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A function space Cp(X)
not linearly homeomorphic to Cp(X)× R

by

Witold M a r c i s z e w s k i (Amsterdam and Warszawa)

Abstract. We construct two examples of infinite spaces X such that there is no
continuous linear surjection from the space of continuous functions Cp(X) onto Cp(X)×R.
In particular, Cp(X) is not linearly homeomorphic to Cp(X)×R. One of these examples
is compact. This answers some questions of Arkhangel’skĭı.

1. Introduction. All spaces under consideration are completely regular.
For a space X, Cp(X) denotes the space of all continuous real-valued func-
tions on X equipped with the pointwise convergence topology. For linear

topological spaces E and F , we write E
t≈ F (E

l≈ F ) if these spaces are
(linearly) homeomorphic.

In functional analysis and infinite-dimensional topology, quite often fac-
torization properties of linear spaces E are considered, i.e. properties like

E
l≈ E × E, E

t≈ E × E, E
l≈ E × R, etc. (here, we discuss only infinite-

dimensional linear spaces). In most cases, linear spaces possess some of these

properties, e.g. for all Banach spaces E we have E
t≈ E×E and E

t≈ E×R.
On the other hand, we also have numerous examples of “pathological”
spaces, for which many of these factorization properties do not hold. Many

examples are known of normed (or linear metric) spaces E with E
l
6≈ E×R;

see [BPR], [Be], [Du], [Ro]. Quite recently, Gowers and Maurey [Go], [GM]

have constructed examples of Banach spaces E such that E
l
6≈ E × R—this

is a solution to an old problem in Banach space theory. In [vM2] van Mill

gave an example of a normed space E with E
t
6≈ E × R (see also [Ma3]).
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The first example of a normed space E such that E
t
6≈ E × E was given by

Pol in [Po1]. The paper [Ma1] contains a construction of a normed space
E without a continuous map onto E × E. We also have examples of spaces

X with Cp(X)
t
6≈ Cp(X)×Cp(X) (see [Ma2], [Gu]) and examples of metric

spaces X such that Cp(X)
l
6≈ Cp(X)× Cp(X) (see [Po2]).

Arkhangel’skĭı asked whether the space Cp(X) is linearly homeomorphic
to Cp(X)× R, for every infinite (compact) space X (cf. [Ar2, Problem 56],
[Ar3, Problem 1] and [Ar4, Problems 24, 27]). For a wide class of spaces the
answer is affirmative, e.g. if the space X contains a nontrivial convergent
sequence, or X is not pseudocompact (see [Ar4, Section 4]). However, in
general, the answer is negative:

1.1. Example. There exists an infinite compact space X such that
there is no continuous linear surjection from the function space Cp(X) onto
Cp(X)×R. In particular, the space Cp(X) is not linearly homeomorphic to
the product Cp(X)× E, for any nontrivial linear topological space E.

In fact, we construct two examples of spaces X with the above property
of the function space Cp(X). The first one (noncompact) is a subspace X
of βω, fairly simple to describe. The construction of the second example, a
compact space K, is much more involved; it uses the idea of “killing maps”
devised by Kuratowski and Sierpiński [KS], [Ku].

The paper is organized as follows:
Sections 2 and 3 contain some auxiliary results. In the next two sections

we describe the constructions of our examples. We give some additional
comments in the last section.

Acknowledgments. The author is greatly indebted to Jan van Mill for
valuable suggestions which essentially contributed to the construction of the
first example, and many stimulating discussions on the subject of this paper.

2. Linear surjections of function spaces. Following Arkhangel’skĭı,
for a set (space) X, we denote by X+ the set (space) obtained by adding one
new (isolated) point ∗ to X (we hope that ω+ will not be confused with the
cardinal successor of ω). Using this notation we may identify the products
Cp(X)× R and RX × R with Cp(X+) and RX+

, respectively.
For a pseudocompact space X, the Banach space of continuous functions

on X equipped with the standard supremum norm is denoted by C(X). If
A is a dense subset of the space X, then by CA(X) we denote the space
of continuous real-valued functions on X with the topology of pointwise
convergence onA. Hence, we may identify CA(X) with {f |A : f is continuous
on X} ⊆ RA and CX(X) = Cp(X).
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Let E and F be dense linear subspaces of RA and RB , respectively. Let
T : E → F be a continuous linear surjection. It is well-known that every
continuous linear functional on RA (or on E) is a linear combination of
evaluation functionals. Therefore, for every b ∈ B, there is a finite subset
of A, called the support of b and denoted by supp(b), such that Tf(b) =∑
a∈supp(b) λbaf(a) for some nonzero λba ∈ R and all f ∈ E (we refer the

reader to [Ar1] and [BdG] for more information about the supports). To
simplify the notation, for every b ∈ B and S ⊆ A, we define λ(b, S) =∑{|λba| : a ∈ supp(b) ∩ S}. For fixed b ∈ B, one may consider λ(b, ·) as
a measure (with finite support) on the power set of A. Let b ∈ B, S ⊆ A
and f ∈ E. Obviously, if f(a) = λba/|λba| for every a ∈ supp(b) ∩ S, and
f(a) = 0 for every a ∈ supp(b) \ S, then Tf(b) = λ(b, S).

2.1. Lemma. Let X be a separable space and ϕ : Cp(X) → Cp(X) ×
R be a continuous linear surjection. Then there exists a countable dense
set D ⊆ X such that the map (πD × idR)ϕπD−1 : CD(X) → CD(X) × R
is a continuous linear surjection. (πD : Cp(X) → CD(X) is the standard
projection.)

P r o o f. We may identify Cp(X)× R with Cp(X+). Take any countable
dense subset D0 ⊆ X+ (obviously, D0 contains the isolated point ∗). By
induction we construct countable sets Dn, n ∈ ω, defined by

Dn+1 =
⋃
{supp(d) : d ∈ Di, i ≤ n}.

It is routine to verify that the set D =
⋃{Dn : n ∈ ω}\{∗} has the required

property.

2.2. Lemma. Let T : CD(X)→ CE(Y ) be a continuous linear surjection,
where D and E are dense subsets of the spaces X and Y , respectively. Let
e ∈ E and U be a neighborhood of the nonempty set S ⊆ supp(e) in X. Then
there exists a neighborhood V of e in Y such that , for every b ∈ V ∩E, we
have λ(b, U ∩D) > λ(e, S)/2.

P r o o f. We may assume that supp(e)∩U = S. Let f : X → [−1, 1] be a
continuous function such that f(a) = λea/|λea| for every a ∈ S, and f takes
the value 0 outside U . We have Tf(e) = λ(e, S). Let V be a neighborhood
of e such that, for every b ∈ V ∩ E, Tf(b) > λ(e, S)/2. This easily implies
that λ(b, U ∩D) > λ(e, S)/2.

Let A be a countable infinite set and let T : RA → RA×R be a continuous
linear map. We may identify RA × R with RA+

and consider T as a map
between RA and RA+

. We say that T is a bounded surjection if T |`∞(A) is a
continuous surjection of `∞(A) onto `∞(A+) (with respect to the supremum
norm in `∞(A)). Then it follows that T is a surjection onto RA×R (but we
will not use this fact).
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For a normed space E, we denote by BE(r) the closed ball {x ∈ E :
‖x‖ ≤ r}.

2.3. Lemma. Let X be a separable pseudocompact space and let T :
CD(X)→ CD(X)×R be a continuous linear surjection, where D is a count-
able dense subset of X. Then T can be uniquely extended to a continuous
bounded linear surjection T ′ : RD → RD × R.

P r o o f. Since CD(X) is a dense linear subspace of RD, the map T can
be uniquely extended to a continuous linear map T ′ : RD → RD × R. We
can also consider T as a linear map between C(X) and C(X)×R. Since the
topology in CD(X) is weaker than the norm topology, it follows that the
graph of T is closed in norm. Therefore by the Closed Graph Theorem T is
continuous in norm. By the Open Mapping Theorem T is also an open map
in the norm topology. It follows that the image T (BC(X)(1)) of the unit ball
in C(X) is contained in BC(X+)(R) and contains BC(X+)(r), for some R, r
> 0. For every ε > 0, the intersection B`∞(D)(ε) ∩ CD(X) = πD(BC(X)(ε))
is pointwise dense in the pointwise compact ball B`∞(D)(ε). We have the
same property for X+ and D+. Hence T ′(B`∞(D)(1)) is contained in the
ball B`∞(D+)(R) and contains B`∞(D+)(r); this shows that T ′ is a bounded
surjection.

We need the following simple observation:

2.4. Lemma. Let E be a normed space and F ⊆ E be a proper closed
linear subspace of E. Then, for any positive numbers r < R, the algebraic
sum BE(r) + F does not contain BE(R).

P r o o f. It is enough to take a functional x∗ on E of norm 1 which is 0
on F , and to consider the images x∗(BE(r) + F ) and x∗(BE(R)).

2.5. Lemma. Let T : Rω → Rω × R be a bounded continuous linear
surjection. Then there exist an ε > 0 and an infinite A ⊆ ω such that
λ(n, {k ∈ ω : k > n}) > ε for every n ∈ A.

P r o o f. By the Open Mapping Theorem the image T (B`∞(ω)(1)) of the
unit ball in `∞(ω) contains B`∞(ω+)(r) for some r > 0. Take a positive ε < r.
We will prove that Aε = {n : λ(n, {k ∈ ω : k > n}) > ε} is infinite.

Suppose the contrary. Let m = max(
⋃{supp(n) : n ∈ Aε}∪supp(∗))+1.

Then, for every a ∈ m ∪ {∗} (we consider m as {i ∈ ω : i < m}), we have

(1) λ(a, {k ∈ ω : k ≥ m}) ≤ ε.
Let E = Rm×{0}ω\m and F = {0}m×Rω\m. Obviously, E+F = Rω. Hence
T (B`∞(ω)(1)∩E) + T (B`∞(ω)(1)∩F ) = T (B`∞(ω)(1)) contains B`∞(ω+)(r).

Consider the projection πm∪{∗} : Rω+ → Rm∪{∗}. We have dimE = m and
dimRm∪{∗} = m + 1, hence πm∪{∗}(T (B`∞(ω)(1) ∩ E)) is contained in a
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proper linear subspace of Rm∪{∗}. On the other hand, from (1) it follows
that πm∪{∗}(T (B`∞(ω)(1) ∩ F )) is contained in the ε-ball in Rm∪{∗} (with
respect to the supremum norm). Therefore, by Lemma 2.4, the algebraic
sum πm∪{∗}(T (B`∞(ω)(1)∩E)) +πm∪{∗}(T (B`∞(ω)(1)∩F )) cannot contain
the r-ball, a contradiction.

2.6. Lemma. Let D and E ⊆ D be countable dense subsets of a separable
pseudocompact space X. Let T : CD(X)→ CD(X)×R be a continuous linear
surjection. Then there exist an ε > 0, an infinite subset A ⊆ E and a family
{Sa : a ∈ A} of finite pairwise disjoint subsets of D with the following
properties:

(a) A ∩⋃{Sa : a ∈ A} = ∅,
(b) λ(a, Sa) > ε for every a ∈ A.

Moreover , if D1, . . . , Dm is a finite partition of the set D, we may addi-
tionally require that

(c) (∃i ≤ m)(∀a ∈ A) [Sa ⊆ Di].

P r o o f. By Lemma 2.3 we may consider T as a bounded continuous linear
surjection between RD and RD×R. Let D = {dn : n ∈ ω}. Using Lemma 2.5
we may find δ > 0 and an infinite B ⊆ ω such that λ(dn, {dk : k > n}) > δ
for every n ∈ B. Let {ni : i ∈ ω} be an increasing enumeration of B. For
every i ∈ ω, put Pi = {dk ∈ supp(dni) : k > ni}. So λ(dni , Pi) > δ. Using
suitable refinement of B, we may assume that ni+1 > max{k : dk ∈ Pi} for
all i ∈ ω. In particular, the sets Pi are disjoint and

⋃
Pi is disjoint from

{dn : n ∈ B}.
Now, by induction we will construct distinct points aj ∈ E and disjoint

finite sets Qj ⊆ supp(aj) for j ∈ ω. Suppose that al and Ql for l < j have
been constructed, or j = 0. Let H = {al : l < j} ∪ ⋃{Ql : l < j}. Find
i ∈ ω such that dni 6∈ H and Pi ∩ H = ∅. Let Ui be the neighborhood of
Pi in X such that ClX(Ui) ∩ (H ∪ {dni}) = ∅. By Lemma 2.2 (for e = dni)
and the density of E we can find aj ∈ E \ (H ∪ ClX(Ui)) and a finite
Qj ⊆ supp(aj) ∩ Ui such that λ(aj , Qj) > δ/2. One can easily verify that
the set {aj : j ∈ ω} and the sets Qj satisfy the conditions (a) and (b) (for
ε = δ/2). To obtain (c) we define Bi = {j ∈ ω : λ(aj , Qj ∩Di) > δ/(2m)}
for i = 1, . . . ,m. One of these sets is infinite, say Bi0 . Then the set A =
{aj : j ∈ Bi0} and the sets Saj = Qj satisfy (a)–(c) for ε = δ/(2m).

2.7. Lemma. Let T : Rω → Rω × R be a bounded continuous linear
surjection. Let A be an infinite subset of ω and let {Sn : n ∈ A} be a family
of pairwise disjoint subsets of ω. Then, for every δ > 0, there exists an
infinite subset C ⊆ A with the following property :

(∀n ∈ C)
[
λ
(
n,
⋃
{Sk : k ∈ C, k 6= n}

)
< δ
]
.
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P r o o f. First, we will prove that, for every ε > 0 and every infinite
A′ ⊆ A, there exist an m ∈ A′ and an infinite B ⊆ A′ such that, for
every n ∈ B, we have λ(n, Sm) < ε. Suppose not, i.e. there are ε > 0 and
A′ such that, for every m ∈ A′, the set Bm = {n ∈ A′ : λ(n, Sm) < ε}
is finite. Let M be the norm of T considered as a map from `∞(ω) onto
`∞(ω+). Take a natural number i > M/ε. Pick distinct m1, . . . ,mi ∈ A′

and n ∈ A′ \⋃{Bmj : j ≤ i}. Then we have

λ(n, ω) ≥ λ
(
n,
⋃
{Smj : j ≤ i}

)
=
∑
{λ(n, Smj ) : j ≤ i} ≥ iε > M.

This contradicts the fact that M is the norm of T .
Now, using the above property, we can construct by induction an in-

creasing sequence of points (ni) ∈ A and a decreasing sequence of infinite
subsets Ai ⊆ A, i ∈ ω, such that:

(i) (∀i ∈ ω)(∀n ∈ Ai) [λ(n, Sni) < δ/2i+1],
(ii) (∀i ∈ ω) [ni+1 ∈ Ai],

(iii) (∀i ∈ ω) [Sni ∩
⋃{supp(nj) : j < i} = ∅].

One can easily compute that the set C = {ni : i ∈ ω} has the required
property.

3. Auxiliary properties of βω. We shall formulate some rather stan-
dard properties of βω that we will use in the next sections.

3.1. Lemma. Let {Sn : n ∈ ω} be a family of pairwise disjoint subsets
of ω. Then, for every subset C of βω \ ω of cardinality less than 2ω, there
exists an infinite subset A ⊆ ω such that C ∩ Clβω

⋃{Sn : n ∈ A} = C ∩⋃{Clβω(Sn) : n ∈ A}. In particular , if all Sn are finite then C∩Clβω
⋃{Sn :

n ∈ A} = ∅.
P r o o f. Let A be an almost disjoint family of cardinality 2ω of infinite

subsets of ω, i.e. X ∩ Y is finite for distinct X,Y ∈ A. For subsets S, T of ω
we have Clβω S∩Clβω T = Clβω(S∩T ). It follows that, for distinct X,Y ∈ A,
we have Clβω

⋃{Sn : n ∈ X} ∩ Clβω
⋃{Sn : n ∈ Y } = Clβω

⋃{Sn : n ∈
(X∩Y )} =

⋃{Clβω(Sn) : n ∈ (X∩Y )}. Therefore the sets Clβω
⋃{Sn : n ∈

X} \⋃{Clβω(Sn) : n ∈ X}, for X ∈ A, are disjoint. Since A has cardinality
2ω we can find A ∈ A such that C ∩ (Clβω

⋃{Sn : n ∈ A} \⋃{Clβω(Sn) :
n ∈ A}) = ∅, which gives us the required property.

For a bounded function f : ω → R, by f̂ : βω → R we denote the unique
continuous extension of f over βω. If X is a subset of ω then χX : ω →
{0, 1} denotes the characteristic function of X. Lemma 3.1 easily implies
the following:

3.2. Corollary. Let {(aα, bα) : α < κ} be a set of pairs of points of
βω of cardinality κ < 2ω. Let {Sn : n ∈ ω} be a family of pairwise disjoint
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subsets of ω such that , for every n ∈ ω and α < κ, we have χ̂Sn(aα) =
χ̂Sn(bα). Then there is an infinite subset A ⊆ ω such that for every A′ ⊆ A
and for S =

⋃{Sn : n ∈ A′}, we have χ̂S(aα) = χ̂S(bα) for all α < κ.

3.3. Lemma. Let {fα : ω → {0, 1} : α < κ} be a set of functions of
cardinality κ < 2ω. Let A be an infinite subset of ω. Then there exist two
distinct points a, b ∈ Clβω A such that f̂α(a) = f̂α(b) for all α < κ.

P r o o f. This follows from the fact that Clβω A, being homeomorphic to
βω, has the weight 2ω, and therefore its points cannot be separated by the
family of continuous functions of smaller cardinality.

4. The first example. Recall that a point p ∈ βω \ω is a weak P -point
if p is not in the closure of any countable set D ⊆ βω \ (ω ∪{p}); see [vM1].
Kunen [Kun, Theorem 0.1] proved that there exist 22ω weak P -points in
βω \ ω.

For every infinite subset A of ω we choose a weak P -point pA in βω \ ω
in such a way that A ∈ pA and pA and pA′ are not equivalent (via bijection
of ω) for A 6= A′. Let X = ω ∪ {pA : A ⊆ ω, A infinite} ⊆ βω. Every dense
subset D of X contains ω and every continuous bounded function on D can
be uniquely extended to a continuous function on X. Since every sequence
in ω has an accumulation point in X, the space X is pseudocompact. Every
countable subset C ⊆ X \ ω is closed and discrete in X. The space X has
also the following property:

4.1. Lemma. Let C be a countable subset of X and let A be an infinite
family of pairwise disjoint finite subsets of C. Then A contains an infinite
subfamily which is discrete in C.

P r o o f. Since C \ ω is closed and discrete in X, it is enough to apply
Lemma 3.1 for the family {S ∩ ω : S ∈ A} and the set C \ ω.

4.2. Theorem. There is no continuous linear surjection of the space
Cp(X) onto Cp(X)× R.

P r o o f. Suppose the contrary. Let ϕ : Cp(X) → Cp(X) × R be a con-
tinuous linear surjection. By Lemma 2.1 there exists a countable dense set
D ⊆ X such that the map T = (πD × idR)ϕπD−1 : CD(X)→ CD(X)×R is
a continuous linear surjection. The key point of the proof is the following:

Claim. There are a δ > 0, a point p ∈ X \ω, an infinite set G ⊆ ω, and
a family {Vn : n ∈ G} of clopen subsets of D such that :

(i) {Vn : n ∈ G} is discrete in D,
(ii) p ∈ ClX G,

(iii) supp(p) ∩ ClX(
⋃{Vn : n ∈ G}) = ∅, where supp(p) is the support of

p with respect to ϕ,
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(iv) (∀n ∈ G) [λ(n, Vn) > δ],
(v) (∀n ∈ G) [λ(n,

⋃{Vk : k ∈ G \ {n}}) < δ/2].

From the above claim it is easy to derive a contradiction: By (i) we
can define a continuous function f : D → [−1, 1] such that f takes the
value 0 outside

⋃{Vn : n ∈ G}, and f(a) = λna/|λna| for all n ∈ G and a ∈
supp(n)∩Vn. From (iv) and (v) we conclude that Tf(n) > δ/2 for all n ∈ G.
Let f ′ : X → [−1, 1] be the unique continuous extension of f . From (iii) it
follows that f ′ takes the value 0 on supp(p). Therefore ϕ(f ′)(p) = 0. Since
ϕ(f ′)|G = Tf |G, the condition (ii) contradicts the continuity of ϕ(f ′) at p.

It remains to prove the Claim: Applying Lemma 2.6 for E = ω we can
find ε and A ⊆ ω and Sn ⊆ D, for n ∈ A, satisfying conditions (a) and
(b) of 2.6. Using the last condition of 2.6 we may also require that, for
all n ∈ A, we have Sn ⊆ ω, or, for all n ∈ A, we have Sn ∩ ω = ∅. By
Lemma 4.1 we may additionally assume that the family {Sn : n ∈ A} is
discrete in D. Let {ni : i ∈ ω} be an increasing enumeration of A. Put
si = max{|λnia| : a ∈ Sni}. We will consider three cases:

C a s e 1: For every n ∈ A we have Sn ⊆ ω, and lim supi→∞ si = s > 0.
Then we can find an infinite subset C ⊆ ω such that, for all i ∈ C, there
is ki ∈ Sni with |λniki | > s/2. Without loss of generality we may assume
that C = ω. Let B = {ki : i ∈ ω}; by 2.6(a) we have A ∩ B = ∅. Applying
Lemma 2.7 (for the sets {ki}) we may also assume that

(2) (∀i ∈ ω) [λ(ni, B \ {ki}) < s/4].

We may assume that ω \ A and ω \ B are infinite. Let σ : ω → ω be a
bijection such that σ(ni) = ki for every i ∈ ω.

Now, consider the support (with respect to ϕ) of the point pA. Suppose
that there is q ∈ supp(pA) \ ω such that B ∈ q. Since A and B are disjoint,
q 6= pA. Therefore there exists Aq ∈ pA such that σ(Aq) 6∈ q. Let E =⋂{Aq : q ∈ supp(pA)\ω, B ∈ q}∩A ∈ pA. Put F = σ(E), so that F 6∈ q for
all q ∈ supp(pA) \ ω. Let H = F \ (supp(pA) ∩ ω) and G = σ−1(H). Hence
supp(pA) is disjoint from the closure of H in X and we still have G ∈ pA.
Now, we can define δ = s/2, p = pA and Vni = {ki} for ni ∈ G. It can be
easily verified that all conditions of the Claim are satisfied ((i) follows from
the discreteness of {Sn : n ∈ A}, (v) follows from (2)).

C a s e 2: For every n ∈ A, Sn ⊆ ω and lim supi→∞ si = 0. Put B =⋃{Sn : n ∈ A}. Applying Lemma 2.7 we may assume that

(3) (∀i ∈ ω) [λ(ni, B \ Sni) < ε/4].

Let r = sup{λ(ni, Sni) : i ∈ ω}. We have r <∞ since T is bounded.
Again, consider the support of pA. Put G = A \ {n ∈ A : Sn ∩ supp(pA)

6= ∅}. Obviously, G ∈ pA.
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Let m′ denote the cardinality of Q = {q ∈ supp(pA) \ ω, B ∈ q}. Put
m = m′ + 1. By our assumption on (si) we may require that, for every
ni ∈ G and k ∈ Sni , we have |λnik| < ε/(4m). Take a natural number
p > 4mr/ε. For every ni ∈ G, we can find a partition Sni = P i1 ∪ . . . ∪ P ip
such that λ(ni, P ij ) < ε/(2m) for all j ≤ p (some P ij may be empty). Put
Cj =

⋃{P ij : ni ∈ G} for all j ≤ p. So {Cj : j ≤ p} is a partition of B. For
every q ∈ Q pick j(q) such that Cj(q) ∈ q. Let Vni = Sni \

⋃{Cj(q) : q ∈ Q}
for ni ∈ G. The choice of G and the sets Cj(q) guarantees that the conditions
(ii) and (iii) of the Claim are satisfied for p = pA. The inequality (3) implies
(v) for δ = ε/2. The condition (i) again follows from the discreteness of
{Sn : n ∈ A}. Finally, for all ni ∈ G we have

(4) λ(ni, Vni) = λ
(
ni, Sni \

⋃
{Pj(q) : q ∈ Q}

)
> ε−m′(ε/(2m)) > ε/2,

which shows (iv).

C a s e 3: For every n ∈ A, Sn ∩ ω = ∅. We can find disjoint clopen
neighborhoods Un of Sn in D, for every n ∈ A. We may also require that
{Un : n ∈ A} is discrete in D.

Applying Lemma 2.7 (for the sets Un) we may assume that

(5) (∀n ∈ A)
[
λ
(
n,
⋃
{Uk : k ∈ A, k 6= n}

)
< ε/2

]
.

Put G = A \ {n ∈ A : Sn ∩ supp(pA) 6= ∅} and B =
⋃{Sn : n ∈ G}.

The set B is closed in X and disjoint from supp(pA). Let W be a clopen
neighborhood of supp(pA) in X disjoint from B. Put Vn = Un\W for n ∈ G.
Then ClX(

⋃{Vn : n ∈ G}) ∩ supp(pA) = ∅. Since Sn ⊆ Vn for n ∈ G, we
have

(6) (∀n ∈ G) [λ(n, Vn) > ε].

We put δ = ε and again p = pA. Inequalities (5) and (6) give us the last two
conditions of the Claim.

5. The construction of the compact space K. First, we need to
establish some notation. For a subset Z ⊆ {α < 2ω}, PZ : {0, 1}2ω → {0, 1}Z
is the projection; additionally we put pα = P{α} for α < 2ω. Given a family
of functions {fα : ω → {0, 1} : α < 2ω}, we denote by F the diagonal
map 4α<2ωfα : ω → {0, 1}2ω . We also define FZ = 4α∈Z fα : ω →
{0, 1}Z = PZ ◦ F for Z ⊆ {α < 2ω}. We put K = Cl{0,1}2ω (F (ω)) and
KZ = Cl{0,1}Z (FZ(ω)) = PZ(K).

Our second example will be the compact space K for a suitably chosen
family {fα : α < 2ω}. We will construct this family by transfinite induc-
tion “killing” all potential continuous linear surjections from Cp(K) onto
Cp(K)× R.
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For every n ∈ ω, the function fn : ω → {0, 1} is the characteristic
function of the singleton {n}. Then we have Fω(n) = fn for n ∈ ω.

Let T be the family of all pairs (D,T ) such that

(a) D is a countable subset of {0, 1}ZD for some countable ZD ⊆ {α <
2ω} such that ω ⊆ ZD,

(b) there is a map τD : ω → D such that τD(n)|ω = fn for every n ∈ ω,
(c) T : RD → RD ×R ≈ RD+

is a bounded continuous linear surjection,
(d) there exist an ε > 0, an infinite subset A ⊆ ω and a family {Sn :

n ∈ A} of finite pairwise disjoint subsets of D with the following
properties:

(d1) τD(A) ∩⋃{Sn : n ∈ A} = ∅,
(d2) λ(τD(n), Sn) > ε for every n ∈ A, where the function λ(·, ·) is

defined by the surjection T ,
(d3) ((∀n ∈ A)(∀d ∈ Sn) [λτD(n)d > 0]) or

((∀n ∈ A)(∀d ∈ Sn) [λτD(n)d < 0]).

The family T has cardinality 2ω and we may enumerate it as {(Dα, Tα) :
ω ≤ α < 2ω} in such a way that β < α for every β ∈ ZDα . We put Zα = ZDα
(i.e. Dα is a subset of {0, 1}Zα) and τα = τDα .

Our construction is based on the following:

5.1. Lemma. There exist a family of functions {fα : ω → {0, 1} : α ∈
[ω, 2ω)} and a set of points {aα, bα ∈ βω : α ∈ [ω, 2ω)} such that the fol-
lowing conditions are satisfied for all α ∈ [ω, 2ω) (here we use the notation
defined above and in Sec. 3):

(i) (∀β, γ ≤ α) [f̂γ(aβ) = f̂γ(bβ)],
(ii) if FZα(ω) ⊆ Dα ⊆ KZα then, for every E ⊆ {0, 1}2ω such that

PZα |E is a bijection of E onto Dα and PZα∪{α}(E) ⊆ KZα∪{α}, for g =
Tα(pα ◦ (PZα |E)−1) we have ̂g ◦ τα(aα) 6= ̂g ◦ τα(bα).

We will prove this lemma later in this section.
Let {fα : ω → {0, 1} : α < 2ω} be the family consisting of the functions

given by Lemma 5.1 and the previously defined functions fn, n ∈ ω. LetK be
the compact space generated by this family of functions (see the beginning
of this section for the definition of K). Then the space K has the following
property:

5.2. Theorem. There is no continuous linear surjection of the space
Cp(K) onto Cp(K)× R.

P r o o f. Assume, towards a contradiction, that ϕ : Cp(K)→ Cp(K)×R is
a continuous linear surjection. By Lemma 2.1 there exists a countable dense
set E ⊆ K such that the map U = (πE× idR)ϕπE−1 : CE(K)→ CE(K)×R
is a continuous linear surjection. By Lemma 2.3 we may consider U as a
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bounded continuous linear surjection between RE and RE×R. Further, F (ω)
is a dense subset of K consisting of isolated points, therefore F (ω) ⊆ E.
Using Lemma 2.6 (for U , E and F (ω)) we can find an ε > 0, an infinite
subset A ⊆ ω and a family {Pn : n ∈ A} of finite pairwise disjoint subsets
of E with the following properties:

(e1) F (A) ∩⋃{Pn : n ∈ A} = ∅,
(e2) λ(F (n), Pn) > ε for every n ∈ A,
(e3) ((∀n ∈ A)(∀e ∈ Pn) [λF (n)e > 0]) or

((∀n ∈ A)(∀e ∈ Pn) [λF (n)e < 0]).

Take a countable subset Z ⊆ {α < 2ω} such that ω ⊆ Z and the projection
PZ is injective on E. Let D = PZ(E), τD = FZ and Sn = PZ(Pn) for n ∈ A.
Using the bijection PZ |E between E and D we can define the bounded
continuous surjection T : RD → RD × R corresponding to U . From (e1)–
(e3) it easily follows that the pair (D,T ) satisfies all conditions defining the
family T . Therefore there is an α < 2ω such that (D,T ) = (Dα, Tα) and
Z = Zα. Then the inclusions from the beginning of the condition (ii) are
satisfied, and E satisfies the assumptions from (ii). Hence, for g = T (pα ◦
(PZ |E)−1), we have ̂g ◦ τD(aα) 6= ̂g ◦ τD(bα). Observe that g ◦τD = g ◦FZ =
U(pα|E) ◦ F . Obviously, pα|E ∈ CE(K), so q = U(pα|E) ∈ CE+(K+)
and ̂q ◦ F (aα) 6= ̂q ◦ F (bα). Let G : βω → K be a continuous extension of
the map F : ω → K. Then G = 4α<2ω f̂α and from the condition (i) it
follows that G(aα) = G(bα). For a continuous function h : K → R we have
ĥ ◦ F = h ◦ G. Therefore ̂q ◦ F cannot distinguish the points aα and bα, a
contradiction.

It remains to prove Lemma 5.1.

P r o o f o f L e m m a 5.1. We will construct the required functions and
points by transfinite induction. Suppose that we have constructed fβ and
aβ , bβ ∈ βω satisfying the conditions (i) and (ii) for β ∈ [ω, α) and α ∈
[ω, 2ω).

First, we consider the trivial case when the inclusions from the beginning
of the condition (ii) are not satisfied (observe that, since Zα ⊆ [0, α), FZα
and KZα are well-defined at this stage of the construction). Then we simply
define fα ≡ 0 and take any point aα = bα ∈ βω.

Next, we assume that FZα(ω) ⊆ Dα ⊆ KZα . From these inclusions and
the choice of the functions fn it follows that FZα(ω) is a dense subset of
Dα and KZα consisting of isolated points. It also follows that the map τα
is unique and τα = FZα . For n ∈ ω, we denote τα(n) = FZα(n) by ñ.
Obviously, KZα is a zero-dimensional metrizable compact space. Take ε,
A and Sn as in the condition (d) (for (Dα, Tα)). Let {ni : i ∈ ω} be an
increasing enumeration of A. Refining A if necessary we may assume that
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the sequence (ñi)i converges in KZα to the point s. Since the sets Sn are
disjoint we can also require that s 6∈ Sn for all n ∈ A. Therefore we have

(7) (∀n ∈ A) [Sn ∩ ClKZα{ñ : n ∈ A} = ∅].
We will consider two cases:

C a s e 1: There exist a point t ∈ KZα and δ > 0 such that , for ev-
ery neighborhood U of t in KZα , the set {n ∈ A : λ(ñ, U ∩ Sn) > δ} is
infinite. Let {Uk : k ∈ ω} be a decreasing base of neighborhoods of t in
KZα . Using our assumption we can find an increasing subsequence (ik)k
such that λ(ñik , Uk ∩ Snik ) > δ. Put mk = nik , B = {mk : k ∈ ω} ⊆ A and
Pmk = Uk ∩ Snik . Then we have

(8) (∀n ∈ B) [λ(ñ, Pn) > δ],

and Pmk ⊆ Uk for every k ∈ ω. So the sequence (Pmk)k converges to the
point t. Since Pmk are pairwise disjoint we may assume that t 6∈ Pmk for
every k ∈ ω. Now, we can construct a sequence of pairwise disjoint clopen
subsets Vmk of KZα such that Pmk ⊆ Vmk ⊆ Uk \ {t} for k ∈ ω. Hence
(Vmk)k also converges to the point t. Using (7) we may require that

(9) (∀n ∈ B) [Vn ∩ {ñ : n ∈ B} = ∅].
We can also assume that

(10) (∀n ∈ B) [supp(ñ) ∩ Vn = Pn].

Refining our set B again, we may demand that either, for all n ∈ B, t 6∈
supp(ñ) or, for all n ∈ B, t ∈ supp(ñ), and λñt ∈ (λ, λ+δ/4) for some λ ∈ R.
Applying Lemma 2.7 (for the set B and the family {Vn ∩Dα : n ∈ B}) we
may assume that

(11) (∀n ∈ B)
[
λ
(
ñ,
⋃
{Vk ∩Dα : k ∈ B, k 6= n}

)
< δ/4

]
.

Let Rn = {i ∈ ω : ĩ ∈ Vn} for n ∈ B. Since Vn are clopen in KZα , from the
part (i) of our inductive assumption it follows that, for all β ∈ [ω, α) and
n ∈ B, we have χ̂Rn(aβ) = χ̂Rn(bβ). Applying Corollary 3.2 we may assume
(as usual using some refinement of B) that

(12) (∀β ∈ [ω, α))(∀B′ ⊆ B) [χ̂⋃{Rn:n∈B′}(aβ) = χ̂⋃{Rn:n∈B′}(bβ)].

Finally, using Lemma 3.3 we can find distinct points aα, bα ∈ Clβω B such
that f̂β(aα) = f̂β(bα) for all β < α. Take B′ ⊆ B such that aα ∈ Clβω B′

and bα 6∈ Clβω B′. Then bα ∈ Clβω(B \ B′). We define fα = χ⋃{Rn:n∈B′}.
We shall verify the conditions (i) and (ii) for fα and aα, bα.

From (9), it follows that
⋃{Rn : n ∈ B′} ∩ B = ∅, therefore f̂α(aα) =

0 = f̂α(bα). This together with (12) implies (i).
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Let E and g be as in the condition (ii). Put h = pα ◦ (PZα |E)−1; then
g = Tα(h). Observe that from the definitions of fn and KZ it follows that,
for every n ∈ ω, the point ñ = FZα(n) ∈ KZα has a unique extension
FZα∪{α}(n) in KZα∪{α}. Hence, by the inclusion PZα∪{α}(E) ⊆ KZα∪{α} we
have h(ñ) = fα(n) for every n ∈ ω. The convergence of the sequence (Vmk)k
implies that every point d ∈ Dα, d 6= t, has a neighborhood W (in KZα) such
that fα is constant on {n : ñ ∈ W}. Again from PZα∪{α}(E) ⊆ KZα∪{α} it
follows that

(13) (∀d ∈ Dα \ {t}) [h(d) = χ⋃{Vn:n∈B′}(d)].

For every n ∈ B, put ln = λñth(t) if t ∈ supp(ñ), and ln = 0 otherwise; see
the remark following (10). Since h(t) ∈ {0, 1} (if t ∈ Dα), from that remark
it follows that in both cases we have

(14) (∃l ∈ R)(∀n ∈ B) [ln ∈ (l, l + δ/4)].

Now, we are ready to estimate the value of g(ñ) for n ∈ B. From (13) and
the definition of ln we obtain

(15) g(ñ) =
∑{

λñd : d ∈ supp(ñ) ∩
⋃
{Vk : k ∈ B′}

}
+ ln.

By the condition (d3) all λñd, for n ∈ B and d ∈ Pn, are of the same sign;
assume first that all are positive. Then, for n ∈ B′, we use (8), (10), (11)
and (14) to estimate the quantity from (15) as follows:

g(ñ) =
∑
{λñd : d ∈ supp(ñ) ∩ Vn}(16)

+
∑{

λñd : d ∈ supp(ñ) ∩
⋃
{Vk : k ∈ B′, k 6= n}

}
+ ln

>
∑
{λñd : d ∈ Pn} − λ

(
ñ,
⋃
{Vk ∩Dα : k ∈ B, k 6= n}

)
+ l

> λ(n, Pn)− δ/4 + l > δ − δ/4 + l = l + 3δ/4.

Using (11) and (14), for n ∈ B \B′, we obtain

g(ñ) ≤ λ
(
ñ,
⋃
{Vk ∩Dα : k ∈ B, k 6= n}

)
+ ln(17)

< δ/4 + l + δ/4 = l + δ/2.

The inequalities (16) and (17) show that ̂g ◦ τα(aα) ≥ l + 3δ/4 > l + δ/2 ≥
̂g ◦ τα(bα). It is clear that if all λñd are negative for n ∈ B and d ∈ Pn, then
̂g ◦ τα(aα) < ̂g ◦ τα(bα).

C a s e 2: For every point t ∈ KZα and δ > 0, there is a neighborhood U
of t in KZα such that the set {n ∈ A : λ(ñ, U ∩Sn) > δ} is finite. Using the
above assumption, one can easily construct an increasing subsequence (ik)
and corresponding sequences (Unik ) and (Vnik ) of pairwise disjoint clopen
subsets of KZα such that the following conditions will be satisfied for all
k ∈ ω (one should use (7) to obtain (c4)):
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(c1) (Snik \
⋃{Unij , Vnij : j < k}) ⊆ Vnik ,

(c2) (supp(ñik) \ (Snik ∪
⋃{Unij , Vnij : j < k}) ⊆ Unik ,

(c3) Unik ∩ Vnik = ∅,
(c4) Vnik ∩ {ñ : n ∈ A} = ∅,
(c5) Ak = {n ∈ A : λ(ñ, (Unik ∪ Vnik ) ∩ Sn) > ε/2k+3} is finite,
(c6) nik ∈ A \

⋃{Aj : j < k}.
As in the previous case we put mk = nik and B = {mk : k ∈ ω} ⊆ A. By

(c1)–(c3) the sets Pmk = Smk \
⋃{Umj , Vmj : j < k} satisfy the condition

(10). By (d2), (c5) and (c6) we also have, for every k ∈ ω,

λ(m̃k, Pmk) = λ(m̃k, Smk)− λ
(
m̃k,

(⋃
{Umj , Vmj : j < k}

)
∩ Smk

)
(18)

> ε−
∑
{λ(m̃k, (Umj ∪ Vmj ) ∩ Smk)}

≥ ε−
∑

j<k

ε/2j+3 > ε− ε/4 = 3ε/4.

As before, applying Lemma 2.7 we may assume that

(19) (∀n ∈ B)
[
λ
(
ñ,
⋃
{Vk ∩Dα : k ∈ B, k 6= n}

)
< ε/4

]
.

We define the sets Rn (again assuming (12)), the points aα, bα, the set B′

and the function fα in the same way as in Case 1. Therefore the condition
(i) is satisfied.

Now, let E and g be as in the condition (ii), and let h = pα ◦ (PZα |E)−1.
This time from the construction of the clopen sets Un and Vn (see (c1) and
(c2)) it follows that, for every n ∈ B and d ∈ supp(ñ), the point d has a
neighborhood W (in KZα) such that fα is constant on {k : k̃ ∈W}. Hence

(20) (∀n ∈ B)(∀d ∈ supp(ñ)) [h(d) = χ⋃{Vn:n∈B′}(d)],

and

(21) (∀n ∈ B)
[
g(ñ) =

∑{
λñd : d ∈ supp(ñ) ∩

⋃
{Vk : k ∈ B′}

}]
.

Repeating similar estimations to those in (16) and (17) (here we need to use
(10), (18) and (19)) we obtain | ̂g ◦ τα(aα)− ̂g ◦ τα(bα)| ≥ ε/4.

6. Remarks. It can be easily observed that, for the space X from
Section 4, the Banach space C(X) is isometric to `∞. Therefore we have

C(X)
l≈ C(X) × R. We do not know if the space C(K), for the com-

pact space K from Section 5, also has this factorization property. By the
Stone–Weierstrass theorem the space C(K) may be identified (using the re-
strictions to F (ω)) with a closed subalgebra of `∞ generated by the family
{fα : α < 2ω} and the unit of `∞.
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We do not know either if, for our examples, Cp(X)
t
6≈ Cp(X) × R; see

[Ar3, Problem 2] and [Ar4, Problem 24].
Observe that every function space Cp(X) is linearly homeomorphic to

the product F × R for some linear subspace F of Cp(X). In particular,
Cp(X)× R is a continuous image of Cp(X).

Let us point out that from the proof of Theorem 5.2 it follows that the
space K from Section 5 has the following property: For every countable

dense D ⊆ K, we have CD(K)
l
6≈ CD(K) × R. For the first example X,

the situation is different: Cω(X)
l≈ Cω(X) × R (and Cω(X) consists of all

bounded functions on ω).
In [Ar2, p. 93] Arkhangel’skĭı suggested to investigate the factorization

properties of Cp(X) for the compact space X constructed in [Ber]. Let us

note that in this case it can be shown that Cp(X)
l≈ Cp(X)× R.
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