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Nonseparable Radon measures
and small compact spaces

by

Grzegorz P l e b a n e k (Wrocław)

Abstract. We investigate the problem if every compact space K carrying a Radon
measure of Maharam type κ can be continuously mapped onto the Tikhonov cube [0, 1]κ

(κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ ω2 this holds if and only
if κ is a precaliber of measure algebras. Assuming that there is a family of ω1 null sets in
2ω1 such that every perfect set meets one of them, we construct a compact space showing
that the answer to the above problem is “no” for κ = ω1. We also give alternative proofs
of two related results due to Kunen and van Mill [18].

1. Introduction. Given a cardinal κ, denote by H(κ) the following:

Whenever K is a compact space having a homogeneous Radon measure
of Maharam type κ then there is a continuous surjection from K onto the
Tikhonov cube [0, 1]κ.

We treat here only finite measures. The Maharam type of a nonatomic
measure µ may be defined as the density character of the Banach space
L1(µ) (see [11] or [12]), and is equal to the density character of its measure
algebra equipped with the Fréchet–Nikodym metric. Measures of uncount-
able type are often called nonseparable for obvious reasons. A measure is
called homogeneous if it has the same Maharam type on every set of positive
measure.

Recall that the essential part of the Maharam theorem states that if µ is a
homogeneous measure of type κ then the measure algebra of µ is isomorphic
to the measure algebra of the usual product measure on 2κ (equivalently, on
[0, 1]κ). Thus one may formulate sentences like H(κ) in the hope of finding
some topological links to Maharam’s theorem.

Let us recall some basic facts and known results concerning H(κ). Let
g : K → [0, 1]κ be a continuous surjection and let λκ be the usual product
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measure on [0, 1]κ. The set Λ of all Radon measures µ on K such that
g(µ) = λκ (i.e. λκ(B) = µ(g−1(B))) is nonempty, convex and weak∗ compact
so it has an extreme point, say µ0. Now µ0 is such that the spaces L1(µ0)
and L1(λκ) are isometric (see Douglas [8]). It follows that the implication
reverse to that in H(κ) is true for arbitrary κ.

It is well-known that a compact space K admits a nonatomic Radon
measure if and only if there is a continuous mapping from K onto [0, 1] (and
this is equivalent to saying that K is not scattered, [21], 19.7.6). Since [0, 1]
can be mapped onto [0, 1]ω, and nonatomic measures have infinite type, we
see that H(ω) holds true.

Haydon [14] proved that H(κ) is satisfied for every regular cardinal κ
with the property that τω < κ whenever τ < κ. For instance, H(c+) holds.
Haydon investigated H(κ) in connection with a nonseparable version of
Pełczyński’s theorem on Banach spaces containing L1.

Haydon [15] and Kunen [17] presented closely related constructions which
show that H(ω1) does not hold under the continuum hypothesis. The Kunen
construction, primarily designed to give an example of a compact L-space,
has been refined in various directions (see [9], [18] and Theorem 5.2 below).

What is apparently the most interesting problem concerning H(κ), is the
question whether the negation of H(ω1) is provable within the ZFC theory.
Richard Haydon conjectured that this is not the case, and that H(ω1) might
hold under Martin’s axiom and the negation of CH. All known counterex-
amples seem to support this conjecture.

In Section 4 of the present paper I show that, given a cardinal κ ≥
cf(κ) ≥ ω2, H(κ) holds if and only κ is a precaliber of measure algebras (the
terminology is explained in Sections 2 and 3). This covers Haydon’s theorem
and implies that H(c) is undecidable in ZFC.

The next sections deal with counterexamples to H(ω1); I use a relatively
simple method of constructing “small” compact spaces admitting a nonsep-
arable Radon measure. I give alternative and, as I believe, simpler proofs of
two results from a recent paper of Kunen and van Mill [18] (Section 5). Fi-
nally, I prove that H(ω1) does not hold provided the so-called weak covering
number of the ideal of null subsets of 2ω1 equals ω1. This may indicate that
the axiom “ω1 is a precaliber of measure algebras” does not imply H(ω1).

2. Preliminaries. Recall that a cardinal κ is said to be a precaliber of a
Boolean algebra A if for every family (xξ)ξ<κ of nonzero elements of A one
can find a set I ⊆ κ of power κ such that the family (xξ)ξ∈I is centred, that
is,
∏
ξ∈a aξ 6= 0 for every finite a ⊆ I ([13], A2T).

It follows from the Maharam theorem that κ is a precaliber of all measure
algebras if and only if κ is a precaliber of the measure algebra of the usual
product measure on 2κ (I have learned this observation from D. Fremlin).
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Let (X,B, µ) be a finite measure space and let A be its measure algebra.
For every A ∈ B we denote by A

. the corresponding element of A. Recall
that a lifting of µ is a homomorphism θ : A → B such that θ(a). = a for
every a ∈ A (see Section 4 of [12]). We shall need the following remark. If
F is a family in B such that F ⊆ θ(F .) then µ(

⋂F0) > 0 for every finite
F0 ⊆ F with

⋂F0 6= ∅.
Note that, given a Radon measure µ, κ is a precaliber of its measure al-

gebra if and only if κ is a caliber for the measure µ in the following sense: For
every family (Bξ)ξ<κ of µ-measurable sets of positive measure,

⋂
ξ∈X Bξ 6= ∅

for some X ⊆ κ of cardinality κ. Indeed, the latter condition is necessary,
since we can replace every Bξ by a compact subset of positive measure;
sufficiency may be checked easily by the use of lifting.

The following lemma links the notion of caliber with the covering num-
ber; it is taken from [13], A2U (and based on [6]).

Lemma 2.1. Let (X,Σ, µ) be a complete probability space and put Nµ =
{E ∈ Σ : µ(E) = 0}. Given a cardinal κ of uncountable cofinality , if κ is not
a precaliber of the measure algebra of µ then there is a family (Eξ)ξ<κ ⊆ Nµ
such that

⋃
ξ<κEξ ∈ Σ \ Nµ. If , moreover , κ is regular then the Eξ’s may

be chosen increasing.

Now we shall recall how independent families are connected with map-
pings onto Tikhonov cubes (see [14] or [22]). A family ((Fα, Hα))α<κ is called
independent if

(i) Fα ∩Hα = ∅ for every α < κ;
(ii)

⋂
α∈a Fα ∩

⋂
β∈bHβ 6= ∅ whenever a, b ⊆ κ are finite disjoint sets.

Lemma 2.2. A compact space K admits a continuous surjection onto
[0, 1]κ if and only if there is an independent family ((Fα,Hα))α<κ such that
Fα and Hα are closed subsets of K for every α < κ.

Let us fix some terminology and notation from topology. If K is a space
and x ∈ K then χ(x,K) denotes the character (i.e. the minimal cardinality
of a base at x), and πχ(x,K) denotes the π-character of a point x in K (i.e.
the minimal cardinality of a family V of nonempty open subsets of F such
that every neighbourhood of x contains a member of V).

When discussing Haydon’s problem, it is worth recalling that there is a
topological characterization of compact spaces admitting a surjection onto
some Tikhonov cube, due to Shapirovskĭı [22], Theorem 21.

Theorem 2.3. The following are equivalent for a compact space K and
an infinite cardinal κ:

(i) K can be continuously mapped onto [0, 1]κ;
(ii) there is a closed subspace F of K such that πχ(x, F ) ≥ κ for every

x ∈ F .
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We shall also need a combinatorial lemma given below. This is a corol-
lary to the proof of the Erdős–Rado theorem on quasi-disjoint families (see
[16], proof of Theorem 1.6; the well-known argument using the “pressing
down lemma” gives easily the case of regular κ, see e.g. [7], Second Proof of
Theorem 1.4).

Lemma 2.4. Let κ be a cardinal of cofinality ≥ ω2 and let (Iξ)ξ<κ be a
family of countable subsets of κ. Then there are X ⊆ κ with |X| = κ and
R ⊆ κ with |R| < κ such that Iα ∩ Iβ ⊆ R for all distinct α, β ∈ X.

Finally, we sketch our approach to finding counterexamples to H(ω1)
that is used in the next sections. Let B(2ω1) be the σ-algebra of Baire sets
in 2ω1 (i.e. the one generated by clopen sets), and let λω1 denote the usual
product measure on 2ω1 .

We find a suitable subalgebra A of B(2ω1) and define a compact space K
as the Stone space Ult(A) of ultrafilters (the Stone isomorphism is denoted
by )̂. Then we take the restriction of λω1 toA and let µ be the unique Radon
measure on K defined from λω1 . Such an algebra A is usually obtained as
the union of an increasing family of countable algebras Aξ, ξ < ω1, which
are constructed inductively.

Note that in order to make µ nonseparable it suffices to make sure that
for every ξ there is B ∈ A such that

(∗) inf{λω1(A4B) : A ∈ Aξ} > 0.

If we want K to be the support of µ we should ensure that λω1 is strictly
positive on A, that is, λω1(A) > 0 for nonempty A ∈ A. Note that if λω1

is strictly positive on a countable algebra Aξ and B ∈ B(2ω1) is a set of
positive measure then there is B1 ⊆ B such that λω1 is strictly positive on
the algebra generated by Aξ and B1.

3. Some uncountable cardinals. In this section we fix terminology
and notation concerning cardinal coefficients and formulate an auxiliary fact
used in the sequel.

Let J be an ideal of subsets of a space X. Recall that the additivity
add(J ), the covering number cov(J ) and the cofinality cf(J ) of J are
defined as

add(J ) = min
{
|E| : E ⊆ J ,

⋃
E 6∈ J

}
,

cov(J ) = min
{
|E| : E ⊆ J ,

⋃
E = X

}
,

cf(J ) = min
{
|E| : E ⊆ J ,

⋃

E∈E
P (E) = J

}
,

where P (E) denotes the power set of E.
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We shall consider two classical ideals: L of measure zero sets in 2ω and K
of first category sets in 2ω. Moreover, we denote by Lω1 the ideal of subsets
of 2ω1 which are null with respect to the usual product measure λω1 , and
by C the ideal generated by closed measure zero sets in 2ω, i.e.

C = {B ⊆ 2ω : λ(B) = 0}.
Basic facts concerning ideals and their cardinal coefficients, as well as further
references, may be found e.g. in [12] and [23]; see [3] and [2] for the properties
of C. It is known that the following relations between the coefficients of these
ideals are always true:

ω1 ≤ cov(Lω1) ≤ cov(L) ≤ cf(K) = cf(C) ≤ cf(L) = cf(Lω1) ≤ c.

(Nothing else is provable in ZFC; see [23] for the full shape of Cichoń’s and
related diagrams.)

Let us note that Lemma 2.1 gives the following: ω1 is not a caliber for
the product measure on 2ω1 if and only if cov(Lω1) = ω1.

The lemma given below will be used in the proof of Theorem 5.2.

Lemma 3.1. Let A be a countable nonatomic Boolean algebra (of sets)
and let µ be a finitely additive strictly positive measure on A.

(a) Put

s(A) = {s ∈ Aω : s(0) ⊇ s(1) ⊇ . . . , lim
n→∞

µ(s(n)) = 0}.
If cf(K) = ω1 then there is a family (sα)α<ω1 in s(A) such that for every
t ∈ s(A) there is α < ω1 such that for every n and for almost all k we have
t(k) ⊆ sα(n).

(b) Put

p(A) = {p ∈ Aω : p(0) ⊇ p(1) ⊇ . . . , lim
n→∞

µ(p(n)) > 0}.
If cf(L) = ω1 then there is a family (pα)α<ω1 in p(A) such that for every
decreasing sequence t ∈ p(A) there is α < ω1 such that for every k and for
almost all n we have t(k) ⊇ pα(n).

P r o o f. We can assume that A is the algebra of clopen subsets of 2ω and
µ is the restriction of the Lebesgue measure λ on 2ω.

To check (a) we may, applying the fact that cf(C) = cf(K) = ω1, take a
family (Fα)α<ω1 cofinal in C. Write every Fα as a decreasing intersection of
clopen sets sα(n). Given t ∈ s(A), the set N =

⋂
k t(k) is in C, so N ⊆ Fα

for some α. For every n we have N =
⋂
k t(k) ⊆ Fα ⊆ sα(n), and thus

t(k) ⊆ sα(n) eventually holds.
We may prove (b) in a similar manner, applying the result of Cichoń,

Kamburelis and Pawlikowski [5]: if cf(L) = ω1 then there exists a family
(Hα)α<ω1 of sets of positive measure λ such that whenever λ(B) > 0 there
is α < ω1 with Hα ⊆ B.
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4. H(κ) for κ ≥ ω2. We show in this section that among cardinals κ
of cofinality greater than ω1, H(κ) is fully characterized by precalibers of
measure algebras.

Theorem 4.1. Let κ be a cardinal with cf(κ) ≥ ω2 and assume that κ is a
precaliber of measure algebras. Given a compact space K carrying a Radon
measure of Maharam type κ, there exists a continuous surjection from K
onto [0, 1]κ (that is, H(κ) holds true).

P r o o f. (1) In the sequel, 2κ (standing for the Cantor cube {0, 1}κ) is
identified with the family of all subsets of κ (thus an x ∈ 2κ is regarded as
a subset of κ rather than its characteristic function). A set B ⊆ 2κ depends
on a set I ⊆ κ (of coordinates) if x ∈ B, y ∈ 2κ and x ∩ I = y ∩ I imply
y ∈ B (in other words, B = π−1(π(B)), where π is the natural projection
onto 2I).

Denote by λ the usual product measure on 2κ. It is well-known that λ is
inner-regular with respect to zero sets (here by a zero set in 2κ we mean a
closed set depending on countably many coordinates).

Let K be a compact space and let µ be a Radon measure on K of type
κ. Since cf(κ) ≥ ω2 > ω, we can assume that µ is homogeneous and fix an
isomorphism ϕ : A(µ)→ A(λ) between the measure algebras of µ and λ.

(2) Consider a fixed α < κ. Let Vα ⊆ 2κ be given by Vα = {x ⊆ κ : α ∈
x}. Find a Borel set Aα in K such that A.

α = ϕ−1(Vα). Next find compact
sets Fα ⊆ Aα and Hα ⊆ K \Aα such that µ(Fα), µ(Hα) ≥ 7/16 (which may
be done since µ(Aα) = 1/2 and µ is a Radon measure). Now we can choose
sets Bα and Cα in 2κ with the properties:

(i) Bα and Cα are countable unions of zero sets;
(ii) B.

α = ϕ(F .
α) and C

.
α = ϕ(H.

α);
(iii) Bα ⊆ θ(ϕ(F .

α)) and Cα ⊆ θ(ϕ(H.
α)),

where θ denotes a lifting of λ.
(3) For every α < κ there is a countable set Iα ⊆ κ such that both

Bα and Cα depend on Iα. We apply Lemma 2.4 and get a set R ⊆ κ with
|R| < κ and a set X ⊆ κ with |X| = κ such that Iα ∩ Iβ ⊆ R whenever
α, β ∈ X and α 6= β.

Denote by π the projection from 2κ onto 2R, that is, π(x) = x ∩ R. To
simplify the notation, we put B∗α = π−1(π(Bα)) for every α.

(4) We claim that the set Y = {α ∈ X : λ(B∗α ∩ Cα) = 0} is of cardina-
lity < κ.

Take distinct α, β ∈ Y . Easy calculations show that λ(Bα ∩ Cβ) ≥ 1/8.
Since λ(B∗β ∩ Cβ) = 0 we get

λ(B∗α 4B∗β) ≥ λ(B∗α \B∗β) ≥ λ(B∗α ∩ Cβ) ≥ λ(Bα ∩ Cβ) ≥ 1/8.
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Now, since the image measure λ0 = π(λ) is of type |R|, and

λ0(π(Bα)4 π(Bβ)) = λ(B∗α 4B∗β),

we infer that |Y | ≤ |R| < κ.
(5) We make use of the assumption that κ is a precaliber of λ: There is

a set Z ⊆ X \Y with |Z| = κ such that the family (B∗α ∩Cα)α∈Z is centred.
We claim that the family ((Bα, Cα))α∈Z is independent.

Take any finite sets a, b ⊆ Z with a ∩ b = ∅. Choose y so that

y ∈
⋂

α∈a∪b
B∗α ∩ Cα.

For every α ∈ a we have y ∈ B∗α; thus there is xα ∈ Bα such that xα ∩R =
y ∩R. Defining I(a) =

⋃
α∈a Iα and I(b) =

⋃
β∈b Iβ , we put

z =
⋃
α∈a

(xα ∩ Iα) ∪ ((y \R) ∩ I(b)) ∪ (y ∩R \ I(a)).

It suffices to check that

z ∈
⋂
α∈a

Bα ∩
⋂

β∈b
Cβ .

For any γ ∈ a we have Iγ ∩ I(b) ⊆ R and thus

z ∩ Iγ =
⋃
α∈a

(xα ∩ Iα ∩ Iγ) = (xγ ∩ Iγ) ∪
⋃

α∈a\{γ}
(xα ∩ Iα ∩ Iγ) = xγ ∩ Iγ .

Since xγ ∈ Bγ and Bγ depends on the set Iγ , we get z ∈ Bγ .
Now take any γ ∈ b. Then for every α ∈ a we have xα∩Iα∩Iγ = y∩Iα∩Iγ

and hence

z ∩ Iγ =
⋃
α∈a

(xα ∩ Iα ∩ Iγ) ∪ ((y \R) ∩ I(b) ∩ Iγ) ∪ (y ∩R ∩ Iγ \ I(a))

= (y ∩ Iγ ∩ I(a)) ∪ ((y \R) ∩ Iγ) ∪ (y ∩R ∩ Iγ \ I(a)) = y ∩ Iγ .
Since y ∈ Cγ and Cγ depends on Iγ we get z ∈ Cγ , and the claim is verified.

(6) Now (i)–(ii) of (2), (5) and the remark from Section 2 imply that in
fact we have

λ
( ⋂
α∈a

Bα ∩
⋂

β∈b
Cβ

)
> 0

whenever a, b are disjoint finite sets in Z. This implies immediately that the
family ((Fα,Hα))α∈Z is independent. We apply Lemma 2.2 and the proof is
complete.

Part (a) of the next theorem was proved in [20] for successor κ by a more
complicated argument.

Theorem 4.2. (a) If κ is a cardinal with cf(κ) ≥ ω2 such that κ is not
a caliber for the measure λκ then H(κ) does not hold.
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(b) If , moreover , κ is a regular cardinal and there is τ < κ such that κ
is not a caliber for the measure λτ on 2τ , then there is a compact space K
admitting a Radon measure of type κ and such that χ(x,K) < κ for every
x ∈ K.

P r o o f. (a) Choose a family (Cξ)ξ<κ of compact subsets of 2κ of positive
measure witnessing that κ is not a caliber for λκ. Without difficulty we may
find compact sets Fξ such that Fξ ⊆ Cξ and

(∗∗) inf{λκ(A4 Fξ) : A ∈ Aξ} > 0,

where Aξ is the algebra generated by the family {Fα : α < ξ}. We shall
check that the Stone space K of the algebra A =

⋃
ξ<κAξ is the required

space. It is clear that there is a Radon measure of type κ on K.
Given an arbitrary closed subset H of K, we take a maximal subfamily

F0 of F = {Fξ : ξ < κ} for which H = {F̂ ∩ H : F ∈ F0} is centred. It
follows that

⋂H consists of a single point of H, say x. Now χ(x,H) < κ
since |F0| < κ and finite intersections of elements from H form a base at x.
It follows from Theorem 2.3 that K cannot be continuously mapped onto
[0, 1]κ and hence K is a counterexample to H(κ).

(b) By the assumption and Lemma 2.1 there is an increasing family
(Nξ)ξ<κ of λτ -null sets in 2τ with

⋃
ξ<κNξ = 2τ . For every ξ choose an

open set Vξ ⊇ Nξ with λτ (Vξ) < 1/2.
Denote by π : 2κ → 2τ the natural projection onto the first τ coordi-

nates. Put Uξ = π−1(Vξ) and let A0 be the algebra of clopen subsets of 2κ

depending on the first τ coordinates.
Now we choose compact sets Fξ such that (∗∗) is satisfied and Fξ ⊆

2κ \ Uξ for every ξ. Taking K as above, we check that the character of
points of K is less than κ.

Given x ∈ K, put C =
⋂{A ∈ A0 : A ∈ x}. Then π(C) = {t} for

some t ∈ 2τ . Therefore there is α < κ such that t ∈ Nξ ⊆ Vξ for ξ ≥ α.
Consequently, for every ξ ≥ α there is A ∈ A0 with A ∈ x and A ∩ Fξ = ∅.
It follows that the algebra generated by A0 and {Fβ : β < α} contains a
base at x. Thus χ(x,K) < κ and the proof is complete.

Corollary 4.3. Given κ with cf(κ) ≥ ω2, H(κ) is equivalent to the fact
that κ is a precaliber of measure algebras.

If a regular cardinal κ satisfies τω < κ whenever τ < κ then κ is a
precaliber of every ccc space (see 5.2 of [7]), so κ is a precaliber of every
measure algebra. Thus Theorem 4.1 covers Haydon’s result mentioned in
the introduction.

Note that if κ = add(L) = cov(L) then κ is not a precaliber of the
ordinary measure algebra, and thus H(κ) is not true. In particular, assuming
c = add(L) we have non H(c).
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Now let λ be the product measure on 2c and let N be the ideal of
λ-negliglible sets. Assume that c = ω2 and that λ∗(D) = 1 for some set
D ⊆ 2c with |D| = ω1. Then c is a precaliber of the measure algebra of
λ. Indeed, otherwise there is an increasing family (Nα)α<c in N such that⋃
α<cNα = 2c (see Lemma 2.1). But this implies D ⊆ Nα for some α < c, a

contradiction.
The above remarks and Corollary 4.3 show that H(c) is relatively con-

sistent with and independent of the usual axioms.

5. Some counterexamples to H(ω1). There are several natural classes
of compact spaces that cannot be mapped onto [0, 1]ω1 (first-countable, se-
quential, with countable tightness etc.). Given such a class C of compact
spaces, one may ask if H(ω1) is true whenever K ∈ C, which amounts to
asking whether every Radon measure defined on some K ∈ C is separable.
Such particular problems have been solved for the class of first-countable
spaces and Corson compacta (see [18]–[20]).

Recall that a compact space K is said to be Corson compact if K can
be embedded, for some κ, into the subset of Rκ consisting of elements
with countable support (see [1] for properties of Corson compacta and fur-
ther references). For our purpose it is sufficient to recall that, according
to Rosenthal’s theorem, a compact zero-dimensional space K is Corson
compact if and only if there exists a point-countable family D of clopen
subsets of K such that D separates points of K (point-countability means
|{D ∈ D : x ∈ D}| ≤ ω for every x ∈ K).

It follows from Theorem 2.3 (or may be checked directly) that no Corson
compactum and no first-countable space can be mapped continuously onto
[0, 1]ω1 . Thus any of such spaces carrying a nonseparable Radon measure
witnesses that H(ω1) does not hold. Assuming cov(Lω1) = ω1, Kunen and
van Mill [18] constructed a first-countable Corson compact space K with a
nonseparable measure µ. Moreover, under cf(L) = ω1, such K and µ may
have other interesting properties. On the other hand, I showed in [20] that,
assuming cov(Lω1) > ω1, that is, if ω1 is a precaliber of measure algebras,
every Radon measure on a first-countable space is separable.

Another class that may be considered here is that of compact spaces
of countable tightness. Recall that K has a countable tightness if for every
A ⊆ K and x ∈ A there is a countable set I ⊆ A with x ∈ I. Since
countable tightness implies countable π-character hereditarily, no countably
tight compact space can be mapped onto [0, 1]ω1 (see [22]). It is an open
question whether Radon measures on countably tight spaces are separable
provided ω1 is a precaliber of measure algebras.

The theorem below has been obtained by Kunen and van Mill [18].
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Theorem 5.1. If cov(Lω1) = ω1 then there exists a Corson compact
first-countable space that supports a nonseparable Radon measure.

P r o o f. Choose an increasing family (Nξ)ξ<ω1 ⊆ Lω1 that covers 2ω1 .
We construct inductively compact sets Fξ,n ⊆ 2ω1 with the properties:

(i) Fξ,n ⊆ 2ω1 \Nξ for every ξ and n;
(ii) Fξ,n ⊆ Fξ,n+1 and λω1(

⋃
n∈ω Fξ,n) = 1 for every ξ < ω1;

(iii) given β < α < ω1, for every n there is k such that Fα,n ⊆ Fβ,k;
(iv) Fξ,0 witnesses (∗) from Section 2, where Aξ is the algebra generated

by all Fβ,n, β < ξ, n ∈ ω.

The construction is straightforward (for the limit cardinal ξ choose an
increasing sequence ξi that is cofinal in ξ and note that for every δ > 0 there
is ϕ ∈ ωω with λω1(

⋂
i Fξi,ϕ(i)) > 1− δ).

Let F be the family of all Fξ,n’s, put A =
⋃
ξ<ω1

Aξ and consider the
space K = Ult(A). It follows from compactness and (i) that F is point-
countable. Hence {F̂ : F ∈ F} is a point-countable separating family and
so K is Corson compact.

Given x ∈ K, the family {F ∈ F : F ∈ x} is countable. Therefore, there
is α < ω1 such that Fα,n 6∈ x for every n. Now (iii) implies that

{A ∈ Aα : A ∈ x} ∪ {2ω1 \ Fα,n : n ∈ ω},
gives a base at x. Thus K is first-countable. Now, letting L be the support
of µ, we infer that L is Corson compact and first-countable, so the proof is
complete.

For the sake of the next theorem recall that an L-space is a nonsepara-
ble topological space that is hereditarily Lindelöf (every family of its open
subsets has a countable subfamily with the same union). Part (b) of the the-
orem below is due to Kunen and van Mill [18]. The idea of using a normal
Radon measure which can recognize metrizable subsets in a construction
of an L-space appeared already in Kunen [17] (normality of a Radon mea-
sure means that sets of positive measure have nonempty interior). Part (a)
needs a weaker assumption, but we do not know whether a space as in (a)
is hereditarily Lindelöf.

Theorem 5.2. (a) If cf(K) = ω1 then there is a Corson compact space
K with a nonseparable measure µ such that a closed set H ⊆ K is metrizable
if and only if µ(H) = 0.

(b) If cf(L) = ω1 then there is a Corson compact space K with a Radon
measure µ and

(1) µ is a nonseparable normal measure on K;
(2) µ(N) = 0 if and only if N is metrizable, for arbitrary N ;
(3) K is a Corson compact L-space.
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P r o o f. (a) We construct an increasing sequence (Aα)α<ω1 of countable
subalgebras of B(2ω1), and, for every α, denote by (sαβ )β<ω1 ⊆ s(Aα) families
of sequences as in Lemma 3.1(a) (we keep the notation of that lemma).

We start by letting A0 be the algebra of clopen sets in 2ω1 depending
on the first ω coordinates. At step ξ we find a set B with λω1(B) > 0 such
that whenever α, β < ξ then there is n ∈ ω with sαβ (n) ∩ B = ∅ (since we
only have to omit countably many sequences on which the measure tends to
zero, this may be done easily). Next we find a set Fξ ⊆ F ξ ⊆ B such that

(∗) inf{λω1(A4 Fξ) : A ∈ Aξ} > 0,

and define Aξ+1 to be the algebra generated by Aξ and Fξ. Using the remark
from Section 2 we can have λω1 strictly positive on every Aξ. Finally, letting
A =

⋃
ξ<ω1

Aξ, we take K to be the Stone space of A. Clearly Â0 ∪ {F̂ξ :
ξ < ω1} is a point-countable separating family so K is Corson compact.

For a given compact H ⊆ K of measure zero there is a decreasing se-
quence of clopen sets (Âk)k∈ω such that H ⊆ ⋂k∈ω Âk and λω1(Ak) → 0.
Thus t = (Ak) ∈ s(Aα) for some α < ω1. Now t is eventually dominated by
some sαβ as in Lemma 3.1(a). Consequently, Aξ where ξ = max(α, β) gives
a topological base for H. Indeed, for η ≥ ξ we have Fη ∩ sαβ(n) = ∅ for large

n so there is k such that Ak ∩Bη = ∅; thus B̂η ∩H = ∅.
It may happen that there is a compact metric H with µ(H) > 0. Now

it suffices, however, to take a maximal (necessarily countable) family H of
pairwise disjoint such sets and, since µ is nonseparable, find a compact set
L ⊆ K \⋃H of positive measure, and the proof of (a) is complete.

(b) To prove (b) we carry out the same construction as above, comple-
mented as follows.

For every algebra Aξ we denote by (tαβ )β<ω1 ⊆ p(Aξ) a family as in
Lemma 3.1(b). Given the algebra Aξ, for every η, ζ < ξ we find a set F ηζ of

positive measure with F ηζ ⊆ F ηζ ⊆
⋂
n∈ω t

η
ζ such that for every α, β < ξ the

sequence sαβ is eventually disjoint from F ηζ . Now we let Aξ+1 be the algebra
generated by Aξ, Fξ and {F ηζ : η, ζ < ξ}.

This modification makes µ normal. In fact, suppose that X ⊆ K has an
empty interior but µ(X) > 0. We may assume that X is closed; since K is
a ccc space there is a compact Gδ set Z ⊇ X with empty interior. There is
ξ < ω1 and a decreasing sequence (Ak)k∈ω ⊆ Aξ with Z =

⋂
k∈ω Âk. Now

there is η such that for every k and for almost all n we have Ak ⊇ pξη(n). It
follows that F ξη ⊆ Ak so Z has a nonempty interior, a contradiction.

(2) is satisfied, for if µ(N) = 0 then µ(N) = 0 by normality, and N is
metrizable (which may be checked as in (a)).

The fact that K is an L-space now follows easily (as in [18]). Indeed,
K cannot be separable since a separable Corson compactum is metrizable.
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Given any family V of open subsets of K, there is a countable subfamily
V0 with µ(E) = 0, where E =

⋃V \ ⋃V0. Since E is of measure zero, it
is metrizable and thus is covered by another countable subfamily V1. Now
V0 ∪ V1 covers

⋃V and we are done.

6. H(ω1) and weak coverings. Brendle, Judah and Shelah [4] con-
sidered another cardinal invariant of the ideal L that is relevant here. The
weak covering wcov(L) is the minimal cardinality of a family E ⊆ L such
that 2ω \⋃ E does not contain a perfect set. Weak covering is also discussed
in [2], where it is denoted by covP . Clearly one has

add(L) ≤ wcov(L) ≤ cov(L).

It is known that both wcov(L) < cov(L) and wcov(L) = cov(L) are relatively
consistent (see [2], Theorems 3.2.17 and 2.5.14). It is shown in [4] that
wcov(L) ≤ max(b, non(L)).

Let µ be a nonatomic Radon measure µ defined on a topological space
K. We shall always write Nµ for the ideal of µ-null sets. One may consider
the weak covering of Nµ defined analogously:

wcov(Nµ) = min
{
|E| : E ⊆ Nµ, K \

⋃
E contains no perfect set

}
,

where “perfect” means “nonempty closed without isolated points”.
In particular, we can consider wcov(Lω1). Note that wcov(Lω1) ≤

wcov(L). Indeed, put κ = wcov(L); for every α < ω1 let (Nα
ξ )ξ<κ be a

family of null sets in 2α whose union meets every perfect subset of 2α. Now
the family {π−1

α (Nα
ξ ) : α < ω1, ξ < κ}, where πα : 2ω1 → 2α is the natural

projection, meets every perfect subset of 2ω1 .
Let us recall elementary facts related to perfectness. Say that (Ds)s∈2<ω

is a dyadic system (in a space K) if Ds is nonempty and closed, Dsi ⊆ Ds,
and Ds0 ∩Ds1 = ∅ for every s ∈ 2<ω and i ∈ {0, 1}. Here 2<ω =

⋃
n∈ω 2n;

if s ∈ 2n and i ∈ {0, 1} then si ∈ 2n+1 is an extension of s.

Lemma 6.1. Let K be a compact space and let F ⊆ K be its closed subset.

(a) If F can be continuously mapped onto a perfect set then F contains
a perfect set.

(b) If there is a dyadic system (Ds)s∈2<ω in K with Ds∩F 6= ∅ for every
s ∈ 2<ω then F contains a perfect set.

P r o o f. If g is a continuous surjection from F onto a perfect set P then
g is irreducible on some closed F0 ⊆ F , so F0 is perfect.

To check (b) put H = F ∩ ⋂n∈ω
⋃
s∈2n Ds. Given t ∈ 2ω, let g(x) = t

for x ∈ H ∩⋂n∈ωDt|n. This defines a continuous mapping from H onto 2ω,
so H contains a perfect set by (a).
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The results presented below show that weak coverings are closely related
to the existence of nonseparable Radon measures on spaces having a lot of
points of countable character.

Theorem 6.2. If wcov(Lω1) = ω1 then there exists a compact space
K having a nonseparable Radon measure, and such that for every perfect
P ⊆ K there is x ∈ P with χ(x,K) = ω (in particular , H(ω1) does not hold).

P r o o f. We adapt here the argument used in the proof of Theorem 5.1.
Choose an increasing family (Nξ)ξ<ω1 ⊆ Lω1 whose union meets every

perfect set in 2ω1 . We construct inductively compact sets Fξ,n ⊆ 2ω1 with
the properties:

(i) Fξ,n ⊆ 2ω1 \Nξ for every ξ and n;
(ii) Fξ,n ∩ Fξ,k = ∅ if n 6= k, and λω1(

⋃
n∈ω Fξ,n) = 1 for every ξ < ω1;

(iii) given β < α < ω1, for every n there is k such that Fα,n ⊆
⋃
i≤k Fβ,i;

(iv) Fξ,0 witnesses (∗) from Section 2, where Aξ is the algebra generated
by all Fβ,n, β < ξ, n ∈ ω.

We again consider the family F of all Fξ,n’s, the algebra A generated by
F and the space K = Ult(A). Let H be a perfect subset of K; we are to
find an element of H of countable character.

We claim that there is ξ < ω1 such that H0 = H \⋃n∈ω F̂ξ,n 6= ∅. If this
is so, every x ∈ H0 has a local base contained in Aξ+1 in view of (iii). Thus
the proof will be complete if we verify the claim.

Suppose otherwise; then H ⊆ ⋃n∈a(ξ) F̂ξ,n for every ξ < ω1, where the

(necessarily finite) set a(ξ) is defined by a(ξ) = {n ∈ ω : F̂ξ,n ∩H 6= ∅}. Let

P =
⋂

ξ<ω1

⋃

n∈a(ξ)

Fξ,n.

Given t ∈ P , for every ξ there is ϕ(ξ) ∈ ω such that t ∈ Fξ,ϕ(ξ). Note that⋂
ξ<ω1

F̂ξ,ϕ(ξ) consists of a single point, say x, with x ∈ H. We put g(t) = x.
In this way we have defined a surjection from P onto H which is easily

seen to be continuous. Hence P contains a perfect set. On the other hand,
P ∩Nξ = ∅ for every ξ, and this is a contradiction.

It is very likely that wcov(Lω1) < cov(Lω1) is relatively consistent. If
this is the case then Theorem 6.2 shows that H(ω1) is not implied by the
axiom “ω1 is a precaliber of measure algebras”.

Added in proof. David Fremlin sent me the following remark due to Max Burke:
Adding ω2 random reals to a model of CH we have cov(Lω1 ) = ω2 but wcov(L) = ω1 and
hence wcov(Lω1 ) = ω1. So this is a model in which ω1 is a precaliber of measure algebras
but H(ω1) is false.

The next result offers a partial converse to the theorem above. It is
proved by adapting an idea from [20].



38 G. Plebanek

Theorem 6.3. Suppose that K is a compact space such that for every
perfect subset P of K there is x ∈ P with χ(x,K) = ω, and admitting a
nonseparable Radon measure. Then there exists a Radon measure µ on K
such that wcov(Nµ) = ω1.

P r o o f. Since K carries a nonseparable Radon measure, it follows that
there exists a homogeneous Radon measure µ on K of Maharam type ω1

(see [20], Lemma 2 or [14], Proposition 2.1). We shall check that Nµ has
weak covering ω1. Clearly wcov(Nµ) ≥ ω1.

Let (Bα)α<ω1 be a family of Borel sets which is µ-dense (with respect
to symmetric difference). Denote by X the set of points in K which have
countable character. For every x ∈ X choose a countable base (Vn(x))n∈ω
at x. Further, let Xα be the set of those x ∈ X for which every Vn(x)
is approximated arbitrarily closely by the family (Bβ)β<α. We have X =⋃
α<ω1

Xα; since X, by the assumption on K, meets every perfect set, it
suffices to check that µ(Xα) = 0 for every α < ω1.

Suppose that Xα is of full outer measure for some α and let A be the
algebra generated by (Bβ)β<α. Consider an arbitrary open set U . For every
x ∈ Y = Xα ∩ U there is n(x) ∈ ω such that Vn(x)(x) ⊆ U . Writing
W =

⋃
x∈Y Vn(x)(x) we have Y ⊆ W ⊆ U . It follows that µ(U \W ) = 0

and thus U is approximated by A. Consequently, µ is separable, which is a
contradiction. An easy modification of this argument, taking into account
the fact that µ is nowhere separable, gives µ(Xα) = 0, and the proof is
complete.

Let us note that Theorems 6.2 and 6.3 in fact mean that there is a
nonseparable Radon measure for which wcov(Nµ) = ω1 if and only if there
is a nonseparable Radon measure on a compact space having a point of
countable character in every perfect subset. We do not know whether the
former condition is equivalent to wcov(Lω1) = ω1. Recall that cov(Nµ),
where µ is some Radon measure, is fully characterized by the properties of
the measure algebra of µ (see 6.14(c) of [12]). The problem is if wcov has
the same property, for instance, if wcov(Nµ) is constant for all homogeneous
Radon measures µ of Maharam type ω1.

We end by showing how Martin’s axiom affects weak coverings; see [11]
for the terminology and notation concerning Martin’s axiom. In particular,
m denotes the least cardinal κ for which MA(κ) is false.

Theorem 6.4. If µ is a nonatomic Radon measure then wcov(Nµ) ≥ m.

P r o o f. It suffices to consider a Radon measure µ on a compact space K.
Given κ < m and (Nξ)ξ<κ ⊆ Nµ, we are to find a perfect set in K \⋃ξ<κNξ.

As µ is nonatomic we can find and fix a countable family D of closed
subsets of K of positive measure such that for every F ∈ D and ε > 0 there
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are n ∈ ω and a pairwise disjoint family (Fi)i≤n ⊆ D such that every Fi is
contained in F with µ(Fi) < ε, and µ(F \⋃i≤n Fi) < ε.

We consider the set P of quadruples (n,D, a, F ), where:

(i) n ∈ ω and D = (Ds)s∈2<n is a dyadic system of sets from D;
(ii) a is a finite subset of κ and F is a closed subset of K \⋃ξ∈aNξ;

(iii) µ(F ∩Ds) > 0 for every s ∈ 2<n.

We declare (n,D, a, F ) ≤ (n′, D′, a′, F ′) if n ≤ n′, D is extended by D′,
a ⊆ a′ and F ⊇ F ′.

Consider a fixed n and a dyadic system D = (Ds)s∈2<n . If F is an
uncountable family of closed sets satisfying (iii) then there are sets Fk’s
∈ F and δ > 0 such that µ(Fk ∩Ds) ≥ δ for every s ∈ 2<n and every k. It
is easily seen that there are i 6= j such that µ(Fi ∩ Fj ∩ Ds) > 0 for all s.
This remark yields immediately that P is upwards ccc.

Given k ∈ ω, the family {(n,D, a, F ) : n ≥ k} is cofinal in P (thanks to
the way D is chosen). Moreover, for every ξ < κ, the family {(n,D, a, F ) :
ξ ∈ a} is easily seen to be cofinal in P. Applying MA(κ) we find an upward
directed G meeting the above families for every k and ξ. Such a G brings
forth a dyadic system (Ds)s∈2<ω and a closed set F ⊆ K \ ⋃ξ<κNξ such
that F ∩Ds 6= ∅ for every s ∈ 2<ω. Thus, using Lemma 6.1 we infer that F
contains a perfect set, and the proof is complete.

Theorems 6.3 and 6.4 give immediately the following.

Corollary 6.5. Assume that m > ω1. If X is a topological space such
that for every compact perfect set P ⊆ X there is x ∈ P with χ(x,X) = ω
then every Radon measure on X is separable.
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Σ-products and cardinal invariants, in: Á. Császár (ed.), Topology, Vol. II, North-
Holand, Amsterdam, 1980, 1055–1086.

[23] J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in
Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, Chapter 11,
195–216.

Institute of Mathematics
Polish Academy of Sciences
Kopernika 18
51-617 Wrocław, Poland
E-mail: grzes@math.uni.wroc.pl

Received 7 May 1996;
in revised form 14 November 1996 and 30 January 1997


