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Abstract. We study the thick subcategories of the stable category of finitely generated
modules for the principal block of the group algebra of a finite group G over a field of
characteristic p. In case G is a p-group we obtain a complete classification of the thick
subcategories. The same classification works whenever the nucleus of the cohomology
variety is zero. In case the nucleus is nonzero, we describe some examples which lead us
to believe that there are always infinitely many thick subcategories concentrated on each
nonzero closed homogeneous subvariety of the nucleus.

1. Introduction. A subcategory of a triangulated category is said to be
thick , or épaisse, if it is a triangulated subcategory and it is closed under
taking direct summands. One product of the deep work of Devinatz, Hop-
kins and Smith [8] on stable homotopy theory was a classification of the
thick subcategories of the stable homotopy category. This is described in
Hopkins’ survey [11], where he also states a corresponding classification of
thick subcategories of the homotopy category of bounded chain complexes
of finitely generated projective R-modules for a commutative ring R. In fact,
this classification requires R to be Noetherian, as Neeman pointed out in
[13], where he also gave a complete proof.

Recent work in the modular representation theory of finite groups [3, 4,
5, 18] has exploited the analogy between the stable homotopy category of
algebraic topology and the stable module category of a finite group, which
is also a triangulated category. Here we take this analogy further, and we
attempt to find a classification of thick subcategories of the stable module
category stmod(kG) of finitely generated representations of a finite group G
over a field k. Our attempt is successful when G is a p-group, and in The-
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orem 3.5 we give a complete classification in terms of varieties of modules.
For general groups we are not so successful, but we do get partial results in
Section 5. In Section 6 we present some phenomenology in situations where
our partial results do not apply, which seems to indicate that it will be
difficult even to conjecture what a complete classification might be like.

Throughout this paper k will be a field of characteristic p > 0. For
convenience, we shall assume that k is algebraically closed.

Recall that the stable module category stmod(kG) has the finitely gen-
erated kG-modules as its objects, and a map in this category between mod-
ules M and N is an equivalence class of module homomorphisms, where
α, β : M → N are equivalent if the difference α − β factors through a pro-
jective module. The category StMod(kG) is defined similarly, except that
all modules, not just finitely generated ones, are allowed. The space of
maps between modules M and N in either of these categories is denoted
by HomkG(M,N). Readers not familiar with these categories may wish to
consult [4, Section 2] and [18, Section 3].

2. Idempotent functors and varieties for infinite-dimensional
modules. We shall be using recent work on “idempotent functors” and on
varieties for infinite-dimensional modules, so in this section we shall sum-
marize the facts (from [18], [4] and [5]) that will be needed.

Let C be a thick subcategory of stmod(kG) for some finite group G,
and let C⊕ be the smallest thick subcategory of StMod(kG) that contains C
and is closed under arbitrary direct sums. As noted in the preamble to [18,
Section 5], the finitely generated modules in C⊕ are precisely those in C.

Given a kG-module X, Section 5 of [18] describes how the techniques
involved in the Brown Representability Theorem of algebraic topology can
be used to construct a distinguished triangle

TC(X) : EC(X)→ X → FC(X)→ Ω−1(EC(X ))

in StMod(kG). Let us collect together the properties of this triangle that
will be important to us.

Proposition 2.1. (a) The map EC(X) → X is the universal map in
StMod(kG) from an object of C⊕ to X.

(b) The map X → FC(X) is the universal map in StMod(kG) from X to
a C-local object of StMod(kG) (i.e., an object L for which HomkG(C,L) = 0
for every object C of C).

(c) The triangle TC(X) is natural in X. In particular , EC and FC are
functors from StMod(kG) to itself.

(d) The functors EC ,FC : StMod(kG)→ StMod(kG) are exact (i.e., they
commute with Ω up to natural isomorphism and send distinguished triangles
to distinguished triangles).
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(e) If C and D are two thick subcategories of stmod(kG) with C ⊆ D,
then the map ECED(X)→ EC(X), obtained by applying the functor EC to the
first map in the triangle TD(X), is an isomorphism in StMod(kG).

(f) If C and D are two thick subcategories of stmod(kG), then C = D if
and only if EC(X) ∼= ED(X) for every kG-module X.

(g) If C has the property that C ⊗X is in C for all objects C in C and
X in stmod(kG), then for any object X in stmod(kG), TC(X) is isomorphic
to the triangle obtained by tensoring TC(k) with X.

P r o o f. Parts (a) and (b) are Propositions 5.6 and 5.7 of [18], and (c)
follows immediately.

Left and right adjoints to exact functors between triangulated categories
are also exact (see, for example, [12, Lemma 3.9]), and so (d) follows, since EC
is right adjoint to the inclusion of C⊕ into StMod(kG) and FC is left adjoint
to the inclusion of the full subcategory of C-local objects into StMod(kG).

If C ⊆ D, then every D-local object is also C-local. In particular, this
is true of FD(X), and so ECFD(X) ∼= 0. The third object in the triangle
EC(TD(X)) is therefore zero, and so the first map, ECED(X)→ EC(X), is an
isomorphism. Therefore (e) is true.

If C = D, then certainly EC(X) ∼= ED(X) for any X. Conversely, if
EC(X) ∼= ED(X) for every X, then

X is in C⊕ ⇔ X ∼= EC(X)⇔ X ∼= ED(X)⇔ X is in D⊕.
Thus C⊕ = D⊕, and so, considering the finitely generated modules in these
categories, C = D. So (f) is true.

Part (g) is Proposition 5.13 of [18].

The modules EC(X) and FC(X) will usually not be finitely generated,
even if X is, and so the use of idempotent functors forces us to consider
infinitely generated modules. For this reason, we shall need to use the theory
of “varieties” for infinitely generated modules, which was recently developed
in [4, 5]. So let us now collect together the facts that we need from this theory.

We shall assume the reader has some familiarity with the theory of va-
rieties for finitely generated modules, where a closed homogeneous subva-
riety VG(M) of the maximal ideal spectrum VG(k) of the cohomology ring
H∗(G, k) is associated to each finitely generated kG-module M . A fairly
comprehensive exposition can be found in Chapter 5 of [2].

In what seems to be the most useful generalization of this theory to
modules that are not necessarily finitely generated, the “variety” of a mod-
ule M is not really a variety, but a set VG(M) of closed homogeneous ir-
reducible nonzero subvarieties of VG(k) (or, equivalently, a subset of the
scheme ProjH∗(G, k)). We refer to [5, Definition 10.2] for the precise defi-
nition of VG(M); here we just recall some of the more important properties.
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Proposition 2.2. (a) The “variety” VG(k) of the trivial kG-module k is
the set of all closed homogeneous irreducible nonzero subvarieties of VG(k).

(b) A kG-module M is projective if and only if VG(M) = ∅.
(c) If M is a finitely generated kG-module, then

VG(M) = {V ∈ VG(k) : V ⊆ VG(M)}.
(d) If

M1 →M2 →M3 → Ω−1(M1)
is a distinguished triangle in StMod(kG), then

VG(Mi) ⊆ VG(Mj) ∪ VG(Mk)

for {i, j, k} = {1, 2, 3}.
(e) For any family {Mi : i ∈ I} of kG-modules,

VG
(⊕

i∈I
Mi

)
=
⋃

i∈I
(VG(Mi)).

(f) (Tensor Product Theorem) For all kG-modules M and N ,

VG(M ⊗k N) = VG(M) ∩ VG(N).

(g) Let W be a closed homogeneous subvariety of VG(k), and let C(W )
be the thick subcategory of stmod(kG) consisting of the finitely generated
modules M with VG(M) ⊆W . If a kG-module N is in C(W )⊕, then

VG(N) ⊆ {V ∈ VG(k) : V ⊆W}.
P r o o f. All of these facts follow easily from what is contained in [5].
As noted after Definition 10.2 of [5], (a) follows immediately from the

definition and [5, Lemma 10.2(ii)].
Also implicit in [5] is (b). For an elementary abelian p-group, it follows

from [5, Corollary 5.6 and Theorem 10.5]. For a general group G, it then
follows by Chouinard’s Theorem [7] and [5, Theorem 10.6].

Using [5, Theorem 10.6] again, the proof of (c) can be reduced to the case
of an elementary abelian p-group, when it follows from [5, Remark 5.5(ii)
and Theorem 10.5].

Both (d) and (e) can be proved using [5, Lemma 10.3], which says that for
any V ∈ VG(k) there is a certain module κ(V ) such that, for any kG-module
M , V ∈ VG(M) if and only if κ(V )⊗kM is not projective.

The Tensor Product Theorem (f) is Theorem 10.8 of [5].
Finally, (g) is an immediate consequence of (d) and (e).

3. Thick subcategories with ideal closure. If G is a finite group
and W is a closed homogeneous subvariety of the maximal ideal spectrum
VG(k) of H∗(G, k), then one of the more interesting thick subcategories
of stmod(kG) is C(W ), the full subcategory consisting of modules whose
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varieties are contained in W . More general examples of thick subcategories
can be defined in terms of varieties as follows.

Definition 3.1. Let G be a finite group, and let X be a nonempty set of
closed homogeneous subvarieties of VG(k) that is closed under specialization
(i.e., if W ∈ X and W ′ ⊆ W , then W ′ ∈ X ) and finite unions. Then
C(X ) is the thick subcategory of stmod(kG) consisting of modules M with
VG(M) ∈ X .

It follows easily from standard properties of varieties for modules that
C(X ) is indeed a thick subcategory. If X has a maximal element W , then
C(X ) coincides with the thick subcategory C(W ) described above. Also, if X
is the set of all closed homogeneous subvarieties of VG(k) of dimension less
than c for some positive integer c, then C(X ) is just the thick subcategory
of all finitely generated modules with complexity less than c. Many familiar
examples of thick subcategories are therefore subsumed by this definition.

We now consider thick subcategories of stmod(kG) which have ideal clo-
sure as defined below. It will be shown that every such thick subcategory
has the form C(X ) for some X . Most importantly, all thick subcategories of
stmod(kG) for G a p-group have ideal closure, and hence we have a complete
classification of the thick subcategories in this case.

Definition 3.2. A thick subcategory C of stmod(kG) is said to have
ideal closure if C ⊗X is in C for any C in C and X in stmod(kG).

The following proposition is the key step in the proof of the main results
of the section.

Proposition 3.3. Let M be a finitely generated kG-module, and let
W = VG(M). Let 〈〈M〉〉 be the thick subcategory of stmod(kP ) generated by
M ⊗X for all X in stmod(kG). Then 〈〈M〉〉 is equal to C(W ).

P r o o f. Since M is in C(W ), it is clear that 〈〈M〉〉 is contained in C(W ).
Therefore by Proposition 2.1 the functors E〈〈M〉〉EW and E〈〈M〉〉 are isomor-
phic. Hence, for any kG-moduleN the distinguished triangle T〈〈M〉〉

(EW (N)
)

is of the form

E〈〈M〉〉(N)→ EW (N)→ F〈〈M〉〉EW (N)→ Ω−1(E〈〈M〉〉(N)).

We shall prove that F〈〈M〉〉EW (N) is projective, and so the first map in this
triangle is a stable isomorphism between E〈〈M〉〉(N) and EW (N).

The first two terms of the triangle T〈〈M〉〉(EW (N)) are in C(W )⊕, and
therefore so is F〈〈M〉〉EW (N). Hence,

VG(F〈〈M〉〉EW (N)) ⊆ {V ∈ VG(k) : V ⊆W} = VG(M),

by Proposition 2.2.
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Since F〈〈M〉〉EW (N) is 〈〈M〉〉-local and M is finitely generated,

0 = HomkG(S ⊗M,F〈〈M〉〉EW (N)) ∼= HomkG(S,M∗ ⊗k F〈〈M〉〉EW (N))

for all simple kG-modules S (and where M∗ denotes the k-linear dual of
M). This implies that M∗ ⊗k F〈〈M〉〉EW (N) is projective, and so, by the
tensor product theorem for varieties (see Proposition 2.2),

∅ = VG(M∗ ⊗k F〈〈M〉〉EW (N))

= VG(M) ∩ VG(F〈〈M〉〉EW (N)) = VG(F〈〈M〉〉EW (N)).

Thus F〈〈M〉〉EW (N) is projective, and so E〈〈M〉〉(N) and EW (N) are stably
isomorphic. Hence C(W ) and 〈〈M〉〉 are equal, by Proposition 2.1.

The classification of thick subcategories with ideal closure in stmod(kG)
now follows easily.

Theorem 3.4. Suppose that C is a thick subcategory with ideal closure in
stmod(kG). Then C = C(X ) for some nonempty set X of closed homogeneous
subvarieties of VG(k) closed under specialization and finite unions.

P r o o f. Suppose that X is the set of subvarieties of VG(k) that occur as
VG(M) for some object M of C. Then X is nonempty, since the zero module
is in C, and is closed under finite unions because C is closed under finite
direct sums. It is well known that every closed homogeneous subvariety W ′

of VG(k) occurs as the variety of some finitely generated kG-module L (see,
for example, [2, Corollary 5.9.2]). Therefore, if W ′ is a subvariety of VG(M)
for some M in C, then M ⊗k L has variety W ′ and is in the thick subcat-
egory 〈〈M〉〉. In particular, it is in C. Hence X is closed under specializa-
tion.

Clearly, C is contained in C(X ). But also, for each object N of C(X ),
there is an object N ′ of C with VG(N ′) = VG(N). By Proposition 3.3, N
and N ′ generate the same thick subcategory, and so N must be in C. Hence
C = C(X ).

Corollary 3.5. Let P be a p-group, and let C be a thick subcategory of
stmod(kP ). Then C = C(X ) for some nonempty set X of closed homogeneous
subvarieties of VP (k) closed under specialization and finite unions.

P r o o f. The important thing to note here is that stmod(kP ) = 〈k〉, the
thick subcategory generated by the trivial module k. Also, if C is an object
in C and X is in 〈k〉 then C ⊗X is in C. So C has ideal closure.

4. The nucleus and modules with no cohomology. For a general
finite group G, the modules in the principal block form a proper thick sub-
category of stmod(kG). More interestingly, perhaps, the modules M in the
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principal block for which the Tate cohomology Ĥ∗(G,M) vanishes in all de-
grees form a thick subcategory that is not usually trivial. Such modules were
studied in [6], where several conjectures were proposed that were settled re-
cently in [3] using some of the theory of idempotent functors described in
Section 2. In the next section we shall need to use this work, so let us give
a brief summary of some of the important points.

One of the important theorems is a classification of the finite groups G
for which Ĥ∗(G,M) 6= 0 for all nonprojective modules M in the principal
block. In [6, Section 2], the term trivial homology module is introduced. It
follows immediately from what is proved in [6, Sections 2 and 3] about these
modules that they are precisely the modules that are in the triangulated sub-
category of stmod(kG) generated by the trivial module. In [3, Theorem 1.4]
the following result was proved, which had previously been established in
odd characteristic in [6].

Proposition 4.1. Let G be a finite group. Then the following are equiv-
alent :

(a) The full subcategory of stmod(kG) consisting of modules in the prin-
cipal block is generated , as a triangulated category , by the trivial module k.

(b) If M is a finitely generated kG-module for which Ĥ∗(G,M) = 0, then
no nonprojective direct summand of M belongs to the principal block.

(c) Every element of order p in G has a p-nilpotent centralizer.

In fact, [3, Theorem 1.4] gives twelve equivalent conditions.
To say something about groups that do not satisfy the conditions of

Proposition 4.1, Benson, Carlson and Robinson introduced a closed homoge-
neous subvariety YG of VG(k) called the nucleus. Let us recall the definition.

Definition 4.2 ([6]). Let G be a finite group. The nucleus YG is the
union of the images of the restriction maps

res∗G,H : VH(k)→ VG(k),

as H runs over the set of subgroups of G for which the centralizer CG(H) is
not p-nilpotent. (Except that if G is p-nilpotent, then YG should be taken
to be {0} rather than ∅.)

Note that YG = {0} if and only if the equivalent conditions of Proposi-
tion 4.1 hold.

The nucleus was introduced in order to state the following result, con-
jectured in [6] and proved in [3].

Proposition 4.3. Let G be a finite group. Every finitely generated mod-
ule in the principal block B0(kG) is contained in 〈k, C(YG)〉, the thick sub-
category of stmod(kG) generated by the trivial module k together with all the
modules whose variety is contained in the nucleus.
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The thick subcategory 〈k, C(YG)〉 consists of the direct summands of
what are called nuclear homology modules in [6, 3], so this is just a restate-
ment of [3, Theorem 1.2].

Proposition 4.4. Let G be a finite group. If M is a module in the
principal block such that Ĥ∗(G,M) = 0, then M is in C(YG)⊕.

If M is finitely generated, then the conclusion is just that VG(M) ⊆ YG,
and this was shown in [6, Corollary 10.12] to be a consequence of Propo-
sition 4.3. We shall give a proof using idempotent functors that does not
require M to be finitely generated.

P r o o f. Consider the distinguished triangle TC(YG)(M). By [18, Propo-
sition 5.13], this is isomorphic to the triangle obtained by taking the tensor
product of M with TC(YG)(k). Also, the construction of TC(YG)(k) in [18, Sec-
tion 6] makes it clear that EC(YG)(k) and FC(YG)(k) are in 〈k〉⊕. It follows
that EC(YG)(M) and FC(YG)(M) are in 〈M〉⊕, and, in particular, are in the
category of 〈k〉-local modules of the principal block.

Since FC(YG)(M) is also C(YG)-local, it follows from Proposition 4.3 that
it must be projective, and so

M ∼= EC(YG)(M),

which is in C(YG)⊕.

We shall also need the following consequence of Proposition 4.3.

Proposition 4.5. Let G be a finite group, and let M be a finitely gen-
erated kG-module in the principal block for which

VG(M) ∩ YG = {0}.
Then M is in the thick subcategory 〈k〉 of stmod(kG) generated by the trivial
module k.

P r o o f. Consider the distinguished triangle

T〈k〉(M) : E〈k〉(M)→M → F〈k〉(M)→ Ω−1(E〈k〉(M)).

The third term, F〈k〉(M), is 〈k〉-local, and so, by Propositions 4.4 and 2.2,

VG(F〈k〉(M)) ⊆ {W ∈ VG(k) : W ⊆ YG}.
Since M is finitely generated, it follows from the Tensor Product Theorem
of Proposition 2.2 that

VG(Homk(M,F〈k〉(M))) = ∅,
and so

HomkG(M,F〈k〉(M)) = 0.
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By the universal property of the second map in the triangle T〈k〉(M), it
follows that F〈k〉(M) is projective, and so

M ∼= E〈k〉(M),

which is in 〈k〉⊕. Since M is finitely generated, it must be in 〈k〉.

5. Thick subcategories in the principal block. In this section, we
shall give some generalizations of Corollary 3.5, the classification of thick
subcategories of stmod(kP ) for a p-group P , to more general groups. If G is a
group for which kG has more than one block, then the modules belonging to
a particular block form a thick subcategory. We shall restrict our attention
to modules that belong to the principal block B0(kG), although there are
doubtless things that could be said about other blocks. Even with this re-
striction, the thick subcategories cannot, in general, be classified in terms of
varieties in the same way as they could for p-groups: for example, the thick
subcategory 〈k〉 generated by the trivial module contains modules with all
possible varieties, but it does not coincide with the thick subcategory of all
modules in the principal block unless the nucleus YG is trivial. What we
shall show is that, in a sense, the nucleus is the only obstruction to a full
generalization: if we restrict our attention to thick subcategories containing
no nonprojective modules whose variety is in the nucleus, or containing all
modules with variety in the nucleus, then we do get a satisfactory classifica-
tion. In particular, Corollary 3.5 generalizes to groups which have a trivial
nucleus.

Since we shall be considering only modules in the principal block, let us
introduce the following notation for various thick subcategories.

Definition 5.1. Let G be a finite group.

(a) We shall denote by stmod0(kG) the thick subcategory of stmod(kG)
consisting of the finitely generated kG-modules that belong to the principal
block B0(kG). Similarly, StMod0(kG) is the thick subcategory of StMod(kG)
consisting of all modules that belong to the principal block.

(b) If W is a closed homogeneous subvariety of VG(k), then C0(W ) is the
thick subcategory of stmod(kG) consisting of modules in C(W ) that belong
to the principal block.

(c) If X is a nonempty family of closed homogeneous subvarieties of VG(k)
that is closed under specialization and finite unions, then C0(X ) is the thick
subcategory of stmod(kG) consisting of modules in C(X ) that belong to the
principal block.

Let us start with some easy lemmas regarding idempotent functors and
tensor products as applied to modules in the principal block.
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Lemma 5.2. Let G be a finite group, let C be a thick subcategory of
the category stmod0(kG), and let N be a kG-module. Then EC(N) is in
StMod0(kG). If N is in StMod0(kG), then so is FC(N).

P r o o f. Since StMod0(kG) contains C and is closed under arbitrary direct
sums, it contains C⊕, of which EC(N) is an object.

The first term of the distinguished triangle

EC(N)→ N → FC(N)→ Ω−1(EC(N))

is in StMod0(kG), and so if either N or FC(N) is in StMod0(kG), so is the
other.

Lemma 5.3. Let G be a finite group, and let C be a thick subcategory
of StMod0(kG). Let N be a module in C, and let M be a finitely generated
kG-module. If M is in the thick subcategory 〈k〉 generated by the trivial
module, then M ⊗k N and Homk(M,N) are both in C. In particular , if M
is in stmod0(kG) and VG(M) ∩ YG = {0}, then M ⊗k N and Homk(M,N)
are both in C.

P r o o f. Let D be the class of finitely generated kG-modules X for which
X ⊗k N and Homk(X,N) are both in C. Then D forms a thick subcategory
of stmod(kG) which contains the trivial module k, and so it must contain
all of 〈k〉. The final statement follows because if M is in stmod0(kG) and
VG(M) ∩ YG = {0}, then M is in 〈k〉, by Proposition 4.5.

Let us start by studying thick subcategories of stmod0(kG) consisting
entirely of modules whose variety intersects the nucleus YG trivially. As in
the case of p-groups, the key step in the classification of such subcategories
consists of identifying the thick subcategory generated by a single module.
We have the following analogue of Proposition 3.3.

Proposition 5.4. Let G be a finite group, and let M be a kG-module in
stmod0(kG) whose variety VG(M) = W satisfies W ∩ YG = {0}. Then the
thick subcategories 〈M〉 and C0(W ) coincide.

P r o o f. If N is any kG-module, then the distinguished triangle
T〈M〉(EC0(W )(N)) has the form

E〈M〉(N)→ EC0(W )(N)→ F〈M〉EC0(W )(N)→ Ω−1(E〈M〉(N)).

As in the proof of Proposition 3.3, we shall show that E〈M〉(N) and
EC0(W )(N) are stably isomorphic (and so 〈M〉 = C0(W ), by Proposition 2.1)
by showing that F〈M〉EC0(W )(N) is projective.

Since the first two terms of the triangle are in C0(W )⊕, so is the third.
Therefore F〈M〉EC0(W )(N) is in StMod0(kG) and

VG(F〈M〉EC0(W )(N)) ⊆ {V ∈ VG(k) : V ⊆W} = VG(M).
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Because F〈M〉EC0(W )(N) is 〈M〉-local, we have, for every n ∈ Z,

0 = HomkG(ΩnM,F〈M〉EC0(W )(N)) ∼= Ĥn(G,M∗ ⊗k F〈M〉EC0(W )(N)).

But, by Lemma 5.3, M∗ ⊗k F〈M〉EC0(W )(N) is in StMod0(kG), its variety
is contained in VG(M) by Proposition 2.2(f), and so, by Proposition 4.5, it
must be projective. Hence,

∅ = VG(M∗ ⊗k F〈M〉EC0(W )(N))

= VG(M) ∩ VG(F〈M〉EC0(W )(N)) = VG(F〈M〉EC0(W )(N)).

Thus F〈M〉EC0(W )(N) is projective, as required.

The following partial classification of thick subcategories for a general
group G follows from the previous result in the same way that Theorem 3.4
and Corollary 3.5 followed from Proposition 3.3.

Theorem 5.5. Let G be a finite group, and let C be a thick subcategory of
stmod0(kG) containing only modules M for which VG(M)∩YG = {0}. Then
C = C0(X ) for some nonempty set X of closed homogeneous subvarieties of
VG(k), closed under specialization and finite unions, such that

W ∈ X ⇒W ∩ YG = {0}.
Using the classification of groups G for which the nucleus YG is trivial,

the following corollary follows immediately.

Corollary 5.6. Let G be a finite group in which the centralizers of
all elements of order p are p-nilpotent. Then every thick subcategory of
stmod0(kG) is of the form C0(X ) for some nonempty set X of closed homo-
geneous subvarieties of VG(k), closed under specialization and finite unions.

In a slightly different direction, we can use the same methods to clas-
sify thick subcategories of stmod0(kG) that contain C0(YG). Of course, this
is equivalent to classifying thick subcategories of the quotient category
stmod0(kG)/C0(YG). The analogue of Proposition 3.3 that we need is as
follows.

Proposition 5.7. Let G be a finite group, let M be a kG-module in
the category stmod0(kG), and let W = VG(M). Then Y0(M), the thick sub-
category of stmod0(kG) generated by C0(YG) together with M , is equal to
C0(YG ∪W ).

P r o o f. Let us start by choosing some module Y in stmod0(kG) with
VG(Y ) = YG.

For any kG-module N , the distinguished triangle TY0(M)(EC0(YG∪W )(N))
has the form

EY0(M)(N)→ EC0(YG∪W )(N)→ FY0(M)EC0(YG∪W )(N)→ Ω−1(EY0(M)(N)).
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As in the proofs of Propositions 3.3 and 5.4, we just have to show that the
third term of this triangle is projective.

Certainly, VG(FY0(M)EC0(YG∪W )(N)) is contained in VG(M ⊕ Y ), since
this is true of the first two terms of the triangle.

But, since M ⊕ Y is in Y0(M), FY0(M)EC0(YG∪W )(N) is (M ⊕ Y )-local,
and so, for any n ∈ Z,

0 = Hom(Ωn(M ⊕ Y ),FY0(M)EC0(YG∪W )(N))

∼= Ĥn(G, (M ⊕ Y )∗ ⊗k FY0(M)EC0(YG∪W )(N)).
So
VG(FY0(M)EC0(YG∪W )(N)) = VG(M ⊕ Y ) ∩ VG(FY0(M)EC0(YG∪W )(N))

= VG((M ⊕ Y )∗ ⊗k FY0(M)EC0(YG∪W )(N))

⊆ {V ∈ VG(k) : V ⊆ YG},
where the final inclusion follows from Proposition 4.4. By Proposition 2.2,
then, the module FY0(M)EC0(YG∪W )(N) is in C0(YG)⊕, but it is also C0(YG)-
local, and so must be projective.

As before, we easily deduce the following classification.

Theorem 5.8. Let G be a finite group, and let C be a thick subcategory
of stmod0(kG) that contains C0(YG). Then C = C0(X ) for some set X of
closed homogeneous subvarieties of VG(k) that is closed under specialization
and finite unions and includes YG.

6. Inside the nucleus. In this section we shall examine some examples
of thick subcategories of stmod0(kG) that are not covered by the theorems
of Section 5. In particular, we shall consider thick subcategories of C0(YG)
for several groups with nontrivial nuclei.

In preparation for studying these examples, we begin with a theorem
which applies in some of the cases we shall consider. For notation, let N
denote the thick subcategory of StMod0(kG) consisting of all modules M
with Ĥn(G,M) = 0 for all n.

Theorem 6.1. Suppose that G has a normal subgroup N , and let k be a
field of characteristic p.

(i) Let M be a kG-module with the property that M ↓N is projective and
HomkN (k,M ↓N ) = 0.

Then H∗(G,M) = 0, and hence M is in N .
(ii) Suppose that G/N is a p-group. Let M be an indecomposable and

nonprojective module in the principal block , and suppose that for every non-
trivial p-subgroup Q ⊆ N , CN (Q) is p-nilpotent. If M is in N then M ↓N
is projective and HomkN (k,M ↓N ) = 0.
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P r o o f. (i) The hypotheses imply that the E2 page of the Lyndon–
Hochschild–Serre spectral sequence

H∗(G/N,H∗(N,M))⇒ H∗(G,M)
is zero, and so H∗(G,M) = 0.

(ii) Since G/N is a p-group, M↓N↑G∼= kN ↑G ⊗M is in the thick sub-
category generated by M , and so

Ĥ∗(N,M ↓N ) ∼= Ĥ∗(G,M ↓N↑G) = 0.

Hence, by Proposition 4.4, M ↓N is projective. Since M is indecompos-
able and nonprojective, Ĥ0(G,M) = 0 implies HomkG(k,M) = 0, and
hence HomkN (k,M ↓N )G/N = 0. Since G/N is a p-group, this implies that
HomkN (k,M ↓N ) = 0.

Example 1 (C2 × A4 in characteristic two). Let G = C2 × A4, and let
k be an algebraically closed field of characteristic two. Then kG has only
one block, the principal block, and the only nontrivial subgroup of G that
does not have a 2-nilpotent centralizer is C2×{1}. The nucleus YG therefore
consists of a single line in VG(k), and so every nonprojective module in C(YG)
has YG as its variety. By Theorem 6.1 a kG-module is in N if and only if its
restriction to {1}×A4 is projective and has no direct summand isomorphic
to the projective cover of the trivial module.

Let M be the kG-module which, as a module for A4, is the projective
cover Pk of the trivial module, and on which C2 acts trivially. In other words,
M is isomorphic to the permutation module IndGC2×C3

(k). Then M ∼= ΩM .
Now consider the element

γ =
∑

x∈A4

x

of kG, which is a central element whose square is zero. For any λ ∈ k, there
is an automorphism θλ of kG that fixes A4 and sends the generator g of C2

to g + λγ.
We can now form an infinite family {Mλ : λ ∈ k} of modules, where Mλ

is just the module M with the kG-action twisted by the automorphism θλ.
That is, M = U/V where U = kG.u is the projective left ideal generated by
u = 1+w+w2 for w ∈ A4 an element of order three, and V = kG((g−1)u−
λγ). In particular, M0 = M . Since M is periodic of period one, the same
is true of all the Mλ. Also, as Mλ is an indecomposable periodic module,
VG(Mλ) must be a single line through the origin, which must in fact be the
nucleus YG, since Mλ is not projective on restriction to C2 × {1}.

As modules for A4, all of these modules are isomorphic to Pk, but instead
of acting trivially, the generator g of C2 acts as id +λφ, where φ is a fixed
nonzero kA4-module homomorphism obtained as a composition

Pk → Pk/rad(Pk)→ soc(Pk)→ Pk.
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Proposition 6.2. For different values of λ, the modules Mλ for C2×A4

(in characteristic two) described above generate thick subcategories of C(YG)
which intersect trivially.

P r o o f. Since the automorphisms of kG involved in the definition of the
modules satisfy

θλθµ = θλ+µ

for all λ, µ ∈ k, it is sufficient to show that, for λ 6= 0, the thick subcategory
generated by Mλ intersects trivially with the thick subcategory generated
by M .

By Frobenius reciprocity,

HomkG(M,Mλ) ∼= Homk(C2×C3)(k,Mλ ↓C2×C3),

which is zero (if λ 6= 0) since it is easy to check that there is only one
indecomposable summand of Mλ ↓C2×C3 that has nonzero fixed points, and
that this summand is projective.

Since M∼=ΩM , it follows that HomkG(X,Y )=0 for every X in the thick
subcategory of stmod(kG) generated by M and Y in the thick subcategory
generated by Mλ. So these subcategories must intersect trivially.

We can produce two more families of examples by simply taking the
tensor product of the modules Mλ with each of the two nontrivial simple
kG-modules, which are both one-dimensional. The subcategories produced
in this way have the property that they are contained in N .

R e m a r k. One might suspect that any thick subcategory with support
in the nucleus is generated by

{Mλ : λ ∈ X} ∪ {Mλ ⊗ ω : λ ∈ Y } ∪ {Mλ ⊗ ω : λ ∈ Z}
for suitable subsets X, Y and Z of k. Here, ω and ω denote the two nontrivial
simple kG-modules. If this were true, then any self-equivalence of the stable
module category would permute the minimal elements of this collection of
thick subcategories, namely those generated by a single M or M ⊗ ω or
M ⊗ ω. However, there is a self-equivalence of the derived category of A4

that takes the projective cover Pk of the trivial module to a complex

. . .→ 0→ Pω ⊕ Pω̄ → Pω ⊕ Pω̄ → Pk → 0→ . . .

where Pω and Pω̄ are the other indecomposable projectives. This induces
a self-equivalence of the stable module category of C2 × A4 that takes
M0 to a 20-dimensional indecomposable module whose restriction to A4

is Pk ⊕ 2Pω ⊕ 2Pω̄. The reader will find more details of some examples
of thick subcategories given by self-equivalences of the derived category in
Example 4.
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Example 2 (C2×A5 in characteristic two). Since the principal blocks of
A4 and A5 are derived equivalent [17, Section 3] (i.e., the bounded derived
categories of finitely generated modules for the two blocks are equivalent
as triangulated categories), it follows from Theorem 2.1 of [16] that the
principal blocks of C2 × A4 and C2 × A5 are also derived equivalent, and
hence are stably equivalent by Corollary 2.2 of [15].

An infinite collection of thick subcategories that intersect trivially and
have varieties contained in the nucleus can be obtained by taking the mod-
ules Nλ that we get by applying this stable equivalence to the modules Mλ

given in the last example.

Example 3 (Janko’s sporadic group J1 in characteristic two). Let G be
the sporadic group J1 of Janko and let k be an algebraically closed field
of characteristic two. Then G has just one conjugacy class of involutions,
and the centralizer H is isomorphic to C2 × A5. The nucleus YG is equal
to the image of YH → VG(k), and is a single line through the origin in the
three-dimensional variety VG(k).

By Theorem 4.2 of [3], induction gives an equivalence of categories be-
tween C(YH) and C(YG). It follows that the modules obtained by inducing
Nλ from C2×A5 to J1 generate thick subcategories of C(YG) which intersect
trivially.

Proposition 6.3. For different values of λ, the modules Nλ for C2×A5

(in characteristic two) described above induce up to J1 to give modules which
generate thick subcategories of C(YG) intersecting trivially.

Example 4 (C3 × S3 in characteristic three). Now let

G = C3 × S3 = 〈x, y, z : x3 = y3 = z2 = 1, xy = yx, xz = zx, yz = zy2〉
and let k be an algebraically closed field of characteristic three. As in the
previous example, kG has only one block, and there is only one nontrivial
subgroup (namely C3 × {1}) whose centralizer is not 3-nilpotent, and so
again the nucleus YG is a single line through the origin. There are two
simple kG-modules, k and ε, both one-dimensional.

The following construction produces an infinite collection of thick sub-
categories of C(YG). Set X = x − 1 and Y = y2 − y, so that zX = Xz,
zY = −Y z, X3 = 0, XY = Y X, and Y 3 = 0. For 0 6= λ ∈ k, we define Mλ

to be the kG-module generated by elements a and b, satisfying the following
relations: za = −a, zb = −b, Y 2a = X2b, λXa = Y 2b. Then Mλ has a
k-basis consisting of the elements a, Y a, Y 2a = X2b, b, Y b, Y 2b = λXa,
Xb, XY b and XY 2b = λX2a.

The projective cover of Mλ is a direct sum of two copies of Pε generated
by elements â and b̂ mapping to a and b. The kernel is generated by a′ =
Y 2â−X2b̂ and b′ = λXâ−Y 2b̂, which satisfy the same relations as a and b.



74 D. J. Benson et al.

Counting dimensions, it follows that ΩMλ
∼= Mλ, so that Mλ is periodic

with period one. In fact it can be seen that Mλ is projective on restriction
to S3, and that MG

λ = 0 and HomkG(Mλ, k) = 0. So by Theorem 6.1, every
Mλ is in N .

If Mµ is another such module, with corresponding generators c and d,
we calculate HomkG(Mλ,Mµ) as follows. The images of a and b must be in
the −1 eigenspace of z, which has a k-basis c, Y 2c = X2d, d, Y 2d = µXc,
Xd and XY 2d = µX2c. Examining the relations in Mλ and Mµ, we obtain
a system of linear equations which must be satisfied by these images. For
λ 6= µ, these imply that HomkG(Mλ,Mµ) has a k-basis consisting of the
following homomorphisms:

θ1: a 7→ Y 2c = X2d, b 7→ 0,

θ2: a 7→ µX2c = XY 2d, b 7→ 0,

θ3: a 7→ 0, b 7→ (µ− λ)Y 2c,

θ4: a 7→ 0, b 7→ (λ− µ)Xc,

θ5: a 7→ 0, b 7→ µX2c = XY 2d,

θ6: a 7→ µXc = Y 2d, b 7→ λXd.

Each of these lifts to a map from Mλ to the projective cover of Mµ as follows:

θ̂1: a 7→ X2d̂, b 7→ 0,

θ̂2: a 7→ XY 2d̂, b 7→ 0,

θ̂3: a 7→ 0, b 7→ µY 2ĉ− λX2d̂,

θ̂4: a 7→ µX2ĉ−XY 2d̂, b 7→ λXĉ− Y 2d̂,

θ̂5: a 7→ 0, b 7→ XY 2d̂,

θ̂6: a 7→ Y 2d̂, b 7→ λXd̂.

It follows that HomkG(Mλ,Mµ) = 0 for λ 6= µ. This, together with the fact
that these modules are periodic of period one, implies that the modules Mλ

again generate thick subcategories which intersect trivially.

Proposition 6.4. For different values of λ, the modules Mλ for C3 ×
S3 (in characteristic three) described above generate thick subcategories of
C(YG) which intersect trivially.

Here are some more examples of thick subcategories of stmod(kG):

(a) The intersection of C(YG) with 〈k〉 or with 〈ε〉.
(b) Of course, N is a thick subcategory of C(YG). As noted before, all

of the modules Mλ are in N . However, there are many more modules in N
and may be many more thick subcategories of N .
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(c) Let L be the projective cover of the trivial module for S3, regarded as
a kG-module via inflation. Then L has YG as its variety, and so it generates
a thick subcategory of C(YG). Since 〈L, k〉 contains ε, and must therefore be
the whole of stmod(kG), L cannot be in 〈k〉. Also, HomkG(k, L) 6= 0, so L
is not in either of the categories (a) or (b).

(d) The modules X of C(YG) for which HomkG(ΩnL,X) = 0 for all
n ∈ Z also form a nontrivial thick subcategory. One such module has the
following Loewy structure:

ε k k ε
ε k ε k ε k

k ε k ε k ε
ε k

(e) One way of producing new examples of thick subcategories is to apply
self-equivalences of stmod(kG) to old examples. By [15, Theorem 2.1], a self-
equivalence of the derived category Db(mod(kG)) induces a self-equivalence
of the stable module category, and so the main theorem of [14] can be used
to give examples.

For instance, if we denote by Qk and Qε the projective covers of the two
simple kS3-modules, then let T be the direct sum of the complex

. . .→ 0→ Qε → 0→ 0→ . . . ,

concentrated in degree 1, and the complex

. . .→ 0→ Qε → Qk → 0→ . . . ,

with a nonzero differential and concentrated in degrees 1 and 0. It is easy
to check that T is a tilting complex [14, Definition 6.5] for kS3 whose en-
domorphism ring is isomorphic to kS3. Thus, by [14, Theorem 6.4], it in-
duces a self-equivalence of Db(mod(kS3)). The induced self-equivalence of
stmod(kS3) is actually isomorphic to the identity functor. However, by [16,
Theorem 2.1], the tensor product kC3⊗ T is a tilting complex for kG whose
endomorphism ring is isomorphic to kG. In this case, the induced functor

S : stmod(kG)→ stmod(kG)

generates an infinite cyclic group of nontrivial self-equivalences of the cate-
gory stmod(kG).

We can use this self-equivalence to produce more examples of thick sub-
categories of C(YG). For example, if L is the module described in (c), then
the modules L, S(L) and S2(L) have Loewy structures of the form

k
ε

k
,

ε k
ε k ε

k ε k
ε

,

ε ε k
k ε k ε

ε k ε k
ε

,
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the structure of S3(L) is

ε
ε k ε ε k

k ε k ε k ε
ε ε k ε k

ε

and so on. Also, S−n(L) is the dual of Sn(L).
Each of these modules generates a thick subcategory of C(YG). Since

HomkG(Ωnε, L) = 0 for all n ∈ Z, but HomkG(ε, SmL) is nonzero for m 6= 0,
all of these subcategories are different. Similarly, we can apply powers of S
to the thick subcategory described in (d).

(f) More examples can be constructed from those described above by
taking the tensor product with ε.

Example 5 (SL(2,F3) in characteristic two). Let

G = SL(2,F3) ∼= Q8 o C3

= 〈x, y, z : zy = y−1x = yx−1, z3 = 1, xz = zy, yz = zxy〉
and let k be an algebraically closed field of characteristic two. Then kG has
only one block, the principal block, and the only nontrivial subgroup of G
that does not have a 2-nilpotent centralizer is Z(G) ∼= C2. The nucleus YG
is the whole of VG(k), which is a single line through the origin. So every
nonprojective module has YG as its variety.

The following construction provides an infinite family of thick subcat-
egories of C(YG) = stmod(kG). Let ω, ω be the primitive cube roots of
unity in k, so that ω + ω = 1 = ωω, and set X = x + ωy + ωxy, Y =
x−1 + ωy−1 + ω(xy)−1 in kG. Then X2 = Y XY , Y 2 = XYX, X2Y =
XY 2 = Y 2X = Y X2 = 0, zX = ωXz and zY = ωY z. The group algebra
kQ8 of the subgroup Q8 = 〈x, y〉 has basis 1, X, Y , XY , Y X, XYX = Y 2,
Y XY = X2, XYXY = Y XY X = X3 = Y 3. A basis for kG can be ob-
tained by multiplying these basis elements by 1, z and z2. The advantage
of this basis is that it is well adapted to the study of the simple modules,
their extensions, the Loewy series of the group algebra, and so on.

For 0 6= λ ∈ k, let Mλ be the kG-module with a single generator a,
satisfying za = a and XY a = λY Xa. Thus Mλ is four-dimensional over k,
with basis a, Xa, Y a and XY a. We have X2a = Y XY a = λY 2Xa = 0
and Y 2a = XYXa = λ−1X2Y a = 0. The action of z is given by za = a,
zXa = ωXa, zY a = ωY a and zXY a = XY a. The projective cover of Mλ is
the eight-dimensional kG-module generated by a single element â mapping
to a and satisfying zâ = â. The kernel is generated by a′ = (XY + λY X)â,
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and is also four-dimensional. Since

(XY + λ−1Y X)a′ = (XYXY + λXY 2X + λ−1Y X2Y + Y XY X)â = 0,

we have Ω(Mλ) ∼= Mλ−1 .
If Mµ is another such module with corresponding generator b, and µ 6∈

{λ, λ−1}, then HomkG(Mλ,Mµ) is one-dimensional, generated by the homo-
morphism

a 7→ (λ+ µ−1)XY b = (λXY + Y X)b.

This lifts to the homomorphism a 7→ (λXY + Y X )̂b to the projective cover
of Mµ, and so HomkG(Mλ,Mµ) = 0. It follows from this, together with
the fact that Ω(Mλ) ∼= Mλ−1 , that the pairs {Mλ,Mλ−1} generate thick
subcategories which intersect trivially, for different pairs {λ, λ−1}.

Proposition 6.5. For different pairs {λ, λ−1}, the pairs {Mλ,Mλ−1}
for SL(2,F3) (in characteristic two) generate thick subcategories of C(YG)
which intersect trivially.

Example 6 (GL(2,F3) in characteristic two). Let G be the group

G = GL(2,F3) ∼= Q8 o S3,

and let H be the subgroup SL(2,F3) discussed above. Let k be an alge-
braically closed field of characteristic two. Then kG again has only one block,
and the only nontrivial subgroup of G that does not have a 2-nilpotent cen-
tralizer is Z(G) = Z(H) ∼= C2. So the nucleus YG is equal to Im(VH(k) →
VG(k)), a single line through the origin in the affine plane VG(k).

We write G as H o 〈t〉, with relations

t2 = 1, xt = tx−1, yt = t(xy)−1, zt = tz−1.

Thus we have Xt = tY and Y t = tX. It is easily seen that conjugation by
t swaps Mλ with Mλ−1 . So M̂λ = Mλ↑G∼= Mλ−1 ↑G is an indecomposable
kG-module whose restriction to H is isomorphic to Mλ ⊕Mλ−1 . It follows
from Frobenius reciprocity that for µ 6∈ {λ, λ−1}, HomkG(M̂λ, M̂µ) = 0.
Furthermore, Ω(M̂λ) ∼= M̂λ. So again, the modules M̂λ generate thick sub-
categories of stmod(kG) which intersect trivially for different pairs {λ, λ−1}.

Proposition 6.6. For different pairs {λ, λ−1}, the modules M̂λ for the
group GL(2,F3) (in characteristic two) generate thick subcategories of C(YG)
which intersect trivially.

Example 7 (M11 and SL(3,F3) in characteristic two). Let G be one of
the groups M11 or SL(3,F3), and let k be an algebraically closed field of
characteristic two. It is well known that the principal blocks of these two
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groups are Morita equivalent (1), so we can discuss them simultaneously.
The group G has a single conjugacy class of involutions, and the centralizer
H is isomorphic to the group GL(2,F3) discussed above. The nucleus YG is
equal to Im(YH → VG(k)), and is again a single line through the origin in
the affine plane VG(k).

By Theorem 4.2 of [3], induction gives an equivalence of categories be-
tween C(YH) and C(YG). It follows that the modules M̂λ↑G generate thick
subcategories of C(YG) which intersect trivially.

Proposition 6.7. For different pairs {λ, λ−1}, the modules M̂λ↑G for
M11 or SL(3,F3) (in characteristic two) generate thick subcategories of
C(YG) which intersect trivially.

7. Some open questions. We shall finish with some questions that
remain unanswered. The most important, of course, is:

Question 7.1. Is there a classification of the thick subcategories of the
category stmod kG for a general finite group G? Or , less ambitiously , what
about the thick subcategories in the principal block?

In this paper, we have not looked at nonprincipal blocks, but perhaps
the results of Section 5 could be generalized.

Question 7.2. Is there an object associated to a nonprincipal block that
plays the role that the nucleus YG does for the principal block? If so, are
there analogues of Theorems 5.5 and 5.8?

Returning to principal blocks, there are some more specific questions.

Question 7.3. For a group G with a nontrivial nucleus YG, and a closed
homogeneous subvariety V of YG, is there always an infinite collection of
thick subcategories of C(V ) intersecting trivially , and each containing mod-
ules with variety V ?

Given a thick subcategory C of stmod(kG), there is another thick sub-
category whose objects are the modules Y such that HomkG(X,Y ) = 0 for
all X in C. Let us call this the perpendicular category C⊥ of C. For example,
〈k〉⊥ is the category N of modules M for which Ĥ∗(G,M) = 0. By “Tate
duality” [1, Proposition 4.12.9] between Hom(M,N) and Hom(N,ΩM),
there is no difference between the “left perpendicular” and “right perpen-
dicular” categories of a thick subcategory.

(1) The structure of the projective indecomposable modules forM11 is given in Schnei-
der’s thesis [19]. Blocks with semidihedral defect groups are classified in Erdmann [9, 10],
but there is a misprint on page 162 of [10], where it is stated that the principal block of
M11 is in family IV. In fact, it is in family III along with the groups PSL(3,Fq) for q ≡ 3
modulo 4.
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In the case when G is a p-group and X is a collection of subvarieties
closed under finite unions and specializations, C(X )⊥ is just C(X ′), where

X ′ = {V ∈ VG(k) : V ∩W = {0} for all W ∈ X}.
It follows that C(X )⊥⊥ = C(X ) if and only if X is closed under arbitrary
unions in the sense that if a subvariety V is a union of elements of X then
it is itself in X .

Question 7.4. If YG is not trivial , for which thick subcategories C of
the category stmod(kG) does C = C⊥⊥? In particular , is it always true that
〈k〉 = 〈k〉⊥⊥?

Even in the specific examples of Section 6, we do not know whether
〈k〉 = 〈k〉⊥⊥.
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