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Interpreting reflexive theories
in finitely many axioms

by

V. Yu. S h a v r u k o v (Utrecht)

Abstract. For finitely axiomatized sequential theories F and reflexive theories R, we
give a characterization of the relation ‘F interprets R’ in terms of provability of restricted
consistency statements on cuts. This characterization is used in a proof that the set of Π1
(as well as Σ1) sentences π such that GB interprets ZF + π is Σ0

3 -complete.

0. Introduction. Relative interpretability among formal theories has
been particularly well studied in two special cases: that of finitely axioma-
tized sequential theories (see Smoryński [14], Pudlák [11], Visser [16] etc.),
and of reflexive, esp. essentially reflexive, theories (see Lindström [7], [8]
etc.). There are nice characterizations of the interpretability relation be-
tween a pair of theories from the same one of the two indicated classes.
These mostly involve provability of restricted consistency statements on
cuts, versions of Π1 conservativity relativized to cuts, and provability in
weak theories of relative (restricted) consistency. For essentially reflexive
theories it has been shown by Solovay and Lindström that the relation of
relative interpretability among these is Π0

2 -complete. More specifically, the
set of Σ1 sentences σ such that PA interprets PA+σ already is Π0

2 -complete
(Lindström [7]; see also Jeroslow [6]). As for the other case, interpretability
of finitely axiomatized theories is clearly a Σ0

1 matter.
In the present paper we shall be looking at a crossway case—we consider

interpretability of a reflexive theory R in a finitely axiomatized sequential F.
In Section 2 we shall give a characterization of this interpretability relation in
terms similar to those of earlier characterizations for other pairs of classes
of theories. In fact, the relevant ingredients of the proof have been lying
around for some time scattered through a number of papers by Pudlák and
Visser.

1991 Mathematics Subject Classification: Primary 03F25, 03D35; Secondary 03F30.

[99]



100 V. Yu. Shavrukov

Relying on this characterization, we show in Section 3 that the set of
Π1 (as well as Σ1) sentences π such that F interprets R + π is, under an
auxiliary sufficient strength condition on R, Σ0

3 -complete. Earlier progress
in this direction included an unpublished proof by Švejdar that the set of
(Π2, I believe) sentences γ such that GB interprets ZF + γ is both Σ0

2 - and
Π0

2 -hard. We shall also mention an example to the effect that the sufficient
strength condition is undroppable.

Due to the fact that cuts, which are generally not closed under expo-
nentiation, are instrumental in dealing with interpretability in finitely ax-
iomatized theories, weak arithmetic turns out to be the ambient context
for our arguments. (This may be seen as somewhat ironic, for the main
objective of the present paper is the strengthening of the above-mentioned
Švejdar’s result on GB and ZF that are, by all accounts, fairly strong theo-
ries.) Consequently, we need to recall many weak-arithmetical lemmas and
some other background material. We do that in Section 1, where we also
establish proper setting for developments of the paper.

Our Σ0
3 -completeness result shows for the first, to my knowledge, time

some sophistication on the part of Π1 sentences with respect to interpretabil-
ity, for the set of Π1 sentences π such that T interprets T + π is r.e. both
for T finitely axiomatized and for T essentially reflexive. Note also that
Σ0

3 -completeness shows that relative interpretability among formal theories
in finite languages is generally just as arithmetically complex as it sounds
(there is an interpretation . . . for every T2-proof . . . there is a T1-proof).

I would like to thank Lev Beklemishev, Alessandro Berarducci, Richard
Sommer, Vı́tězslav Švejdar, Rineke Verbrugge, and Albert Visser for helpful
discussions and sound suggestions.

1. Preliminaries. All theories in this paper are understood to be clas-
sical r.e. consistent ones and to speak a first-order language with at most
finitely many predicate and function symbols. We refer the reader to Hájek
& Pudlák [5, Chapter V] for the individual theories that we consider (I∆0,
I∆0 + Ω1 etc.).

∆0 is the class of formulas in the orthodox arithmetical language
(0, S,+,×) with all quantifiers bounded. We write ∆0(ω1) if we allow the
function ω1(x) = xlog x into bounding terms as well as matrices of formu-
las. To terms of the extended language we refer as ω1-terms. Polynomial-
length transformations of syntactical objects correspond to transformations
of gödelnumbers bounded by suitable ω1-terms. Recall that I∆0 +Ω1 proves
induction for ∆0(ω1) formulas; cf. Hájek & Pudlák [5, Proposition V.1.3].
Proposition V.1.4 of the same book says that whenever I∆0 + Ω1 |− ∀x∃y
δ(x, y) with δ(x, y) in ∆0(ω1), there is an ω1-term f(x) such that I∆0+Ω1 |−
∀x ∃y ≤ f(x) δ(x, y). It is easily verified that I∆0 +Ω1 proves every ∀∆0(ω1)
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formula equivalent to a ∀∆0 one. We shall ambiguously call both these
classes Π1. ∃∆0 (or ∃∆0(ω1)) formulas are Σ1. The subclasses Σb

1(ω1) and
Πb

1(ω1) of ∆0(ω1) are the same as Σb
1 and Πb

1 of Buss [3, §1.6] respec-
tively, but with ω1 instead of Buss’ # function. Those formulas that are
(I∆0 + Ω1)-equivalent both to a Σb

1(ω1) and a Πb
1(ω1) formula are ∆b

1(ω1).
Theories T considered in this paper are supposed to come equipped with

a fixed translation t of the arithmetical language into that of T. We denote
by Γ the class of those formulas of T that are translations of arithmetical
formulas from Γ, for any of the formula classes Γ introduced above, and
provide no notational distinction between arithmetical formulas proper and
those translated into the language of T. By saying that T contains an arith-
metical theory S we mean that t is an interpretation of S in T.

We use dyadic numerals throughout the paper as in Buss [3, §2.1]. If ϕ(x)
is an arithmetical formula and n is a numeral then ϕ(n) translated into the
language of T is either of the formulas ∃x (‘x = n’ ∧ ϕ(x)), ∀x (‘x = n’ →
ϕ(x)), where

‘x = n’ ≡ ∃y logn, . . . , y0

(
x = y logn ∧ y0 = ε0 ∧

∧∧
log n>i≥0

yi+1 = 2yi + εi

)

and εi are appropriate bits in the binary expansion of n (cf. Visser [17,
7.3]). By log n we actually mean blog2(max{1, n})c (so that, for n > 0, one
has m ≤ log n iff 2m ≤ n). Let p·q denote gödelnumbers. The set {pϕ(n)q |
all n} is ∆b

1(ω1)-definable because {p‘x = n’q | all n} is defined by induction
on construction of dyadic numerals. The function n 7→ pϕ(n)q is Σb

1(ω1)-
definable for a similar reason (see Buss [3, §§7.2–3]). Hence substitution of
pϕ(n)q for a variable in a ∆b

1(ω1) or more complex formula does not push
up its complexity (Buss [3, §2.3]). We shall be consistently omitting the
numeral bar, confusion between numerals and variables being unlikely.

We proceed to list prerequisite facts and lemmas. In Paris et al . [10,
Theorem 6] (the ω1-less variant of) the following proposition is supplied
with a highly mysterious proof.

1.1. Proposition. Let x v y be a ∆0(ω1) relation on a domain specified
by a ∆0(ω1) formula δ(z). Suppose I∆0 + Ω1 proves that v is reflexive and
transitive. Then I∆0+Ω1 proves that for each z there is a v-minimal element
among {u ≤ z | δ(u)} unless this set is empty.

P r o o f (I∆0 + Ω1). This follows by straightforward induction on z.

Counting logarithmically small amounts of elements of a ∆0 set is a well-
known procedure (see Paris & Wilkie [9]). In the sequel we shall need to have
simple properties of the counting formulas verifiable in a weak theory.

1.2. Proposition. Let δ(x, y) be a ∆0 formula. There is then a ∆0

formula #z{x < v | δ(x, y)} = u in variables v, z, y, and u, which, under
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the condition v ≤ log z, holds true if and only if the cardinality of the set
{x < v | δ(x, y)} is equal to u. Moreover , this formula can be chosen so that
I∆0 proves:

(a) v ≤ log z → ∃!u (#z{x < v | δ(x, y)} = u);

(b) v ≤ log z ∧ ∀x < v (δ(x, y1)→ δ(x, y2))

→. #z{x < v | δ(x, y1)} ≤ #z{x < v | δ(x, y2)};
(c) v1 ≤ v2 ≤ log z → #z{x < v1 | δ(x, y)} ≤ #z{x < v2 | δ(x, y)};
(d) v ≤ log z → #z{x < v | δ(x, y)} ≤ v;

(e) v ≤ log z1 ∧ v ≤ log z2

→. #z1{x < v | δ(x, y)} = #z2{x < v | δ(x, y)}.
R e f e r e n c e. The formula in question is described in e.g. Berarducci

& D’Aquino [1]. All clauses can be easily inferred from Lemma 2.4 of that
paper.

The reader may consult Hájek & Pudlák [5, V.3(c)] for a ∆0 definition
of the relation y = 2x and its simple properties as known to I∆0 that in the
sequel will be taken for granted. A prominent role in our exposition will be
played by the superexponential function:

1.3. Proposition. There exists a ∆0 formula z = 2yx such that I∆0

proves:

(a) z = 2yx ∧ w = 2yx →. z = w;
(b) 2x0 = x;
(c) z = 2yx+1 ↔ ∃w ≤ z (w = 2yx ∧ z = 2w);
(d) z = 2yx+t ↔ ∃w ≤ z (w = 2yx ∧ z = 2wt );
(e) z = 2yx ∧ u ≤ y →. ∃w ≤ z (w = 2ux);
(f) z = 2ux ∧ w = 2vx →. z ≤ w ↔ u ≤ v;
(g) z = 2yx → z ≥ y.

R e f e r e n c e. See e.g. D’Aquino [4, 3.1] or Wilkie [19, section 3], where
iteration of ∆0-definable fast growing functions is handled in greater gener-
ality.

1.4. Convention. Consider the following formulas:

2yx ≤ z ≡ ∃w ≤ z (w = 2yx),

‘z ≤ 2yx’ ≡ ∀w < z (w 6= 2yx),

‘2ux ≤ 2vy’ ≡ (x ≤ y ∧ ‘u ≤ 2vy−x’) ∨ (x ≥ y ∧ 2ux−y ≤ v),

and analogous formulas for < instead of ≤. Note that all these are ∆0

formulas. They allow one to speak of the value of the superexponential
function without, in the second and the third formula, any commitment as
to the existence of this value other than that implied by the context. This
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circumstance is stressed by the use of quotes, although we shall dispense
with this practice after the next lemma. Henceforth, it is understood that
we are reasoning in terms of these formulas whenever we consider within a
formal theory the value of superexponential function whose convergence we
do not claim.

The next proposition spells out the coherence conditions between the
‘real’ and the ‘imaginary’ values of 2yx.

1.5. Proposition (I∆0). (a) x ≤ y ↔ ‘2zx ≤ 2zy’;
(b) y ≤ z ↔ ‘2yx ≤ 2zx’;
(c) ‘2ux ≤ 2vy’↔ ‘2vy ≮ 2ux’;
(d) z = 2ux →. 2vy ≤ z ↔ ‘2vy ≤ 2ux’, and analogously for < in place of ≤;
(e) z = 2ux →. ‘z ≤ 2vy’↔ ‘2ux ≤ 2vy’, also for <;
(f) ‘2yx ≤ 2yx’;
(g) ‘2ux ≤ 2vy’ ∧ ‘2vy ≤ 2wz ’→. ‘2ux ≤ 2wz ’;
(h) ‘2ux ≤ 2vy’ ∧ y < x→. u < v.

P r o o f (I∆0). (a) follows from 1.3(g).
(b) and, for that matter, (f) are immediate.
(c) holds on the strength of the obvious ‘t < 2wz ’ ∨ t = 2wz ∨ t > 2wz .
(d) Let us handle one particular case of the (←) direction by way of

example. Suppose z = 2ux, ‘2vy ≤ 2ux’, and x ≥ y, which implies ‘v ≤ 2ux−y’.
By 1.3(d) there is a w ≤ z such that v ≤ w = 2ux−y and z = 2wy . By 1.3(e)
one finds a t ≤ z, t = 2vy, so that 2vy ≤ z = 2ux. If, on top of that, we had
‘2vy < 2ux’, i.e. ‘v < 2ux−y’, then this would result in v < w, which would,
by 1.3(f), entail 2vy < 2wy = z.

(e) follows at once from clauses (c) and (d).
(g) The proof splits into six cases according to the relative ordering of x,

y, and z. We only treat one case. Suppose x ≤ z ≤ y, so that ‘u ≤ 2vy−x’ and
2vy−z ≤ w. We have to show ‘u ≤ 2wz−x’. Assume, for a contradiction, u >
2wz−x = t. Then we have ‘2wz−x ≥ 2vy−x’ as implied by ‘2wz ≥ 2vy’, and hence,
by clause (d), t ≥ 2vy−x ≥ u, contradicting u > t. Therefore ‘u ≤ 2wz−x’.

(h) One considers 2vx and argues by contraposition using clauses (a), (b),
(g), and (c).

The depth of quantifier alternations in a formula ϕ is denoted by %(ϕ).
For a proof p we set %(p) = %(α) if α is a formula occurring in p with % the
largest among such (cf. Visser [18, 2.4]).

1.6. Proposition. Suppose F is a finitely axiomatized theory. Then there
is a constant H such that for every formula ϕ(x) and every n ∈ ω, if F |−
ϕ(n) then F proves ϕ(n) by a proof p with %(p) ≤ %(ϕ(x)) +H.
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C o m m e n t. This is similar to Lemma 2.6 in Pudlák [11]. As concerns
free variables, recall that, by our conventions, %(ϕ(n)) ≤ %(ϕ(x)) + 1.

We restrict the notion of proof predicates x : ¤ϕ (see Buss [3, §7.3]) to
Σb

1(ω1) ones satisfying I∆0 + Ω1 |− x : ¤ϕ↔ ∃y ≤ x (y : ¤ϕ), so that the x
in x : ¤ϕ should be thought of as an upper bound rather than a code of a
proof. The underlying formula α(x) specifying the set of non-logical axioms
is always presupposed to be ∆b

1(ω1). One can effectively associate such a
proof predicate to any effective presentation of an r.e. theory, although this
may involve specifying an axiom set different from (but equivalent to) the
original one. If we are speaking of a finitely axiomatized theory then α(x)
is assumed to list all the finitely many non-logical axioms:

α(x) ≡ ∨∨
axioms α of T

x = pαq .

Analogously, we introduce a restricted version x :¤k ϕ which is the same
as x : ¤ϕ except that it only accepts proofs with % ≤ k + K, where K is
some fixed constant which will only be specified when relevant. ¤ϕ means
∃x (x : ¤ϕ) and ♦ stands for ¬¤¬. Similarly for ¤k.

I∆0 + Ω1 verifies simple properties of these predicates, like e.g. the clo-
sure of ¤ under first-order deductive rules and the closure of ¤k under
propositional logic.

1.7. Proposition. Let ¤ be a proof predicate of a theory T containing
I∆0 + Ω1.

(a) Let σ(x) be a Σb
1(ω1) formula. There is a k ∈ ω such that I∆0+Ω1 |−

σ(x)→ ¤k σ(x).
(b) Let δ(x) be a ∆0(ω1) formula. There is a k ∈ ω such that

I∆0 + Ω1 |− δ(x) ∧ ∃y (y = 22x)→. ¤k δ(x).

C o m m e n t. (a) Buss [3, §7.4] and Wilkie & Paris [20, Theorem 6.4]
show that for some finite subtheory S of I∆0 + Ω1 it is provable in I∆0 + Ω1

that if σ(x) holds then S proves σ(x) by a proof whose % does not exceed
%(σ(x)) by more than a constant. When dealing with interpreted arithmetic,
recall that to each S-proof p there corresponds a T-proof q with %(q) linear
in %(p) and, since S is finitely axiomatized, with length of q polynomial in
that of p.

(b) This is established by an argument similar to (a) using (the proof
of) Proposition 2.10 of Berarducci & Verbrugge [2].

All cuts in this paper are understood to be closed under ω1 (cf. Hájek
& Pudlák [5, III.3(c)]). If ϕ(x) is an arithmetical formula, let ϕJ (x) be
the result of relativizing all unbounded quantifiers in ϕ(x) to a T-cut J .
If T contains I∆0 then for every instance ι of ∆0 induction axiom one has
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T |− ιJ because ι is (equivalent to) a Π1 sentence. Thus we have the whole
of I∆0 + Ω1 on any cut.

1.8. Proposition. Let J be a cut in a theory T containing I∆0. For
every k ∈ ω there exists a cut K such that I∆0 + Ω1 |− ∀x ∈ K∃y ∈ J (y =
2xk).

R e f e r e n c e. Hájek & Pudlák [5, Theorem III.3.5].

Let CutK be the formula expressing that K is a cut closed under ω1.

1.9. Proposition. Let ¤ be a proof predicate of a theory T containing
I∆0 + Ω1.

(a) There is a constant D such that

I∆0 + Ω1 |− ∀k,J (¤k(CutJ )→ ∀x ¤k+D(x ∈ J )).

(b) I∆0 + Ω1 |− ∀x (∃y (y = 2x)→ ∀z ¤ ∃w (w = 2zx)).

R e f e r e n c e. (a) Visser [17, Lemma 3.4.2].
(b) Pudlák [12, Lemma 2.2] or Visser [17, Fact 3.4.4].

Let x : ¤tab ϕ be a Σb
1(ω1) predicate formalizing provability by tableaux

proofs ≤ x in a theory T (see Wilkie & Paris [20, 8.9]). The following
proposition due to Visser is a formalized variant of cut-elimination.

1.10. Proposition. Let ¤ be a proof predicate of a theory T. There are
constants N and C such that I∆0 +Ω1 |− x :¤k ϕ∧y = 2xC+k·N →. y :¤tab ϕ
for every sentence ϕ.

R e f e r e n c e. Visser [18, Remark 2.4.8].

Sequential theories are those that contain I∆0 + Ω1 and are capable of
reasoning about finite sequences of arbitrary objects, which enables them to
construct satisfaction predicates (cf. Hájek & Pudlák [5, III.1(b), III.3(c)]).

1.11. Proposition. Let F be a finitely axiomatized sequential theory and
¤ a proof predicate for T.

(a) There is an F-cut I such that F |− ¬¤Itab⊥.
(b) For every k ∈ ω there is an F-cut K such that F |− ♦Kk >.

C o m m e n t. (a) See Pudlák [11, Corollary 3.2(i)] or Visser [16, Fact
5.6.6].

(b) follows from (a) and Propositions 1.10 and 1.8.

2. Interpretability

2.1. Proposition. Suppose a sequential theory T interprets a theory S
containing I∆0. Then there is a T-cut I such that T |− πI whenever S |− π
and π is a Π1 sentence.
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C o m m e n t. This follows from a lemma of Pudlák saying that an inter-
pretation of S in T gives rise to an isomorphism between a T-cut and an
initial segment of the interpreted S-numbers (see Pudlák [11, Lemma 3.3],
Visser [16, 5.8], or Visser [18, 2.5.1]).

Consider a provability predicate 4 of a theory S. All the conventions
concerning provability predicates are the same for 4 as for ¤, except for
the meaning of 4k. Namely, use of this notation implies that 4k stands for
provability in a finite subtheory of S whose axiom set is singled out by a
∆b

1(ω1) formula αk(x) (k a free variable) which satisfies

• for all k ∈ ω there is an mk ∈ ω such that I∆0 + Ω1 |− ∀x (αk(x) →
x ≤ mk);
• I∆0 + Ω1 |− ∀k, x (αk(x)→ αk+1(x));
• I∆0 + Ω1 |− ∀ϕ (4ϕ↔ ∃k 4k ϕ).

5 stands for ¬4¬. Similarly for 5k.

2.2. Proposition. Suppose there is a cut I in a theory T containing
I∆0 such that T |− 5Ik > for all k ∈ ω, where 4 is a provability predicate
for a theory S. Then T interprets S.

C o m m e n t. This is established by a variant of the Feferman construc-
tion found in Visser [18, Lemma 3.2.1] and Visser [16, 6.2.2.1].

A theory R is reflexive if it contains I∆0 + Ω1 and R |− 5k > for all
k ∈ ω, where 4 is a provability predicate for R. This property is easily
seen to be independent of the particular choice of 4 complying with our
conventions (although it does depend on the way R contains I∆0 + Ω1, i.e.
on the choice of interpretation of I∆0 +Ω1 in R). It is equivalently expressed
by saying that R proves consistency of every one of its finite subtheories.

2.3. Theorem. Let F be a finitely axiomatized sequential and R a reflex-
ive theory with provability predicates ¤ and 4 respectively. The following
are then equivalent :

(i) F interprets R;
(ii) There is an F-cut I such that F |− πI whenever R |− π for any Π1

sentence π;
(iii) There is an F-cut I such that F |− 5In> for all n ∈ ω;
(iv) There is an m ∈ ω such that I∆0 + Ω1 |− ♦m> → 5n> for all

n ∈ ω.

P r o o f. (i)⇒(ii) is immediate by Proposition 2.1.
(ii)⇒(iii) because R is reflexive.
(iii)⇒(i) by Proposition 2.2.
(iii)⇒(iv). Let I be an F-cut for which we have F |− 5In> for all n ∈ ω.

Use Propositions 1.6, 1.7(a), and 1.9(a) to find an m ∈ ω such that F proves
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5I
n> for all n ∈ ω by proofs pn with %(pn) ≤ m+K, I∆0 +Ω1 |− x :4n⊥ →

¤m(x :4n⊥), and I∆0 + Ω1 |− ∀x ¤m(x ∈ I). Fix an n ∈ ω and reason in
I∆0 + Ω1:

Suppose x :4n⊥. Then ¤m(x :4n⊥) and ¤m(x ∈ I), and so ¤m4In⊥.
(Why? Well, let’s assume that we are taking x:4n⊥ in the form ∃y (‘y = x’∧
y :4n⊥) and x ∈ I as ∀y (‘y = x’ → I(y)). From these two formulas one
infers ∃y (I(y) ∧ y : 4n⊥), i.e. 4In⊥ by a proof whose % does not exceed
that of the premises.) On the other hand we have ¤m

5I
n>. Thus ¤m⊥

because 5In> is the negation of 4In⊥.
Therefore, I∆0 + Ω1 |− 4n⊥ → ¤m⊥ as was required to show.
(iv)⇒(iii). Immediate by Proposition 1.11(b).

Theorem 2.3 suggests that the case of F = GB and R = ZF is not entirely
representative for the general case, since by Corollary 4.3 of Pudlák [11] there
is a GB-cut I such that GB |− ConIZF, which appears to be rather stronger
than clause (iii) of 2.3. Indeed, if interpretability of F in R implied a similar
condition for all pairs (F,R) of theories as above, then the relation of relative
interpretability between such theories would be r.e. This will be shown not
to be the case in the next section.

3. Σ0
3-completeness

3.1. Theorem. Suppose a consistent finitely axiomatized sequential the-
ory F interprets a reflexive theory R. Then

(a) The set {σ ∈ Σ1 | F interprets R + σ} is Σ0
3 -complete.

(b) If R contains I∆0 + Exp then {π ∈ Π1 | F interprets R + π} is also
Σ0

3 -complete.

Most of the rest of the present section is devoted to the proof of this
theorem. We do (a) and (b) in essentially one go.

3.2. Conventions. (a) We construct a provability predicate 4 for the
theory R which satisfies, apart from our earlier conventions, two additional
conditions:

• if I∆0 + Ω1 |− ϕ then 40 ϕ holds;
• I∆0 + Ω1 |− ∀n 4n(∀m < n 5m>).

First we define a certain natural number Z and possibly replace the
distinguished interpretation of I∆0 + Ω1 in R by a different one without,
however, violating any assumptions on R.

Let α(x) be a ∆b
1(ω1) formula specifying an axiom set for the theory R.

There are two cases:

C a s e 1: R contains I∆0+Exp. Since I∆0+Exp is a finitely axiomatizable
theory (see Hájek & Pudlák [5, Theorem V.5.6]), there is a number Z such
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that the axioms of R (as specified by α(x)) needed to prove translations of
the finitely many axioms for I∆0 + Exp all have gödelnumber ≤ Z.

C a s e 2: R does not contain I∆0 + Exp. Since R contains I∆0 + Ω1 and
there exists a finite subtheory S of I∆0 + Ω1 that interprets I∆0 + Ω1 by
relativization to a cut K and the identical translation of arithmetical oper-
ations (see Hájek & Pudlák [5, V.5(c)]), we can find such an interpretation
of I∆0 + Ω1 in finitely many axioms of R. Let us adopt this cut K as the
distinguished interpretation of I∆0 + Ω1 in R and note that R is still re-
flexive because the consistency of any finite subtheory of R on K follows
from that in the original natural number domain of R. Let Z be the largest
among the gödelnumbers of the finite set of axioms of R needed to prove
the relativization to K of I∆0 + Ω1.

We use the number Z just constructed to self-referentially define a for-
mula αk(x) on which the predicates 4k will be based:

αk(x) ≡ (α(x) ∧ x ≤ Z + k) ∨ ∃n < k (x = p5n>q).

The disjunct ∃n < k (x = p5n>q) is equivalent to

∃n (x = p5n>q) ∧ ∀m ≤ x (x = p5m>q→ m < k).

Since ∃n (x = p5n>q) is equivalent to a ∆b
1(ω1) formula, αk(x) is also

∆b
1(ω1). All the conditions αk(x) that have been promised to satisfy are

now easily checked. In particular, that the theory corresponding to 4k is,
for standard k, a subtheory of R is established using reflexivity of R and
(external) induction on k.

Define 4ϕ as ∃k 4k ϕ. Caution: 4 is generally not provably equivalent
to the provability predicate based on α(x).

(b) We now select a provability predicate ¤ for the theory F. Since F is
finitely axiomatized, all the freedom left by our conventions is the choice of
the constant K such that ¤k only accepts proofs with % ≤ k + K. Along
with K, we fix an exhaustive sequence (Ji)i∈ω of F-cuts with the function
k 7→ pJkq Σb

1(ω1)-definable. The following conditions have to be satisfied:

• I∆0 + Ω1 |− ∀x, n, ϕ (x :4n ϕ→ ¤0(x :4n ϕ));
• I∆0 + Ω1 |− ∀x, k ¤k x ∈ Jk;
• if F |− 5Jkm ϕ then F proves 5Jkm ϕ with % ≤ k +K, for all k,m, ϕ.

Since x : 4n ϕ is ∆b
1(ω1), the first condition is, in view of Proposi-

tion 1.7(a), satisfied by simply taking K sufficiently large. By Proposi-
tion 1.9(a), to secure the second condition it suffices to provably have
∀k ¤k−D CutJk for a certain constant D. Let N be the trivial cut: x ∈
N ≡ x = x. Suppose F proves CutN by a proof with % ≤ Q. Choosing
K ≥ Q+D will guarantee ∀x ¤0(x ∈ N ). Now we can arrange the sequence
(Ji)i∈ω by delaying the enumeration of a particular cut J and patching the
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sequence with repetitions of N until a proof of CutJ with a suitable %
appears. Clearly, a procedure like that which eventually enumerates every
F-cut can be chosen to result in a Σb

1(ω1)-definable function k 7→ pJkq.
Note that we necessarily have %(Jk) ≤ k + E for some constant E. With
these provisions for (Ji)i∈ω the third condition is, in view of Proposition
1.6, satisfied by possibly increasing the value of K still further.

3.3. Definition. Consider an arbitrary unary r.e. predicate S(n). One
can effectively associate to it a ∆0 formula S(n)↓ ≤ x, where n and x are
free variables, with the property that S(n) holds true just in case there is
an x for which S(n)↓ ≤ x (see Hájek & Pudlák [5, V.4(c)]). Let S(n)↓ > x
be its negation. To this formula we relate a collection of self-referentially
defined formulas:

pre-trouble¤(x) ≡ ∃k,m ≤ log x (#x{n < m | S(n)↓ > x} ≥ k
∧ x : ¤k

5Jk
m π),

pre-trouble4(x) ≡ ∃m ≤ log x (x :4m ¬σ),

pre-trouble(x) ≡ pre-trouble¤(x) ∨ pre-trouble4(x),

min-trouble(x) ≡ pre-trouble(x) ∧ ∀y < x¬pre-trouble(y),

trouble¤(x, k) ≡ k ≤ log x ∧ ∃z ≤ x∃m ≤ log x (min-trouble(z)

∧ #x{n < m | S(n)↓ > z} ≥ k ∧ x : ¤k
5Jk
m π),

trouble4(x, k) ≡ k ≤ log x ∧ ∃z ≤ x∃m ≤ log x (min-trouble(z)

∧ #x{n < m | S(n)↓ > z} ≤ k ∧ x :4m ¬σ),

(trouble¤ � trouble4)(u) ≡ ∀x, k (2xk·N ≤ u ∧ trouble¤(x, k)

→. ∃y, l (2yl·N < 2xk·N ∧ trouble4(y, l))),

(trouble4 ≺ trouble¤)(u) ≡ ∃x, k (2xk·N ≤ u ∧ trouble4(x, k)

∧ ∀y, l (2yl·N ≤ u ∧ trouble¤(y, l)→. 2xk·N < 2yl·N )),

π ≡ ∀u (trouble¤ � trouble4)(u),

σ ≡ ∃v ∃u ≤ log log v (trouble4 ≺ trouble¤)(u).

Here the constant N is the one corresponding to the predicate ¤ by Propo-
sition 1.10. For future reference we also fix the other constant C of the same
proposition.

Observe that all the formulas introduced are ∆0(ω1) with the exception
of the last two sentences. The sentence π is clearly Π1 and σ is Σ1. Moreover,
σ is (equivalent to) an ∃∆b

1(ω1) sentence, for all quantifiers in (trouble4 ≺
trouble¤)(u) can be bounded by log v for almost all values of the quantified
variables. This is because u ≤ log log v and any ω1-term f(u) is eventually
dominated by log v.
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3.4. Lemma (I∆0 + Ω1). σ → π.

P r o o f (I∆0 + Ω1). This is because (trouble4 ≺ trouble¤)(w) implies
(trouble4 ≺ trouble¤)(u) for all u ≥ w, entailing (trouble¤ � trouble4)(u),
which in turn implies (trouble¤ � trouble4)(v) for all v ≤ u.

3.5. Definition. We introduce some convenient abbreviations:

trouble(x, k) ≡ trouble¤(x, k) ∨ trouble4(x, k),

first-trouble¤dw(x, k) ≡ x ≤ w ∧ trouble¤(x, k)

∧ ∀y ≤ w ∀l ≤ log y (trouble(y, l)→ 2xk·N ≤ 2yl·N ),

first-trouble4dw(x, k) ≡ x ≤ w ∧ trouble4(x, k)

∧ ∀y ≤ w ∀l ≤ log y (trouble¤(y, l)→ 2xk·N < 2yl·N )

∧ ∀y ≤ w ∀l ≤ log y (trouble4(y, l)→ 2xk·N ≤ 2yl·N ),

(trouble¤ � trouble4)dw ≡ ∃x ≤ w ∃k ≤ log x first-trouble¤dw(x, k),

(trouble4 ≺ trouble¤)dw ≡ ∃x ≤ w ∃k ≤ log x first-trouble4dw(x, k).

Observe that in view of Convention 1.4 all these formulas are ∆0(ω1).

3.6. Lemma. (I∆0 + Ω1). (a) pre-trouble(x)→ ∃y ≤ x min-trouble(y);
(b) min-trouble(x)→ ∃k ≤ log x trouble(x, k).

P r o o f. Easy.

3.7. Lemma (I∆0 + Ω1). We have

trouble(x, k)∧x ≤ u→. (trouble¤ � trouble4)du∨ (trouble4 ≺ trouble¤)du.
P r o o f (I∆0 + Ω1). Consider the following formula:

l vu m ≡ ∀z ≤ u (m ≤ log z ∧ trouble(z,m)

→. ∃y ≤ u (l ≤ log y ∧ trouble(y, l) ∧ 2yl·N ≤ 2zm·N )).

In view of Proposition 1.5(f) and (g), vu is a reflexive transitive ∆0(ω1)
relation on numbers ≤ log u, hence by Proposition 1.1 there is an n ≤ log u
which is a minimum in this preordering. Both n vu k and k 6vu n imply that
there is a (smallest) v ≤ u with trouble(v, n) and 2vn·N ≤ 2xk·N . If we have
trouble¤(w, p) for some w ≤ u, p ≤ logw such that 2wp·N = 2vn·N then, clearly,
first-trouble¤du(w, p) holds. Otherwise one has first-trouble4du(v, n). In ei-
ther case the conclusion of the lemma is satisfied.

3.8. Lemma (I∆0 + Ω1). (a) π ∧ trouble(x, k)∧ u ≥ 2xk·N →. (trouble4 ≺
trouble¤)du;

(b) trouble(x, k) ∧ ∃u, v (u ≥ 2xk·N ∧ v = 22u ∧ (trouble4 ≺ trouble¤)du)
→. σ.

P r o o f (I∆0 +Ω1). (a) By Lemma 3.7, we only have to exclude (trouble¤
� trouble4)du because, by Proposition 1.3(g), x ≤ u. So suppose we had
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first-trouble¤du(y, l). We would then also have 2yl·N ≤ 2xk·N . Consider w =
2yl·N ≤ u. Since there is no z ≤ w, m ≤ log z such that trouble4(z,m) and
2zm·N < 2yl·N = w, we have ¬(trouble¤ � trouble4)(w), and hence ¬π. This
contradiction proves (trouble4 ≺ trouble¤)du.

(b) Consider y ≤ u, l ≤ log y such that first-trouble4du(y, l). Since 2yl·N ≤
2xk·N ≤ u, one clearly has (trouble4 ≺ trouble¤)(u) and hence σ, for 22u

exists.

3.9. Lemma (I∆0 + Ω1). We have

π ∧ first-trouble¤dy(y, l) ∧ ∃v (v = 2y2+l·N ) ∧min-trouble(z)

∧ p ≤ log y ∧#y{n < p | S(n)↓ > z} ≥ l→. ∃q < p (4q ⊥).

P r o o f (I∆0 + Ω1). Suppose the antecedent of the above statement
holds and consider u = 2yl·N ≥ y. Since we have trouble(y, l), there follows
(trouble4 ≺ trouble¤)du by Lemma 3.8(a). (trouble4 ≺ trouble¤)du says
that there are x ≤ u and k ≤ log x such that first-trouble4du(x, k). This im-
plies that we cannot have 2yl·N < 2xk·N , for this together with trouble¤(y, l)
contradicts first-trouble4du(x, k). Therefore 2xk·N ≤ 2yl·N . Also, since u ≥ y,
first-trouble4du(x, k) and first-trouble¤dy(y, l) would conflict unless x > y.
There is at most one w with min-trouble(w) and therefore trouble4(x, k)
says that #x{n < q | S(n)↓ > z} ≤ k for some q ≤ log x such that
4q ¬σ. By Proposition 1.5(h) we have k < l. Taking into account that
l ≤ #y{n < p | S(n)↓ > z}, this entails

#x{n < q | S(n)↓ > z} ≤ k < l ≤ #y{n < p | S(n)↓ > z}
whence q < p follows by Proposition 1.2(c) and (e).

Since v = 22u exists we have σ by Lemma 3.8(a). Therefore 4q σ by
Proposition 1.7(a), which together with 4q ¬σ gives 4q ⊥.

3.10. Lemma (I∆0 + Ω1). We have

trouble(x, k) ∧ ∃w (w = 2x3+C+k·N )

→. ¤tab⊥ ∨ (4⊥∧ ∀m (4m ¬σ →4m⊥)).

P r o o f (I∆0 + Ω1). Consider u = 2xk·N ≤ w. Since we have trouble(x, k),
there holds, by Lemma 3.7,

(trouble¤ � trouble4)d or (trouble4 ≺ trouble¤)du.
C a s e 1: (trouble¤ � trouble4)du. For some y, l such that 2yl·N ≤ 2xk·N =

u we have first-trouble¤du(y, l) and therefore first-trouble¤dy(y, l), whence
y : ¤l

5Jl
p π for some p ≤ log y with #y{n < p | S(n)↓ > z} ≥ l, where z is

such that min-trouble(z).
As 2l ≤ y exists, so does 22+l·N , hence by Proposition 1.9(b) and Conven-

tion 3.2(a) there is a standard ω1-term c such that c(y) :4p ∃v (v = 2y2+l·N ).
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By Proposition 1.7(b) for some standard ω1-term d we have

d(22y ) :4p(first-trouble¤dy(y, l) ∧min-trouble(z)

∧ p ≤ log y ∧#y{n < p | S(n)↓ > z} ≥ l).
Hence by Lemma 3.9 there is a standard ω1-term e such that e(22y ):4p(π →
∃q < p (4q ⊥)) and so by Convention 3.2(a), t = f(22y ) :4p ¬π, where f
also is a standard ω1-term.

By Convention 3.2(b) for some standard ω1-terms g and h we have
g(f(22y )) : ¤l(t : 4p ¬π) and h(f(22y )) : ¤l(t ∈ Jl). Therefore i(22y ) :

¤l4Jlp ¬π for some standard ω1-term i. Recalling that y : ¤l
5Jl
p π, we

have yet another standard ω1-term j with j(22y ) :¤l⊥. By Proposition 1.10

this leads to 2j(2
2y )

C+l·N :¤tab⊥ once we know that 2j(2
2y )

C+l·N exists. Since l ≤ log y

and 222y ≥ j(22y ) for all but standard-finitely many y, this follows from the

existence of 2222y

C+l·N = 2y3+C+l·N ≤ 2x3+C+k·N . So ¤tab⊥.

C a s e 2: (trouble4 ≺ trouble¤)du. Since v = 22u exists, we have
40(trouble4 ≺ trouble¤)du and 40 trouble(x, k) by Proposition 1.7(b), for
x ≤ u. Hence there follows 40 σ by Lemma 3.8(b). Now (trouble4 ≺
trouble¤)du implies y : 4¬σ. Therefore 4⊥. If we, on top of that, had
4m ¬σ for some m then we would also have 4m⊥.

Thus the two cases correspond to the two disjuncts of the conclusion of
the present lemma.

3.11. Lemma. pre-trouble(a) holds for no a ∈ ω.

P r o o f. By Lemma 3.6, pre-trouble(a) leads, via min-trouble(b) for some
b ≤ a, to trouble(b, n) for an appropriate n ≤ log b. By Lemma 3.10 this
results in the inconsistency of either F or R, which we have assumed not to
be the case.

Since F interprets R we can by Theorem 2.3 fix a cut I such that F |−
5I
n> for all n ∈ ω. By Proposition 1.11(a) we may also assume F |− ♦Itab>.

3.12. Lemma. (a) Let m ∈ ω and #{n < m | S(n)↑} ≤ k. Consider a
cut K such that F |− ∀x ∈ K∃y ∈ I (y = 2x3+C+k·N ). We have F |− 5Km σ.

(b) Let m ∈ ω and #{n < m | S(n)↑} ≥ k. Then F |−/ 5Jkm π.

P r o o f. (a) Since #{n < m | S(n)↑} ≤ k, there is an a ∈ ω such that
#{n < m | S(n)↓ > a} = #{n < m | S(n)↑} ≤ k. By Lemma 3.11,
¬pre-trouble(a). Next reason in F:

Suppose x ∈ K and x : 4m ¬σ. We clearly can assume x ≥ a and
log x ≥ k,m, so pre-trouble4(x, k). By Lemma 3.6(a) there is a z ≤ x with
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min-trouble(z). Since ¬pre-trouble(a), we have z > a. Therefore

#2m{n < m | S(n)↓ > z} ≤ #2m{n < m | S(n)↓ > a} ≤ k
by Proposition 1.2(b), and trouble4(x, k) holds. Hence by Lemma 3.10,
¤Itab⊥ or 4Im⊥, for 2x3+C+k·N ∈ I. This, however, contradicts the choice
of the cut I.

Thus F |− 5Km σ as required.
(b) Suppose F |− 5Jkm π. Then by Convention 3.2(b), the theory F proves

the same sentence by a proof p such that %(p) ≤ k + K, i.e. p : ¤k
5Jk
m π.

As #{n < m | S(n)↑} ≥ k, we also have #{n < m | S(n)↓ > p} ≥ k. Hence
pre-trouble¤(p), contrary to Lemma 3.11. So F |−/ 5Jkm π.

3.13. Lemma. (a) R + σ is reflexive, i.e. R |− σ →5n σ for all n ∈ ω.
(b) If R contains I∆0 + Exp then R + π is also reflexive.

P r o o f. (a) Since σ is ∃Σb
1(ω1) we have R |− σ → 4n σ by Proposi-

tion 1.7(a). Hence R |− σ →5n σ, for R |− 5n>.
(b) Fix an n ∈ ω and reason in R:
Assume π and4n ¬π and reason towards a contradiction. By Lemma 3.4

one has x:4n ¬σ for some x such that log x≥n. We then have pre-trouble4(x)
and hence min-trouble(z) for some z ≤ x. Now #2n{m < n | S(m)↓ > z} ≤
n by Proposition 1.2(d) and so trouble4(x, n). Therefore, by π, we have
(trouble4 ≺ trouble¤)d2xn·N and so σ by Lemma 3.8 since exponentiation is
available. Hence 4n σ and 4n π by Lemma 3.4. But 4n π and 4n ¬π result
in 4n⊥, which contradicts the reflexivity of R.

Thus R |− π →5n π for any n ∈ ω.

3.14. Lemma. (a) Suppose {n ∈ ω | S(n)↓} is cofinite. Then F interprets
both R + σ and R + π.

(b) Suppose {n ∈ ω | S(n)↓} is not cofinite. Then F does not interpret
R + σ.

(c) If {n ∈ ω | S(n)↓} is not cofinite and R contains I∆0 + Exp then F
does not interpret R + π.

P r o o f. (a) If {n ∈ ω | S(n)↓} is cofinite then there is a k ∈ ω such that
#{n < m | S(n)↑} ≤ k for any m ∈ ω. By Proposition 1.8 pick a cut K
satisfying the condition of Lemma 3.12(a). We then have F |− 5Km σ for any
m ∈ ω. By Proposition 2.2 this means that F interprets R + σ. Therefore F
interprets R + π by Lemma 3.4.

(b) and (c). Assume {n ∈ ω | S(n)↓} is not cofinite and consider an
arbitrary F-cut J . By our assumptions we have J = Jk for some k ∈ ω.
Since {n ∈ ω | S(n)↑} is infinite, there exists an m ∈ ω such that #{n <
m | S(n)↑} ≥ k. By Lemma 3.12(b) this implies that F |−/ 5Jm π. Hence
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F |−/ 5Jm σ by Lemma 3.4. So by Theorem 2.3 and Lemma 3.13(a), F does
not interpret R + σ.

If, on top of that, R contains I∆0 + Exp then by Lemma 3.13(b), R + π
is reflexive and hence, by Theorem 2.3, F does not interpret R + π either.

3.15. P r o o f o f T h e o r e m 3.1. Definition 3.3 provides an effective
way to construct a Π1 sentence πS and a Σ1 sentence σS from an index S
of an r.e. set. The set of S such that {n ∈ ω | S(n)↓} is cofinite is known to
be Σ0

3 -complete. We have:

(a) F interprets R + σS iff {n ∈ ω | S(n)↓} is cofinite by Lemma 3.14(a)
and (b).

(b) Assuming R |− I∆0 + Exp, F interprets R + πS iff {n ∈ ω | S(n)↓} is
cofinite by Lemma 3.14(a) and (c).

The theorem follows.

3.16. R e m a r k s. Note that both R + σS and R + πS are, in view of
Lemma 3.12(a), locally interpretable in F regardless of the behaviour of S.

Švejdar [15] constructs a Π1 sentence π such that GB interprets ZF + π
but neither GB interprets GB + π nor ZF interprets ZF + π. Observe that
since a Σ0

3 -complete set cannot be the union of two sets of lower complexity,
our theorem provides a supplement to Švejdar’s result in that the sentence
π can also be chosen Σ1. (Not that this could not be obtained by Švejdar’s
methods, though.)

In Theorem 3.1(b), instead of requiring that R contain I∆0 + Exp, we
could have imposed the condition that R be Σ1-essentially reflexive, i.e.
R |− 4n σ → σ for all n ∈ ω and Σ1 sentences σ, since Lemma 3.13(b) is the
only point where Exp is needed. Also, the 40(I∆0 + Ω1) clause of Conven-
tion 3.2(a) would have to be weakened in that I∆0 + Ω1 would have to be
replaced by a finite part of that theory sufficiently large for our arguments.
Σ1-essential reflexivity and Exp are independent of one another for reflexive
theories, although they are both implied by uniform Σ1-essential reflexivity :
R |− 4n σ(x)→ σ(x), for all n ∈ ω and Σ1 formulas σ(x).

Finally, we present an example to the effect that the unpleasant restric-
tion on R in Theorem 3.1(b) cannot be completely removed.

3.17. Example. There exists a finitely axiomatized sequential theory F
interpreting a reflexive theory R with {π ∈ Π1 | F interprets R + π} r.e.

Consider F = I∆0 + Superexp, which is finitely axiomatized sequential,
and R = (I∆0 + Ω1)ω = I∆0 + Ω1 +5> +55> + . . . , where 4 is the
provability predicate of I∆0 + Ω1. Clearly, (I∆0 + Ω1)ω is reflexive. By The-
orem 3.3 of Sieg [13], I∆0 +Superexp proves Σ1 reflection for I∆0 +Exp and
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hence for I∆0 + Ω1 as well. Therefore I∆0 + Superexp proves every theorem
of (I∆0 + Ω1)ω and thus interprets (I∆0 + Ω1)ω.

The following claim shows that {π ∈ Π1 | I∆0 + Superexp interprets
(I∆0 + Ω1)ω + π} is r.e.

Claim. Let π be a Π1 sentence. I∆0+Superexp interprets (I∆0+Ω1)ω+π
iff there is an (I∆0 + Superexp)-cut J such that I∆0 + Superexp |− πJ .

I∆0 + Superexp proves every theorem of (I∆0 + Ω1)ω relativized to any
(I∆0 + Superexp)-cut because the only non-Π1 axiom of (I∆0 + Ω1)ω is Ω1

and we have assumed that all cuts are closed under ω1. If πJ is also proved
then J defines an interpretation of (I∆0 + Ω1)ω + π in I∆0 + Superexp.

Conversely, if I∆0 + Superexp interprets (I∆0 + Ω1)ω + π then I∆0 +
Superexp |− πJ for an appropriate J by Proposition 2.1.
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