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Operators on C(ωα) which do not preserve C(ωα)

by

Dale E. A l s p a c h (Stillwater, Okla.)

Abstract. It is shown that if α, ζ are ordinals such that 1 ≤ ζ < α < ζω, then there
is an operator from C(ωω

α

) onto itself such that if Y is a subspace of C(ωω
α

) which
is isomorphic to C(ωω

α

), then the operator is not an isomorphism on Y. This contrasts
with a result of J. Bourgain that implies that there are uncountably many ordinals α for
which for any operator from C(ωω

α

) onto itself there is a subspace of C(ωω
α

) which is
isomorphic to C(ωω

α

) on which the operator is an isomorphism.

In an earlier paper [A2] we proved that there is an operator on C(ωω
2
)

which is not an isomorphism on any subspace which is isomorphic to C(ωω
2
)

but the operator is onto C(ωω
2
). This is in contrast with the situation for

C(ω) and C(ωω) where there are no surjective operators which do not pre-
serve isomorphically a copy of the space, [P], [A1]. Bourgain [B] proved a
very general result which gives an estimate on the size of the ordinal β such
that any operator on C(ωω

α

) which is surjective must be an isomorphism
on a subspace isomorphic to C(ωω

β

). Recently Gasparis [G], [G1] has gen-
eralized the example in [A2] to the case of operators on C(ωω

α+1
) to show

that there are surjective operators on these spaces which do not preserve
a copy of C(ωω

α+1
). For most ordinals α this is very far from the estimate

given by Bourgain.
Bourgain used the Szlenk index and a combinatorial argument in the

proof of his result. Implicit in his proof is the notion of γ-families of sets
which was independently developed by Wolfe [W], and in [A2]. The existence
of γ-families with associated measures is an indication of the amount of
topological disjointness in a subset of C(K)∗ whereas the Szlenk index only
indicates disjointness. Bourgain essentially shows that a large Szlenk index
forces the existence of a γ-family of sets with the size of γ dependent on
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the Szlenk index. The existence of a γ-family is equivalent to a condition
on an ordinal index which we have named the Wolfe index. Thus from this
view point Bourgain proves that the Szlenk index gives some lower bound on
the Wolfe index. In some cases he infers that the two indices are of roughly
equivalent size. In this paper we give a very general construction of examples
of the type in [A2] and [G] and show that there are many more ordinals for
which the Szlenk and Wolfe index are very different.

We will use notation similar to that in [A2]. In particular, if γ is an
ordinal, C(γ) is the space of continuous functions on the ordinals less than
or equal to γ with the order topology, which we denote by [1, γ]. If K is a
topological space, K(β) is the β-derived set of K. If L ⊂ C(K)∗, then L(β)

will be the β-derived set of L with respect to the w∗-topology. If K is a
countable compact Hausdorff space, then K is homeomorphic to [1, ωβn],
where the cardinality of K(β) is n, for some n ∈ N (cf. [MS]). It was shown
in [BP] that C(ωω

α

) is isomorphic to C(ωβn) if and only if ωα ≤ β < ωα+1.
Thus from the point of view of the isomorphic theory of Banach spaces,
the spaces C(ωω

α

), α < ω1, are a complete set of representatives of the
C(K)-spaces for C(K) separable and K countable.

1. A topological construction. In order to define the operator we need
to develop a method of constructing special sets of measures on ωω

α

which
are homeomorphic to ωω

α

but which have supports which are almost disjoint
but are not topologically well separated. In [A2] we used the porcupine
topology, [BD], to effect the construction. Here we use a similar construction
but with somewhat different notation. The operators that we construct are
of the same form as that in our earlier work. Namely, we produce a compact
Hausdorff space K and a w∗-closed subset L of C(K)∗ and we define an
operator from C(K) into C(L) by evaluation. In this paper we need to iterate
the construction of [A2]. To this end we introduce a general procedure for
extending a pair (K,L) by a sequence of spaces Kn, where K and Kn are
compact Hausdorff spaces, each Kn has a distinguished point kn,0 and L is
a set of purely atomic finitely supported probability measures on K.

For each k ∈ K, we let L(k) = {l ∈ L : l(k) 6= 0} ∪ {∅} and S(k, L)
be the one point compactification of

∑
n

∑
l∈L(k)Kn \ {kn,0}, where we

use
∑
i∈IWi to denote the disjoint sum of topological spaces Wi with the

topology generated by sets of the form
⋃
i∈I Gi with Gi open for each i ∈ I.

We denote the points of S(k, L) as 4-tuples (k, l, n, j) where l ∈ L(k) and j ∈
Kn. The point added will be denoted by (k, ∅) although it is also (k, l, n, kn,0)
for any l ∈ L(k) and n. Note that if L(k) = {∅}, then S(k, L(k)) = {(k, ∅)}.
We want to define a topology on the disjoint union of the sets S(k, L).
Intuitively, we want to glue S(k, L) to K at the point k by identifying (k, ∅)
with k. We also want to extend the measures L by sets of measures Ln on
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Kn and make a copy of Ln for each l ∈ L(k), n ∈ N. More formally, we
make the following definition.

Definition 1.1. Suppose that K and Kn, n ∈ N, are compact Hausdorff
spaces, Kn has a distinguished point kn,0 and L, Ln are sets of purely
atomic disjointly supported probability measures on K, Kn, respectively,
with δkn,0 ∈ Ln, for each n. Define (K,L) ⊗ {(Kn, Ln) : n ∈ N} to be
the pair (K ′, L′) where K ′ is the compact Hausdorff space and L′ is the
set of atomic probability measures on K ′ described below. K ′ is the set of
4-tuples (k, l, n, jn), k ∈ K, l ∈ L(k), n ∈ N and jn ∈ Kn, with the topology
generated by sets of the form

⋃

k∈K
Gk ∪

⋃

k∈G
{(k, l, n, jn) : k ∈ K, l ∈ L(k), n ∈ N, jn ∈ Kn}

\
⋃

(k,l,n)∈F
{k} × {l} × {n} × Fk,l,n,

where Gk is an open subset of

{(k, l, n, jn) : l ∈ L(k), n ∈ N, jn ∈ Kn \ {kn,0}} = S(k, L) \ {(k, ∅)}
for each k, G is an open set in K, F is a finite set of triples (k, l, n) with k ∈
K, n ∈ N and l ∈ L(k), and Fk,l,n is a compact subset ofKn\{kn,0}. For each
k ∈ K we identify all of the points (k, l, n, kn,0) such that l ∈ L(k), n ∈ N
with the point (k, ∅). (Formally, K ′ is a set of equivalence classes of 4-tuples,
but only the elements with fourth entry kn,0 are in non-trivial classes.) Let
φ be the map from K into K ′ defined by φ(k) = (k, ∅) and let Φ be the map
from M(K) into M(K ′) which is induced by φ. Let

L′ =
{ ∑

k∈supp l

l(k)
∑

jn∈Kn
ln(jn)δ(k,l,n,jn) : l ∈ L, n ∈ N, ln ∈ Ln

}
.

In keeping with our identification,
∑

k∈supp l

l(k)δ(k,l,n,kn,0) =
∑

k∈supp l

l(k)δ(k,∅) = Φ(l)

for each l ∈ L, n ∈ N, and Φ(l) ∈ L′ because
∑

k∈supp l

l(k)
∑

jn∈Kn
δkn,0(jn)δ(k,l,n,jn) =

∑

k∈supp l

l(k)δ(k,l,n,kn,0)

and we have assumed that δkn,0 ∈ Ln, for each n.

The next lemma lists some properties of the construction.

Lemma 1.1. Suppose that K and Kn, n ∈ N, are compact Hausdorff
spaces, Kn has a distinguished point kn,0 and L, Ln, n ∈ N, are sets of
purely atomic finitely supported probability measures on K, Kn, respectively ,
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with δkn,0 ∈ Ln, for each n, as above. Then if (K ′, L′) = (K,L)⊗{(Kn, Ln) :
n ∈ N},

(1) K ′ is a compact Hausdorff space and φ is a homeomorphism of K
into K ′.

(2) A net (kd, ld, nd, jd)d∈D in K ′\φ(K) converges to (k, l, n, j) for some
j 6= kn,0 if and only if there exists d0 ∈ D such that kd = k, ld = l, and
n = nd for all d ≥ d0 and (jd)d∈D converges to j.

(3) A net (kd, ld, nd, jd)d∈D in K ′ \ φ(K) converges to (k, l, n, kn,0) =
(k, ∅) if and only if the following hold :

(a) (kd)d∈D converges to k.
(b) If D1 = {d : kd = k} is cofinal in D, then for each l and

n, D1,l,n = {d ∈ D1 : ld = l, nd = n} is not cofinal in D
or (j′d)d∈D converges to kn,0, where j′d = jd if d ∈ D1,l,n and
j′d = kn,0 otherwise.

(4) The map

l→ Φ(l) =
∑

k∈supp l

l(k)δ(k,∅)

for l ∈ L is a homeomorphism of L into L′ in the weak∗ topology.
(5) Each l′ ∈ L′ is atomic and has finite support.
(6) If L, Ln, n ∈ N, are compact in the weak∗ topology , then L′ is

compact in the weak∗ topology.
(7) If (ld) is a convergent net in Ln with limit l0 and l ∈ L, then

( ∑

k∈supp l

l(k)
∑

jn∈Kn
ld(jn)δ(k,l,n,jn)

)
d

converges to ∑

k∈supp l

l(k)
∑

jn∈Kn
l0(jn)δ(k,l,n,jn)

for each l ∈ L.

P r o o f. We have given a basis for the topology on K ′ in the definition
above. In order to verify the first property we first observe that {(k, ∅) :
k ∈ K} is homeomorphic to K. Notice that the basis for the topology of
K ′ given in the definition above defines the topology on {(k, ∅) : k ∈ K} to
be the topology {φ(G) : G is open in K}. Thus φ is a homeomorphism. If
O is an open cover of K ′ by basic open sets, then there is a finite subset
O′ of O which covers φ(K). K ′ \ ⋃{Gi : Gi ∈ O′} is contained in a finite
union of closed subsets of the form {k} × {l} × {n} × Fk,l,n, where Fk,l,n is
a compact subset of Kn \{kn,0}. The topology on {k}×{l}×{n}×Fk,l,n is
the topology induced by identifying this with Fk,l,n in Kn. Therefore a finite
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number of additional sets from O will cover each {k} × {l} × {n} × Fk,l,n.
This proves the first assertion.

For the second, notice that if G is an open set contained in Kn \ {kn,0}
and j ∈ G, then {k} × {l} × {n} ×G is an open neighborhood of (k, l, n, j).
Thus the net must eventually be in {k} × {l} × {n} × G, and (2) follows.
Define a map ζ from K ′ onto {(k, ∅) : k ∈ K} by ζ(k, l, n, j) = k. Clearly, ζ
is continuous and this gives (3)(a), if the net converges. If D1 = {d : kd = k}
were cofinal in D, D1,l,n were cofinal in D and (j′d)d∈D had a convergent
subnet with limit j 6= kn,0, then there would be an open set G containing j
and contained in K \{kn,0}. However, {k}×{l}×{n}×G would be an open
set in K ′ containing (k, l, n, j) and thus (k, l, n, j′d)d∈D would converge to
(k, l, n, j), which is impossible. Thus (3)(b) holds. Conversely, if we are given
a net satisfying (3)(a) and (b) and G′ is an open set containing (k, l, n, kn0),
then G′ contains a neighborhood of (k, l, n, kn,0) of the form

H =
⋃

k′∈G
{(k′, l′, n′, jn′) : k′ ∈ K, l′ ∈ L(k), n′ ∈ N, jn′ ∈ Kn′}

\
⋃

(k′,l′,n′)∈F
{k′} × {l′} × {n′} × Fk′,l′,n′ .

Because (kd)d∈D converges to k, there is a d0 ∈ D such that (kd, ld, nd, jd) ∈
H ∪ ⋃(k′,l′,n′)∈F {k′} × {l′} × {n′} × Fk′,l′,n′ for all d ≥ d0. Because F
is finite, we may assume, by choosing another d0 and passing to a subset
of G if necessary, that F = {(k, l′, n′) : (l′, n′) ∈ F ′} for some finite set
F ′. By (b) we know that for each (l′, n′) ∈ F ′ there is a dl′,n′ such that
if (kd, ld, nd, jd) = (k, l′, n′, jd) and d ≥ dl′,n′ , then (kd, ld, nd, jd) 6∈ {k} ×
{l′} × {n′} × Fk,l′,n′ . If d ≥ dl′,n′ , for all (l′, n′) ∈ F ′, and d ≥ d0, then
(kd, ld, nd, jd) ∈ H.

Because φ is a homeomorphism (4) is immediate. (5) is obvious from the
definition and the fact that (k, l, n, j) = (k′, l′, n′, j′) if and only if k = k′,
l = l′, n = n′ and j = j′, or j = j′ = kn,0 and k = k′. To see that L′ is
compact if L, Ln, n ∈ N, are, let (l′d)d∈D be a net in L′, where

l′d =
∑

k∈supp ld

∑

j∈Kn(d)

ld(k)l′′n(d)(j)δ(k,ld,n(d),j)

for each d ∈ D. Because L and the Ln are compact, we may assume by pass-
ing to a subnet that the nets (ld)d∈D and (l′′n(d))d∈D converge to l and l′′,
respectively. Here we are thinking of (l′′n(d)) as a net in

⋃
n∈N Φn(Ln), where

Φn is the map induced by the natural embedding φn of Kn into the one
point compactification of

⋃
n∈NKn \ {kn,0}. Because Φ is w∗-continuous,

(Φ(ld))d∈D converges to Φ(l). If ε > 0 and k ∈ supp l, let Gk be an open
set containing k and such that l(Gk) < l(k) + ε. We may assume that the
sets Gk are disjoint. We must consider two cases. First suppose that (ld)
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has a constant subnet. Then l′d =
∑
k∈supp l

∑
j∈Kn(d)

l(k)l′′n(d)(j)δ(k,ld,n(d),j)

for the elements in the subnet and the limit of the subnet is∑
k∈supp l l(k)

∑
n∈N,j∈Kn l

′′(j)δ(k,l,n,j). If there is no constant subnet, then
any convergent subnet of points (kd, ld, nd, jd)d∈D will have a limit of the
form (k, ∅), where k is the limit of the first coordinates in the subnet,
by (2) and (3). We claim that there is a convergent subnet with limit∑
k∈supp l l(k)δ(k,∅). Indeed, because (ld) converges to l, there exists a d0

such that ld(Gk) > l(Gk)− ε for all k ∈ supp l, d ≥ d0. This implies that

l′d
( ⋃

r∈Gk
{(r,m, n, t) : r ∈ K, m ∈ L(k), n ∈ N, t ∈ Kn}

∖ ⋃

(r,m,n)∈F
{r} × {m} × {n} × Fr,m,n

)

> l(Gk)− ε−
∑

(r,m,n)∈F
l′d({r} × {m} × {n} × Fr,m,n).

Notice that l′d({r} × {m} × {n} × Fr,m,n) = 0 if ld 6= m or r 6∈ supp ld.
Because F is finite, and we have assumed that there is no constant subnet
of (ld), by choosing another d1 ≥ d0 we will have l′d({r} × {m} × {n} ×
Fr,m,n) = 0 for all (r,m, n) ∈ F and all d ≥ d1. Because l′d is a probability
measure and ε > 0 is arbitrary, (l′d) converges to Φ(l) =

∑
k∈supp l l(k)δ(k,∅).

Thus L′ is compact.
(7) is immediate from the definition.

Our next lemma will allow us to compute topological information about
the spaces K ′ and L′ from the component pieces provided the pieces are
properly attached.

Lemma 1.2. Let K, L, Kn, Ln, n ∈ N, K ′ and L′ be as in the previous
lemma. In addition assume that K is homeomorphic to [1, ωω

αm], Kn is
homeomorphic to [1, ωω

β(n)m(n)], L (with the w∗-topology) is homeomorphic
to [1, ωω

γp], and Ln is homeomorphic to [1, ωω
γ(n)p(n)]. Moreover , assume

that
K(ωαm) = {k0}, L(ωγp) = {δk0},

K(ωβ(n)m(n))
n = {kn,0}, L(ωγ(n)p(n))

n = {δkn,0}
for all n. Let

ωBM = sup{ωβ(n)m(n) : n ∈ N} and ωΓP = sup{ωγ(n)p(n) : n ∈ N}.
Then

(1) K ′(ω
BM) ⊂ φ(K) and if

⋃{supp l : l ∈ L} = K, then K ′ is homeo-
morphic to [1, ωω

BM+ωαm] and K ′(ω
BM+ωαm) = {φ(k0)}.
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(2) L′(ω
ΓP ) = Φ(L), L′ (with the w∗-topology) is homeomorphic to

[1, ωω
ΓP+ωγp] and L′(ω

ΓP+ωγp) = {δφ(k0)}.
(3) If for each l ∈ L, there is a subset Hl of K such that l(Hl) ≥ ε, and

(Hl)l∈L are disjoint , and for each n ∈ N, l′′ ∈ Ln, there is a subset Hn,l′′

of Kn \ {kn,0} such that l′′(Hn,l′′) ≥ ε and (Hn,l′′)l′′∈Ln are disjoint for
each n, then there are disjoint subsets H ′l′ of K ′ for each l′ ∈ L′ such that
l′(H ′l′) ≥ ε. Moreover , if l ∈ L, then we can define H ′Φ(l) = φ(Hl) and if

l′ =
∑

k∈supp l

l(k)
∑

jn∈Kn
ln(jn)δ(k,l,n,jn)

for some l ∈ L, n ∈ N, ln ∈ Ln \ {δkn,0}, then we can define

H ′l′ =
⋃

k∈supp l

{k} × {l} × {n} ×Hln .

P r o o f. First observe that because K,L, and Kn are countable and the
measures in L are finitely supported, K ′ is countable. If n ∈ N, j ∈ Kn and
j 6= kn,0, then for any k ∈ K, l ∈ L, with l(k) 6= 0, {(k, l, n, j′) : j′ 6= kn,0}
is an open neighborhood of (k, l, n, j) in K ′ homeomorphic to Kn \ {kn,0}.
Thus (k, l, n, j) is in the same derived sets of K ′ as of Kn. In particular,

K
(ωβ(n)m(n))
n = {kn,0} and thus K ′(ω

BM) ⊂ φ(K). If
⋃{supp l : l ∈ L} = K,

then for each k ∈ K, {(k, l, n, j) : j ∈ Kn} ⊂ K ′ for some l ∈ L and therefore
(k, l, n, kn,0) ∈ K ′(ωβM). If k is an isolated point in K, then φ(k) is the limit
only of sequences which are eventually in

{(k, l, n, j) : l ∈ L, l(k) 6= 0, n ∈ N, j ∈ Kn}.
Hence (k, ∅) = (k, l, n, kn,0) 6∈ K ′(ωBM+1). Because φ is a homeomorphism,
it follows that K ′(ω

BM) = φ(K(0)). Similarly, K ′(ω
BM+%) = φ(K(%)) for all %.

In particular, K ′(ω
BM+ωαm) = {φ(k0)}.

Observe that it follows from Lemma 1.1 that L′ is countable and compact
becauseK, Kn, L, and Ln are, and thus it is sufficient to consider the derived
sets. If l ∈ L, n ∈ N, then {∑k∈supp l l(k)

∑
j∈supp ln ln(j)δ(k,l,n,j) : ln ∈ Ln}

is homeomorphic (by the obvious map) to Ln and
{ ∑

k∈supp l

l(k)
∑

j∈supp ln

ln(j)δ(k,l,n,j) : ln ∈ Ln
}(ωγ(n)p(n))

= {Φ(l)}.

Therefore Φ(L) ⊂ ⋂n∈N L′(ω
γ(n)p(n)) = L′(ω

ΓP ). If ln ∈ Ln \ {δkn,0}, then
∑

k∈supp l

l(k)
∑

j∈supp ln

ln(j)δ(k,l,n,j) −
∑

k∈supp l

l(k)ln(kn,0)δk,∅

is non-zero and is supported in the open set
⋃
k∈supp l{(k, l, n, j) : j ∈
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Kn \ {kn,0}} and only elements of L′ of the form
∑

k∈supp l

l(k)
∑

j∈supp l′n

l′n(j)δ(k,l,n,j)

with l′n ∈ Ln \ {δkn,0} are supported in this set. Therefore Φ(L) = L′(ω
ΓP ).

Because Φ is a homeomorphism, it follows that Φ(L)(%) = L′(ω
BP+%) for

all %, proving the second assertion.
For each l′ 6∈ Φ(L), we have defined H ′l′ to be a subset of K ′ \ φ(K).

These sets are clearly disjoint. Also if

l′ =
∑

k∈supp l

l(k)
∑

j∈supp ln

ln(j)δ(k,l,n,j),

then

l′(Hl′) =
∑

k∈supp l

l(k)ln(Hln) = ln(Hln).

Because Φ is induced by the homeomorphism φ, it follows that H ′Φ(l) =
φ(Hl), l ∈ L, is a family of disjoint subsets of φ(K) with Φ(l)(H ′Φ(l)) =
l(Hl).

In order to prove that the evaluation map from C(K) into C(L) is sur-
jective we will need to show that L is equivalent to the usual unit vector
basis of l1. The elements of L are not perturbations of disjointly supported
elements and thus the proof uses some special properties of the construction.
We introduce a natural ordering on the elements of L which reflects these
properties of the construction.

Definition 1.2. Suppose M is a family of measures on a measurable
space (Ω,B) and for each µ ∈M there is a set Hµ ∈ B such that Hµ ∩Hµ′

= ∅ if µ 6= µ′, and µ(Hµ) 6= 0. Then µ �′ µ′ if and only if there is a scalar
a ∈ (0, |µ(Hµ)/(2µ′(Hµ′))|] such that µ|⋃{Hµ′ :µ′ 6=µ} = aµ′|⋃{Hµ′ :µ′ 6=µ} and

|µ′|(Hµ) = 0. Define µ � ν if and only if there is a finite sequence (µi) in
M such that µ = µ0 �′ µ1 �′ . . . �′ µk = ν.

Notice that µ � µ is impossible and the relation � is transitive by
definition. Thus we can define a partial order on M by µ � µ′ if and only
if µ = µ′ or µ � µ′. Although the relation is really on the pairs (µ,Hµ), we
will write it as though it were on the measures. This will not present any
difficulty because the sets Hµ will be fixed during the construction.

The relation above occurs naturally in the construction of the pairs
(K,L). For (K ′, L′) = (K,L) ⊗ {(Kn, Ln) : n ∈ N} as in Lemma 1.1, each
l′ ∈ L′ which is of the form

∑
k∈supp l l(k)

∑
jn∈Kn ln(jn)δ(k,l,n,jn) for some

l ∈ L, n ∈ N, ln ∈ Ln, satisfies l′|K′\(supp l)×{l}×{n}×Kn = ln(kn,0)l. If we
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have the sets (H ′l′)l′∈L′ , defined as in Lemma 1.2(3), and for l′′ ∈ Ln, we
have supp l′′ ⊆ Hn,l′′ ∪ {kn,0}, then l′ �′ l.

The next lemma is similar to Proposition IV.13 of [G] or Proposition 4.4
in [G1]. It will be used to show that the sets of measures L that we construct
actually are equivalent to the basis of l1.

Lemma 1.3. Suppose that M is a set of mutually singular probability
measures on a measurable space (K,B), ε > 0, and that (µn) is a sequence
of (finite) convex combinations of the measures in M and (An) is a sequence
of disjoint measurable sets. Let �′ and � be defined as above for M ={µn}
and Hµn = An. Suppose that (µn, An)∞n=1 satisfy the following :

(1) For each n ∈ N, µn(An) ≥ ε.
(2) For each n ∈ N, either there is a unique n′ ∈ N such that µn �′ µn′

or for all n′ 6= n, µn(An′) = 0.
(3) For all n 6= m if it is not the case that µn � µm, then µn(Am) = 0.

Then ‖∑ cnµn‖ ≥ (2ε/3)
∑ |cn| for any sequence of scalars (cn).

P r o o f. Because we only use information about the measures on the
sets An, without loss of generality we may assume that µn ∈ co{m ∈ M :
m(Ak) > 0, for some k}∪{0}. The relation � defines a partial order on {µn}.
Observe that if µ �′ ν and µ =

∑
j∈F b

µ
jmj and ν =

∑
j∈G b

ν
jmj , where

mj ∈M and bµj , b
ν
j are non-zero for all j, then F ⊃ G. Therefore, since each

µn is a finite convex combination, for any n(0) ∈ N there is a unique finite
maximal sequence (µn(i))ki=0 such that µn(0) �′ µn(1) �′ . . . �′ µn(k). Let
(cn) be a finite sequence of scalars and let

F = {n : ∃n′ such that cn′ 6= 0 and µn′ � µn}.
Clearly, F is a finite set. Partition F into sets (Fj)Jj=0 such that for each
j < J and n ∈ Fj there is an n′ ∈ Fj+1 such that µn �′ µn′ and for all
n′ 6= n, n′ ∈ Fj , µn′ and µn are incomparable. If µn �′ µn′ , let an,n′ denote
the scalar such that µn|⋃{Ak:k 6=n} = an,n′µn′|⋃{Ak:k 6=n}. For notational con-
venience, let an,n′ = 0 if it is not the case that µn �′ µn′ . A simple induction
argument using (2) and (3) shows that

∥∥∥
∑

cnµn

∥∥∥ =
∥∥∥

J∑

j=0

∑

n(j)∈Fj
cn(j)µn(j)

∥∥∥

=
∥∥∥

J∑

j=0

∑

n(j)∈Fj
cn(j)µn(j)|⋃{An:µn(j)�µn}

∥∥∥

=
∥∥∥

J∑

j=0

∑

n(j)∈Fj

∑

n:µn�µn(j)

cnµn|An(j)

∥∥∥.
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Another induction argument and the definition of the scalars an,n′ = 0 give
the following inequality:

∥∥∥
∑

cnµn

∥∥∥ ≥
J∑

j=0

∑

n(j)∈Fj

∣∣∣cn(j) +
∑

n(j−1)∈Fj−1

an(j−1),n(j)(cn(j−1)

+
∑

n(j−2)∈Fj−2

an(j−2),n(j−1)(cn(j−2) + . . .

+
∑

n(0)∈F0

an(0),n(1)cn(0)))
∣∣∣µn(j)(An(j)).

Now we split off 1/3 of each term and shift the index on these pieces to
combine with the subsequent related term:

J∑

j=0

∑

n(j)∈Fj

∣∣∣cn(j) +
∑

n(j−1)∈Fj−1

an(j−1),n(j)

(
cn(j−1)

+
∑

n(j−2)∈Fj−2

an(j−2),n(j−1)

(
cn(j−2) + . . .

+
∑

n(0)∈F0

an(0),n(1)cn(0)

))∣∣∣µn(j)(An(j))

=
J∑

j=0

∑

n(j)∈Fj

(
2
3

∣∣∣cn(j) +
∑

n(j−1)∈Fj−1

an(j−1),n(j)

(
cn(j−1)

+
∑

n(j−2)∈Fj−2

an(j−2),n(j−1)

(
cn(j−2) + . . .

+
∑

n(0)∈F0

an(0),n(1)cn(0)

))∣∣∣µn(j)(An(j))

+
1
3

∑

µn(j−1)�′µn(j)

∣∣∣cn(j−1) +
∑

n(j−2)∈Fj−2

an(j−2),n(j−1)

(
cn(j−2)

+
∑

n(j−3)∈Fj−3

an(j−3),n(j−2)

(
cn(j−3) + . . .

+
∑

n(0)∈F0

an(0),n(1)cn(0)

))∣∣∣µn(j−1)(An(j−1))
)
.

The condition µn(j−1) �′ µn(j) is equivalent to an(j−1),n(j) 6= 0 and by
the definition of �′, 2an(j−1),n(j)µn(j)(An(j)) ≤ µn(j−1)(An(j−1)). Therefore
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by the triangle inequality,

∥∥∥
∑

cnµn

∥∥∥ ≥
J∑

j=0

∑

n(j)∈Fj

2
3
|cn(j)|µn(j)(An(j)) ≥

J∑

j=0

∑

n(j)∈Fj

2
3
|cn(j)|ε.

2. Construction of the operators. The aim of this section is to pro-
duce pairs (Kα, Lα)α<ω1 by transfinite induction so that Kα is a countable
compact Hausdorff space and Lα is a w∗-closed subset of the probability
measures in C(Kα)∗ which is equivalent to the basis of l1.

Fix an ordinal ζ < ω1. Let ζn ↑ ωζ and for each n ∈ N let Sn = [1, ωζn ]
with the order topology and let Tn = { 1

2 (δβ + δωζn ) : β ≤ ωζn}. Let the
distinguished point of Sn be ωζn . Let S0 = [1, 1] and T0 = {δ1}. Define

(K1, L1) = (S0, T0)⊗ {(Sn, Tn) : n ∈ N}.
It is easy to see that up to a homeomorphism of [1, ωω

ζ

] we could have
defined K1 = [1, ωω

ζ

] and L1 = {1
2 (δβ + δ

ωω
ζ ) : β ≤ ωω

ζ}. We take the
distinguished point k1 of K1 to be φ(1) where 1 ∈ S0. Now suppose that
we have defined Kγ and Lγ for all γ < α. Let kγ denote the distinguished
point of Kγ . There are two cases. First assume that α = α′+ 1 for some α′.
Define

(Kα, Lα) = (K1, L1)⊗ (Kα′ , Lα′).

Let the distinguished point be kα = φ(k1). (More formally we should have a
sequence of spaces {(Kαn , Lαn) : n ∈ N} on the right of ⊗, but we can take
(Kα1 , Lα1) = (Kα′ , Lα′) and (Kαn , Lαn) = (S0, T0) for n > 1. These spaces
(S0, T0) have no effect on (Kα, Lα).) If α is a limit ordinal, let (αn) be an
increasing sequence of ordinals with limit α. Let

(Kα, Lα) = (S0, T0)⊗ {(Kαn , Lαn) : n ∈ N}.
Let φ(1), for 1 ∈ S0, be the distinguished point of Kα. The definition for α a
limit ordinal depends on the sequence (αn). However, the properties of the
space are not dependent on the sequence and we will assume that whenever
we use a sequence approaching α, it is the same one. This completes the
definition of the pairs (Kα, Lα). Notice that we actually have such a trans-
finite family of spaces for each ζ < ω1. The choice of ζ will be made in the
proof of Theorem 3.5.

Now we must consider the properties of these pairs. First we compute the
topological information by using Lemma 1.2. As noted above, K1 and L1 are
homeomorphic to [1, ωω

ζ

]. Notice that we have the following relations. If Kα′

and Lα′ are homeomorphic to [1, ωω
ζβ ], then Kα′+1 and Lα′+1 are homeo-

morphic to [1, ωω
ζ(β+1)], by Lemma 1.2(1) and (2). If (αn) is an increasing

sequence of ordinals with limit α and Kαn and Lαn are homeomorphic to
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[1, ωω
ζβn ], then Kα and Lα are homeomorphic to [1, ωω

ζβ ] where β = supβn.
Therefore a straightforward transfinite induction argument shows that Kα

and Lα are homeomorphic to [1, ωω
ζα] for all α < ω1.

Next we will show that Lα is equivalent to the standard basis of l1. We
will use Lemmas 1.2(3) and 1.3. For δ1 ∈ T0 we take Hδ1 = S0. For each
n ∈ N, 1

2 (δβ + δωζn ) ∈ Tn and β ≤ ωζn , we let H(1/2)(δβ+δ
ωζn

) = {β}. If
l ∈ L1, then H1

l = φ(S0) if l = Φ(δ1) = δ(1,∅), and H1
l = {δ(1,δ1,n,β)} if l =

1
2 (δ(1,δ1,n,β) + δ(1,∅)), as in Lemma 1.2. Notice that for all l 6= δ(1,∅), l ∈ L1,
we have l �′ δ(1,∅). Thus by Lemma 1.3 with (µn) = (δ(1,δ1,n,β))β≤ωζn , n∈N,
L1 is 3-equivalent to the basis of l1. Notice that Φ(δ1) is the only element
of L1 which does not have a successor (under �′) and that if l �′ l′, then
l|⋃{Hm:m 6=l} = 1

2 l
′.

Assume inductively that for each β < α, we have defined sets Hβ
l ⊂ Kβ

for all l ∈ Lβ , satisfying the hypothesis of Lemma 1.3 with ε = 1
2 , (µn) as the

point mass measures on Kβ and l � δkβ , for all l ∈ Lβ . Further assume that
if l, l′ ∈ Lβ and l �′ l′, then l|⋃{Hm:m6=l} = 1

2 l
′. Define the sets Hα

l′ , l
′ ∈ La,

as in Lemma 1.2(3). Thus Lemma 1.3(1) is satisfied. We need to verify the
other hypotheses of Lemma 1.3. In order to handle the successor ordinal case
and the limit ordinal case at the same time, let O1 = Kα′ and P1 = Lα′ ,
and On = S0 and Pn = T0 for all n > 1, n ∈ N, in the case α = α′ + 1, and
let On = Kαn and Pn = Lαn if α = limαn. Also let O0 = K1, P0 = L1, or
O0 = S0, P0 = T0, respectively. Let on be the distinguished point of On for
n = 0, 1, . . . With this notation (Kα, Lα) = (O0, P0) ⊗ {(On, Pn) : n ∈ N}.
For each l ∈ Pn let Hn

l be the associated subset of On.
Because φ is a homeomorphism, it follows that Φ(O0) and H0

l , l ∈ Φ(O0),
satisfy the hypothesis of Lemma 1.3. Moreover, φ(l1) �′ φ(l2) if and only if
l1 �′ l2. Suppose l0, l′′0 ∈ O0, ln ∈ Pn, l′′n′′ ∈ Pn′′ , for some n, n′′, and

l′ =
∑

k∈supp l0

l0(k)
∑

jn∈Kn
ln(jn)δ(k,l0,n,jn)

and

l′′ =
∑

k∈supp l′′0

l′′0 (k)
∑

jn∈Kn′′
l′′n′′(jn)δ(k,l′′0 ,n′′,jn).

Then l′ � l0 and l′′ � l′′0 . If l0 6= l′′0 or n 6= n′′, then Hα
l′ ∩Hα

l′′ = ∅ because
Hα
l′ =

⋃
k∈supp l0{k} × {l0} × {n} ×Hn

ln
and Hα

l′′ =
⋃
k∈supp l′′0

{k} × {l′′0} ×
{n′′} ×Hn′′

l′′
n′′
. Also, l′(Hα

l′′) = 0 and l′′(Hα
l′ ) = 0. If l0 = l′′0 and n = n′′ but

ln 6= ln′′ , then l′ � l′′ if and only if ln � ln′′ . Moreover, because Pn and
(Hn

l )l∈Pn satisfy the hypotheses of Lemma 1.3,

l0 ⊗ Pn =
{ ∑

k∈supp l0

l0(k)
∑

jn∈Kn
ln(jn)δ(k,l0,n,jn) : ln ∈ Pn

}
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and (Hl′)l′∈l0⊗Pn satisfy the same conditions and
∑

k∈supp l0

l0(k)
∑

jn∈Kn
ln(jn)δ(k,l0,n,jn)

� l0 =
∑

k∈supp l0

l0(k)
∑

jn∈Kn
δon(jn)δ(k,l0,n,jn)

for all ln. Observe that Lemma 1.3(2) is therefore satisfied. Indeed, if ln 6=
δon , then there is some l′n ∈ Pn such that ln �′ l′n and thus
∑

k∈supp l0

l0(k)
∑

jn∈Kn
ln(jn)δ(k,l0,n,jn) �′

∑

k∈supp l0

l0(k)
∑

jn∈Kn
l′n(jn)δ(k,l0,n,jn).

If ln = δon , then l0 =
∑
k∈supp l0 l0(k)

∑
jn∈Kn δon(jn)δ(k,l0,n,jn) and there

is some l′0 ∈ O0 such that l0 �′ l′0 or l0 = δo0 . Further, by transitivity of
� it follows that for all l ∈ Lα, l � Φ(δo0). For Lemma 1.3(3) we need
only consider the case of an element of the form Φ(l) for some l ∈ P0 and
an element of the form l′ =

∑
k∈supp l0 l0(k)

∑
jn∈Kn ln(jn)δ(k,l0,n,jn) where

l0 ∈ P0 and ln ∈ Pn for some n > 1. In this case there are three possibilities:

(a) l � l0,
(b) l0 � l, or
(c) neither (a) nor (b).

Case (b) gives
∑
k∈supp l0 l0(k)

∑
jn∈Kn ln(jn)δ(k,l0,n,jn) � Φ(l) and so

there is nothing to do. In case (c), supp l′ ⊆ ⋃k∈supp l0{k}×{l0}×{n}×On∪
suppΦ(l0) and HΦ(l) ⊆ φ(O0) \ suppΦ(l0). Therefore, Φ(l)(Hl′) = 0 and
l′(HΦ(l)) = 0. In case (a), α = α′+1 and thus l0 = δ(1,∅) and l = 1

2 (δo+δ(1,∅))
for some o ∈ K1 \ {(1, ∅)}. Clearly, Φ(l)(Hl′) = 0 and l′(HΦ(l)) = 0 in this
case also.

We have thus proved the following.

Proposition 2.1. For each ζ < ω1 there is a family of pairs
(Kα, Lα)α<ω1 , where for each α, Kα is homeomorphic to [1, ωω

ζα] and Lα
is a w∗-closed subset of the probability measures in C(Kα)∗ which is homeo-
morphic to [1, ωω

ζα] in the w∗-topology. Moreover , Lα is 3-equivalent to the
usual basis of l1. Consequently , the evaluation map T : C(Kα) → C(Lα)
defined by T (f)(l) = l(f), for all l ∈ Lα, is a surjection.

R e m a r k 2.1. Actually, [Lα] is isometric to l1. To see this observe that
for α = 1 the elements (l|Hl)l∈L1 are disjointly supported elements of [L1]
with span containing L1. Thus the normalized sequence is a basis for [L1]
which is 1-equivalent to the basis of l1. An induction argument shows that
for all α < ω1, (l|Hl)l∈Lα are disjointly supported elements of [Lα] with span
containing Lα and thus [Lα] is isometric to l1. Notice that this also means
that the argument about the equivalence of Lα to the usual l1 basis could
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have been made using (l|Hl)l∈Lα in the role of (µn) in the application of
Lemma 1.3 rather than using the point mass measures.

3. The Wolfe index of operators. In this section we will show that
the evaluation operators defined in Proposition 2.1 are actually small in the
sense that for most α the ordinals β for which there is a subspace X of
C(Kα) which isomorphic to C(ωβ) and for which T|X is an isomorphism are
much smaller than ωζα. The device for computing the possible ordinals β
is an ordinal index which was defined in [W] and characterized in [A2].

Definition 3.1. Let K be a compact Hausdorff space, ε > 0, and let B
be a subset of C(K)∗. Let

P0(ε,B) = {(µ,G) : µ ∈ B, G is open in K, |µ|(G) ≥ ε}.
If Pα(ε,B) has been defined, let

Pα+1(ε,B) =
{

(µ,G) ∈ P0(ε,B) : there is a sequence

(µn, Gn)∞n=1 ⊂ Pα(ε,B) such that µn
w∗−→ µ,

Gn ∩Gn′ = ∅, for n 6= n′, and
⋃
Gn ⊂ G

}
.

For a limit ordinal β let

Pβ(ε,B) =
{

(µ,G) ∈ P0(ε,B) : there is a sequence of ordinals

αn ↑ β and (µn, Gn) ⊂ Pαn(ε,B) such that

µn
w∗−→ µ, Gn ∩Gn′ = ∅, for n 6= n′, and

⋃
Gn ⊂ G

}
.

The result that we will use here is the following.

Theorem 3.1. Let T be a bounded operator from C(K) into a separa-
ble Banach space X. Then there is a subspace Y of C(K) such that Y is
isomorphic to C(ωω

α

) and T|Y is an isomorphism if and only if there is an
ε > 0 such that Pγ(ε, T ∗(BX∗)) 6= ∅ for all γ < ωα.

This result is an amalgamation of Theorems 0.2 and 0.3 from [A2]. It
follows that we need only bound the Wolfe index. As in the previous section
we keep ζ fixed and consider the evaluation operators Tα : C(Kα)→ C(Lα).
In this case the expression T ∗(BX∗) which occurs in Theorem 3.1 is T ∗α of
the unit ball of C(Lα)∗, which is w∗-closed. Also, if µ ∈ BC(Lα)∗ , then µ =∑
l∈Lα clδl, where

∑
l∈Lα |cl| ≤ 1. Hence T ∗(µ) =

∑
l∈Lα cll. These obser-

vations will allow us to employ the following lemma from [A2] (Lemma 3.2)
to reduce to considering only the sets Lα.

Lemma 3.2. Let L be a w∗-closed countable subset of {µ : µ ∈ BC(K)∗ ,
µ > 0} for some countable compact metric space K. Suppose that the eval-
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uation map T : C(K) → C(L) defined by (Tf)(l) = l(f), for all l ∈ L, is
surjective. Then, for α < ω1, there is an ε > 0 such that Pγ(ε, co(±L)) 6= ∅,
for all γ < ωα, if and only if there is an ε′ > 0 such that Pγ(ε′, L) 6= ∅, for
all γ < ωα.

Before we apply this to the examples let us make a few observations about
the sets Pγ(ε, Lα). Because the sequence (µn) occurring in the definition is
a sequence of distinct elements, for any ordinals γ and η,

{l : (l, G) ∈ Pγ+η(ε, Lα)} ⊆ {l : (l, G) ∈ Pγ(ε, Lα)}(η).

Also, because the sets Pγ(ε, Lα) decrease to ∅,
{l : (l, G) ∈ Pγ(ε, Lα)} \ {l : (l, G) ∈ Pγ+1(ε, Lα)}

is dense in {l : (l, G) ∈ Pγ(ε, Lα)} for all γ. Moreover, if (l, G) ∈ Pγ+1(ε, Lα),
there exists ((ln, Gn))∞n=1 ⊆ Pγ(ε, Lα) \ Pγ+1(ε, Lα) such that ln

w∗−→ l,

ln(Gn) ≥ ε, l(G) ≥ ε, Gn ∩Gn′ = ∅, for n 6= n′, and
⋃
Gn ⊂ G.

Definition 3.2. For each ε > 0 and α < ω1 let %(ε, α) = sup{γ :
Pγ(ε, Lα) 6= ∅}.

It is easy to see that %(ε, 1) = 0 for α = 1 and 1
2 < ε, and %(ε, 1) = ωζ

for 0 < ε ≤ 1
2 . Obviously, %(ε, α) = 0 for all α if ε > 1. The lemma below

will permit us to estimate %(ε, α) for all α < ω1 and ε ≤ 1.

Lemma 3.3. For each β < ω1, %(ε, β+1) ≤ max(%(2ε, β)+%(ε, 1), %(ε, β)
+ 1). If βn ↑ β, then %(ε, β) = lim %(ε, βn).

P r o o f. Suppose that α = β + 1 for some β < ω1. Before we begin
estimating %, let us look at the relationship between Pγ(ε, Lα \ Φ(L1)) and
pairs (l, G) with l ∈ Φ(L1).

Let (ln)n∈N ⊂ Lα \ Φ(L1)(1), l ∈ Φ(L1) and let (Gn)n∈N and G be open
subsets of Kα such that ln

w∗−→ l, ln(Gn) ≥ ε, l(G) ≥ ε, Gn ∩ Gn′ = ∅,
for n 6= n′, and

⋃
Gn ⊂ G. Then for some k ∈ K, l = 1

2 (δk + δk1), and by
passing to a subsequence we may assume that

ln =
1
2

( ∑

j∈Kβ
l′n(j)δ(k(n),l′′n ,m,j)

+
∑

j∈Kβ
l′n(j)δ(k1,l

′′
n ,m,j)

)
,

for some l′n ∈ Lβ , and l′′n = 1
2 (δk(n) + δk1) with l′′n

w∗−→ l. (Because of the
definition of the pair (Kα, Lα) for α a successor ordinal, only the value 1 of
the third index m is of any interest.) For each n let

l1n =
∑

j∈Kβ
l′n(j)δ(k(n),l′′n,m,j) and l2n =

∑

j∈Kβ
l′n(j)δ(k1,l′′n,m,j).

Then l1n(Gn) ≥ ε or l2n(Gn) ≥ ε for each n and thus for one of (l1n) and (l2n)
there are infinitely many such n.
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Suppose that for some γ < ω1, (ln, Gn) ∈ Pγ(ε, Lα) for each n. Because
Lα is homeomorphic to [1, ωω

ζα], there is a closed neighborhood Mn of ln
in Lα and an ordinal γ′′, ωζβ ≥ γ′′ ≥ γ, such that M (γ′′)

n = {ln}. Moreover,
we may assume that there is a closed subset M ′n of Lβ such that

Mn =
{

1
2

( ∑

j∈Kβ
l′(j)δ(k(n),l′′n ,m,j)

+
∑

j∈Kβ
l′n(j)δ(k1,l′′n,m,j)

)
: l′ ∈M ′n

}
.

Because (ln, Gn) ∈ Pγ(ε, Lα), we have (ln, Gn) ∈ Pγ(ε,Mn). Let

M1
n =

{ ∑

j∈Kβ
l′n(j)δ(k(n),l′′n ,m,j)

: l′n ∈M ′n
}

M2
n =

{ ∑

j∈Kβ
l′n(j)δ(k1,l

′′
n ,m,j)

: l′n ∈M ′n
}
.

Then a transfinite induction argument shows that (l1n, G
1
n) ∈ Pγ(ε,M1

n) or
(l2n, G

2
n) ∈ Pγ(ε,M2

n) for infinitely many n, where G1
n = {j : (k(n), l′′n,m, j)

∈ Gn} and G2
n = {j : (k1, l

′′
n,m, j) ∈ Gn}. (The argument is essentially the

same as the proof of Lemma 3.2.) Because the mapping ψ : (k, l,m, j) → j
is a homeomorphism, (lin, ψ(Gin)) ∈ Pγ(ε,M i

n) for i = 1 or 2. Thus we must
have %(ε, Lβ) ≥ γ. In particular, if l ∈ Φ(L1)(0), we have (l, G) ∈ Pγ+1(ε, Lα)
only if Pγ(ε, Lβ) 6= ∅.

Notice that in the situation above if φ(k0) 6∈ G, then φ(k0) 6∈ ⋃Gn. Thus
for large n, l2n(Gn) = 0. In order for ln(Gn) ≥ ε, we must have l1n(Gn) ≥ 2ε,
and (l1n, G

1
n) ∈ Pγ(2ε,M1

n). Thus Pγ(2ε, Lβ) 6= ∅, and (ln, Gn) ∈ Pγ(ε, Lα),
only if (l′n, ψ(G1

n)) ∈ Pγ(2ε, Lβ).
With these observations we can now estimate %(ε, α).
Suppose that (l0, G0) ∈ Pγ(ε, Lα) for some γ ≥ max(%(2ε, β) + ωζ +

1, %(ε, β) + 2). Then there exists (l0,n, G0,n) ∈ Pγn(ε, Lα), where γn = γ − 1
if γ is a successor ordinal, or γn ↑ γ, γn ≥ max(%(2ε, β) + ωζ , %(ε, β) + 1),
if γ is a limit ordinal, such that l0,n

w∗−→ l0, G0,n ∩ G0,n′ = ∅, for n 6= n′,
and

⋃
G0,n ⊂ G0. If l0,n ∈ Φ(L1) for infinitely many n, then for at most

one n, φ(k1) ∈ G0,n. We can assume, by discarding that one, that there is no
such n. Also in this case ε ≤ 1/2, since %(ε, 1) = 0 for ε > 1/2. Because γ ≥
%(ε, β) + 1 ≥ ωζ + 1 and l0,n 6∈ Φ(L1)(ωζ), there is a w∗-open neighborhood
O of l0,n such that Pωζ (ε,O ∩ Φ(L1)) = ∅ and (l0,n, G0,n) ∈ Pγn(ε,O).
Therefore there exists ((µn, Fn))∞n=1 ⊆ Pη(ε,O \ Φ(L1)) with µn

w∗−→ l0,n,⋃
Fi ⊆ G0,n, Fi∩Fi′ = ∅ for i 6= i′, and η+ξ ≥ γn for some ξ < ωζ . Because

φ(k1) 6∈ G0,n, it follows from the argument above that Pη(2ε, Lβ) 6= ∅. Thus
η ≤ %(2ε, β). This contradicts the choice of γ ≥ %(2ε, β) + ωζ + 1. Hence
l0,n ∈ Φ(L1) for only finitely many n. This implies that Pγn(ε, Lβ) 6= ∅ for
all but finitely many n and hence γn ≤ %(ε, β), again a contradiction to the
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choice of γ. Thus we have %(ε, β + 1) ≤ max(%(2ε, β) + ωζ , %(ε, β) + 1) for
ε ≤ 1/2. If ε > 1/2, then l0,n 6∈ Φ(L1) and thus γn ≤ %(ε, β). Hence %(ε, α) ≤
%(ε, β) + 1 ≤ max(0 + 0, %(ε, β) + 1) = max(%(2ε, β) + %(ε, 1), %(ε, β) + 1) for
ε > 1/2.

In the case when α is a limit ordinal it is easy to see that %(ε, α) ≤
sup{%(ε, β) : β < α} because we have simply glued the spaces Kαn , n ∈ N,
at their distinguished points to make Kα.

Proposition 3.4. Suppose α < ω1 and α = β + η, where η < ωζ+1 and
β is the smallest ordinal for which there exists such an η. Then %(ε, α) ≤
β + ωζ l + η for 2−(l+1) < ε ≤ 2−l, l = 0, 1, 2, . . .

P r o o f. The proof is by induction on α. We have already computed
%(ε, 1) and it clearly satisfies the inequality. Suppose that it is true for all
α′ < α. Fix l and ε.

If α is a limit ordinal and αn ↑ α, let αn = βn+ηn be the decomposition of
αn with βn minimal and ηn < ωζ+1. If the sequence (βn) is not eventually
constant, then α = α + 0 is the decomposition of α and α = limαn =
limβn = limβn+ωζ l+ηn ≥ %(ε, α), by Lemma 3.3. If there is some n0 such
that βn = β′ for all n ≥ n0, then limβn + ωζ l + ηn = β0 + ωζ l + lim ηn.
If lim ηn < ωζ+1, then α = β0 + lim ηn is the decomposition of α and the
inequality holds; if not, η = 0 and α = (β0 +ωζ+1)+0 is the decomposition.
In this case ωζ l + lim ηn = ωζ+1 and thus %(ε, α) ≤ β0 + ωζ+1 = β.

If α = α′+ 1, and α′ = β′+ η′ is the decomposition of α′, then α = β′+
(η′+ 1) is the decomposition of α. By Lemma 3.3, %(ε, α) ≤ max(%(2ε, α′) +
%(ε, 1), %(ε, α′) + 1). If ε > 1/2, l = 0, then %(2ε, α′) + %(ε, 1) = 0 and
%(ε, α′) + 1 ≤ β′ + η′ + 1, as required. If ε ≤ 1/2, then

max(%(2ε, α′) + %(ε, 1), %(ε, α′) + 1)

≤ max(β′ + ωζ(l − 1) + η′ + ωζ , β′ + ωζ l + η′ + 1)

= β′ + ωζ l + η′ + 1 = β + ωζ l + η.

We now have all of the tools to prove our main result.

Theorem 3.5. If 1 ≤ ζ < α < ζω < ω1, then there is an operator T
from C(ωω

α

) onto itself such that if Y is a subspace of C(ωω
α

) which is
isomorphic to C(ωω

α

) then T|Y is not an isomorphism.

P r o o f. Let γ satisfy α = ζ + γ. For (Kωγ , Lωγ ) constructed for the
ordinal ζ, i.e., for K1 homeomorphic to [1, ωω

ζ

], and for 2−(l+1) < ε ≤
2−l, we have %(ε, ωγ) ≤ β + ωζ l + η, where ωγ = β + η and η < ωζ+1.
Therefore %(ε, ωγ) < β + ωζ+1 for every ε > 0. Observe that if γ > 1, then
ωα = ωζ+γ > max(ωγ , ωζ+1)2 ≥ %(ε, ωγ), and if γ = 1, then ωζ l + ωγ ≤
ωζ(l + 1) < ωζ+1 = ωα. Thus by Theorem 3.1 and Lemma 3.2, there is no
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subspace Y of C(ωω
α

) which is isomorphic to C(ωω
α

) such that T|Y is an
isomorphism.

The failure of the condition given in Theorem 3.5 for all ζ is equivalent to
α = ωγ for some γ < ω1. This is still a long way from Bourgain’s condition
ωωα = ωω

α

, which guarantees the existence of subspaces isomorphic to
C(ωω

α

) on which maps of C(ωω
α

) onto itself would be isomorphisms. On
the other hand, the estimate for the inductive step given in Lemma 3.3 is
sometimes generous. In specific cases we have %(ε, β) = %(ε, β + 1). Thus
it could be that a more careful estimate of %(ε, α) would yield a stronger
result. It also seems likely that there is room for improvement in Bourgain’s
estimates.

References

[A1] D. E. Alspach, Quotients of C[0, 1] with separable dual , Israel J. Math. 29 (1978),
361–384.

[A2] —, C(K) norming subsets of C[0, 1]∗, Studia Math. 70 (1981), 27–61.
[BP] C. Bessaga and A. Pełczyńsk i, Spaces of continuous functions IV , ibid. 19

(1960), 53–62.
[BD] E. Bishop and K. de Leeuw, The representation of linear functionals by mea-

sures on sets of extreme points, Ann. Inst. Fourier (Grenoble) 9 (1959), 305–331.
[B] J. Bourga in, The Szlenk index and operators on C(K)-spaces, Bull. Soc. Math.

Belg. Sér. B 31 (1979), 87–117.
[G] I. Gaspar i s, Quotients of C(K) spaces, dissertation, The University of Texas,

1995.
[G1] —, Operators that do not preserve C(α)-spaces, preprint.
[MS] S. Mazurk iewicz et W. Sierp ińsk i, Contributions à la topologie des ensembles
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