊂ {(x′, 0) ∈ U : cni(x
′, 0) = 0}, where

i is as in (21), it will be enough to prove that the function f defined in a
neighborhood U ′ of the origin in R

n−1 by

f(x′) = cni(x
′, 0)

vanishes on a set of Hausdorff dimension at most n − 2. Arguing as in [S],
p. 343, there is a vector ξ′ ∈ R

n−1, |ξ′| = 1, such that

|(ξ′ · ∇x′)kf(0)| > 0 for k = |β|.
Then, by using a rotation and denoting the generic point x′ ∈ R

n−1 by
(t, x′′), t ∈ R, x′′ ∈ R

n−1, we may assume that

∂k

∂tk
f(t, x′′)

∣∣∣∣
(t,x′′)=(0,0)

> 0.

Moreover, without loss of generality, we may also assume that

∂l

∂tl
f(t, x′′)

∣∣∣∣
(t,x′′)=(0,0)

= 0 for l = 0, 1, . . . , k − 1,

so that we can apply Malgrange’s preparation theorem (see [H], Theo-
rem 7.5.5) and write, by shrinking U ′ if necessary,

f(t, x′′) = g(t, x′′)(tk + ak−1(x
′′)tk−1 + . . .+ a0(x

′′))

with g(t, x′′) > 0 in U ′ and aj(0) = 0 for j = 0, . . . , k−1. Thus, the theorem
will be completely proved for n > 2 by showing that

(22) {(t, x′′) ∈ U′ : tk+ak(x′′)tk−1+ . . .+a0(x
′′) := pk(t, x′′) = 0}⊂

k⋃

j=1

Vj ,

where each Vj is an (n− 2)-dimensional manifold.
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To prove (22), we will argue by induction on k. If k = 1, the set
{t + a0(x

′′) = 0} is an (n − 2)-dimensional manifold in R
n−1. Suppose

now that (22) holds for k and let us prove that it also holds for k + 1. We
can write

{pk+1(t, x
′′) = 0} =

{
pk+1(t, x

′′) = 0,
∂

∂t
pk+1(t, x

′′) 6= 0

}

∪
{
pk+1(t, x

′′) = 0,
∂

∂t
pk+1(t, x

′′) = 0

}
.

The first set above is an (n − 2)-dimensional manifold. The other one is
contained in

{
∂
∂tpk+1(t, x

′′) = 0
}
, which is contained in the union of k

submanifolds of dimension n−2 by the induction hypothesis since ∂
∂tpk+1 is

a polynomial in t with the same structure as pk. This completes the proof
for n > 2.

In case n = 2, by applying Rolle’s theorem repeatedly, it follows that
the set of zeros of f(x′) cannot have accummulation points, or else the
derivatives of all orders of f would vanish at 0. Hence the point x′ = 0 is
isolated, and the proof of Theorem 8 is complete.

Let us show that inequality (20) improves some known isoperimetric
inequalities for Grushin vector fields, and let us consider the case n = 2
for simplicity. If X1 = ∂1,X2 = xβ

1∂2, β ∈ N, then by Proposition 5, the
pair (µ, s) = (|x1|β , 2) is a compensation couple. We will check (20) for
sets that are not far away from the degeneration line x1 = 0 and that
do not intersect this line in a large set. (However, note that in any case
1/s = 1/2 ≤ (α − 1)/α = (β + 1)/(β + 2) with α = β + 2 as in (2), for B
with center 0.) Thus, consider (by a simple limit argument) sets E of the
form Eγ,δ = {(x1, x2) : 0 ≤ x1 ≤ δ, |x2| ≤ xγ

1} for 0 < δ < 1 and γ ≥ β + 1.
We can choose, by the characterization of the balls for Grushin type vector
fields ([FL], [F]), B = [−δ, δ] × [−δβ+1, δβ+1], so that the left-hand side of
(20) takes the form

( δ\
0

|x1|β+γ dx1

)1/2

∼ δ(β+γ+1)/2,

while the left-hand side of (3)′ or (3) is

( δ\
0

|x1|γ dx1

)(β+1)/(β+2)

∼ δ(γ+1)(β+1)/(β+2) .

Since (β + γ + 1)/2 < (γ + 1)(β + 1)/(β + 2) when γ > β + 1 and since
0 < δ < 1, it follows that (20) is a better estimate than (3)′ in the sense
that (20) implies (3)′.
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On the other hand, if we instead pick E to be the set x2 > |x1|γ and
choose γ < β + 1, we obtain an example where (3)′ is better than (20):
in fact,

|B|1/α

δ
min{|B ∩ E|, |B \E|}(α−1)/α ∼ |B ∩E|(β+1)/(β+2)

∼
( δβ+1\

0

x
1/γ
2 dx2

)(β+1)/(β+2)

∼ δ(β+1)2(γ+1)/γ(β+2),

but

min{µ(B ∩ E), µ(B \ E)}1/s = µ(B ∩ E)1/2

=
( \\

B∩E

|x1|β dx1 dx2

)1/2

∼
( δβ+1\

0

( x
1/γ
2\
0

xβ
1 dx1

)
dx2

)1/2

∼ δ(β+1)(β+γ+1)/(2γ) .

Since β + 1 > γ, this last exponent is larger than the other one, and conse-
quently (3)′ implies (20) for small δ. Note that by choosing γ > 1, ∂E is a
C1 curve in this case and the origin is a characteristic point for X1,X2.
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