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Continuous Alexander–Spanier cohomology
classifies principal bundles with Abelian structure group

by

B. G ü n t h e r (Frankfurt) and L. M d z i n a r i s h v i l i (Tbilisi)

Abstract. We prove that Alexander–Spanier cohomology Hn(X;G) with coefficients
in a topological Abelian group G is isomorphic to the group of isomorphism classes of
principal bundles with certain Abelian structure groups. The result holds if either X is a
CW-space and G arbitrary or if X is metrizable or compact Hausdorff and G an ANR.

1. Introduction. The set kG(X) of isomorphism types of principal G-
bundles over a space X can be defined by means of a classifying space
kG(X) = [X;BG], and if the structure group G is Abelian, then BG can be
realized as a topological Abelian group (it is the realization of a simplicial
Abelian group [5, p. 87]). Therefore the construction can be iterated and
we can define inductively Bn+1G := B(BnG). Then ΩBn+1G ' BnG (in
particular, BG is an infinite loop space), so these spaces constitute an Ω-
spectrum and hence give rise to a generalized cohomology functor defined
by BGn(X) := [X;BnG] for n > 0 and by suspension in lower dimensions.
The classifying spaces as path connected topological Abelian groups have
trivial Postnikov invariants (1) [3, Thm. VII.3.6], therefore

(1) BGn(X) ≈
∞∏
m=0

Hm+n(X;πm(G))

for all n ∈ Z and all CW-spaces X. If the homotopy equivalences ΩBn+1G '
BnG are appropriately chosen, then the correspondence (1) is compatible
with the suspension operator, and BG∗ turns out to be a direct product
of ordinary cohomology functors. One should be aware that the correspon-
dence (1), though natural in X, is not natural in G, unless one is willing

1991 Mathematics Subject Classification: 55N05, 55R15, 55U10.
(1) Observe that the homotopy equivalence from a simplicial Abelian group to a

product of Eilenberg–MacLane complexes constructed in [3, Thm. VII.3.6] is an H-group
homomorphism.
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to take into account additive cohomology operations Hm+n(−;πm(G)) →
HM+n(−;πM (H)) induced by continuous homomorphisms G→ H.

Here we will consider two cases: 1) The coefficient group may be an
arbitrary Abelian topological group, but the class of spaces is restricted
to CW-spaces, or 2) metrizable spaces or compact Hausdorff spaces are
considered but the coefficient group G is required to be an ANR space. In
the latter case the classifying space BG has the homotopy type of an ANR-
space, hence kG and BG∗ have the continuity property familiar from Čech
cohomology. Note, however, that the correspondence (1) does not carry over
to this situation because direct limits do not commute with direct products.
For compact Hausdorff spaces X one obtains

(2) BGn(X) ≈
∞⊕
m=0

Hm+n(X;πm(G))

instead of (1), where the cohomology on the right hand side is Čech coho-
mology.

Alexander–Spanier cohomology with continuous cochains has been con-
sidered by various authors, usually with real coefficients. For arbitrary co-
efficient groups it was introduced by Mdzinarishvili [6]. For a space X and
a topological Abelian group G, let Cn(X;G) be the set of germs of map-
pings Xn+1 → G defined on a neighborhood of the diagonal of Xn+1. The
coboundary operator δ : Cn(X;G) → Cn+1(X;G) is defined, as usual, by
δ(ϕ)(x0, . . . , xn+1) =

∑n+1
i=0 (−1)iϕ(x0, . . . , xi−1, xi+1, . . . , xn+1). The coho-

mology of the ensuing cochain complex is denoted by h∗(X;G) and is called
Alexander–Spanier cohomology of X with continuous coefficients in G in the
sense of Mdzinarishvili . The subject of this paper is to prove

(3) hn(X;G) = BHn−1(X)

for all n ≥ 2 and for X and G as in the above mentioned two cases. In
dimensions n ≤ 1, hn violates the Eilenberg–Steenrod axioms. The group H
is defined as the quotient H := |SG|/|S0G| of the realization of the singular
complex of G by the discrete subgroup of singular 0-simplexes (2). The
quotient homomorphism |SG| → H is a covering projection and allows us to
identify the homotopy groups as πm(H) = πm(G) for m ≥ 2. To compute the
fundamental group, assume that G is path connected and sufficiently regu-
lar to possess a universal covering group G̃. Then the composition |SG̃| →
|SG| → H is the universal covering group of H and has the fiber S0G̃, which
is algebraically nothing but G̃ itself and therefore π1(H) = G̃. In particular,

(2) Group operations which are continuous only on compact subspaces are permitted.
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we get

(4) h2(X;G) ≈ H2(X; G̃)× k
G̃

(X),

this correspondence being natural in X but not in G.
Locally compact Abelian groups G have πn(G) = 0 for n ≥ 2, so they

are not too interesting for our purpose. Note, however, that for any CW-
complex P the free Abelian group F (P ) generated by P can be given a
topology with k-continuous group law and with π∗(F (P )) = H∗(P ;Z) [1],
whence we obtain an abundance of examples for coefficient groups.

We commence this paper with a short review of Alexander–Spanier co-
homology with continuous coefficients in the sense of Mdzinarishvili. Then
representing spaces for this functor will be constructed working in the sim-
plicial category. These representing spaces turn out to be classifying spaces
of certain groups, thus proving (3) for CW-spaces. The generalization to
metrizable spaces follows in the next section. In the final section we con-
sider the question under what circumstances each cocycle is cohomologous
to a continuous one.

2. Alexander–Spanier cohomology with continuous coefficients.
For a space X and an arbitrary covering A we consider the cochain com-
plex C∗A(X;G) whose n-cochains are continuous maps An+1 → G, where
An+1 ⊆ Xn+1 is the subset of A-small (n + 1)-tuples. In our context X
will be a CW-complex or polyhedron, and A will be the open covering
consisting of the stars of vertices of a suitable triangulation or the set
of all closed simplexes. Following Mdzinarishvili [6] we define C∗(X;G)
:= lim−→U C∗U (X;G), taking the limit over all open coverings U of X, and
then h∗(X;G) := H(C∗(X;G)). We also have to consider a modified ver-
sion defined by h∗(X;G) := H(C∗A(X;G)), where A is the closed covering
of X by the simplexes of a fixed triangulation. This variant reflects the com-
binatorial structure of X more adequately and will allow the calculation of
the cohomology groups in the following section. Our first task is to show
that h∗ and h∗ are equal, for which we need a few of their basic properties.

For any continuous map f : X → Y there is an obvious homomorphism
C∗B(Y ;G)→ C∗A(X;G), provided A refines f−1B. If two maps f, g : X → Y
are contiguous in the sense that for each A ∈ A there exists B ∈ B with
f(A)∪ g(A) ⊆ B, then the induced homomorphisms are cochain homotopic
(cf. [6, Def. 2.2]). From this one can derive the homotopy invariance of h∗

in full generality, but in our context this will be a byproduct of our further
results.

If X is represented as disjoint union X =
∐
ιXι and if A =

∐
ιAι,

then C∗A(X;G) =
∏
ι C
∗
Aι(Xι;G). This proves the additivity axiom (cf. [6,

Thm. 1.2]).
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Excision properties are delicate [6, §4]. Let a polyhedron X be covered
by two closed subcomplexes X = A∪B; we will show that their cohomology
groups are related by a Mayer–Vietoris sequence that looks unusual in di-
mensions 0 and 1. We denote the closed coverings of X, A, B and A∩B =: C
by their closed simplexes by X , A, B, C. Then there is an exact diagram of
cochain complexes:

0 → C∗X (X;G) → C∗A(A;G)× C∗B(B;G) α→ C∗C(C;G)
↓ χ ↓ χ

[A;G]× [B;G]
β→ [C;G]

↓ ↓
0 0

Here [C;G] is the cochain complex having [C;G] as cochain group in all
dimensions ≥ 0 and alternatingly 0 and 1 as coboundary operator. Its
cohomology is [C;G] in dimension 0 and zero everywhere else. The map
χ : C∗C(C;G)→ [C;G] is given by restriction to the diagonal. The diagonal
of Cn+1 is a strong deformation retract of Cn+1, because a deformation can
be defined by

D(c0, . . . , cn; t) = (c′0, . . . , c
′
n) with c′i = (1− t)ci +

t

n+ 1

n∑

j=0

cj .

Consequently, a cochain ϕ ∈ CnC (C;G) is in the image of α if and only if
χ(ϕ) is in the image of β, i.e. imα = χ−1(imβ). With Φ∗ := im{C∗A(A;G)×
C∗B(B;G) → C∗C(C;G)} and Ψ := coker{[A;G] × [B;G] → [C;G]} (consid-
ered as a cochain complex as above) we obtain two short exact sequences of
cochain complexes:

0 → C∗X (X;G) → C∗A(A;G)× C∗B(B;G) → Φ∗ → 0,

0 → Φ∗ → C∗C(C;G) → Ψ → 0.

Since Ψ considered as a cochain complex has cohomology Ψ in dimension
0 and zero elsewhere the second short exact sequence implies Hn(Φ∗) =
hn(C;G) for n 6= 0, 1 and for the low dimensions provides the exact sequence
0 → H0(Φ∗) → h0(C;G) → Ψ → H1(Φ∗) → h1(C;G) → 0. Substituting
this information into the first short exact sequence of cochain complexes
leads to the long exact Mayer–Vietoris sequence for h∗ in its customary
form, except that hn(C;G) must be replaced by Hn(Φ∗) for n = 0, 1.

For h∗ one replaces A and B by neighborhoods A′ and B′ such that the
inclusion maps A ↪→ A′, B ↪→ B′ and A ∩ B ↪→ A′ ∩ B′ are deformation
retractions. Then the interiors of A′ and B′ cover X, and we can repeat
the reasoning above to obtain a Mayer–Vietoris sequence for h∗. We have
shown:
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Proposition 1. For any polyhedron X = A∪B covered by two subpoly-
hedra A and B there is a long exact Mayer–Vietoris sequence

. . .→ hn(X)→ hn(A)× hn(B)→ Φn → hn+1(X)→ . . .

with Φn = hn(A ∩ B) for n ≥ 2, whereas in lower dimensions we have the
following exact sequnce:

0→ Φ0 → h0(A ∩B)→ coker{[A;G]× [B;G]→ [A ∩B;G]}
→ Φ1 → h1(A ∩B)→ 0.

Now let X be a polyhedron with a specified triangulation, let A be the
closed covering by its simplexes and U := St(V), where V is the open covering
by its stars of vertices. Since A refines U there is a natural cochain map
C∗U (X;G) → C∗A(X;G) given by restriction. If X ′ is the same polyhedron,
but now triangulated by a subdivision, and if ϕ : X ′ → X is a simplicial
approximation to the identity, then the following diagram is commutative:

C∗U (X;G) → C∗A(X;G)
↓ ϕ∗ ↓ ϕ∗

C∗U ′(X;G) → C∗A′(X;G)

In the following section we will see that ϕ∗ : C∗A(X;G)→ C∗A′(X;G) induces
isomorphisms of cohomology. On the other hand, ϕ is contiguous to the iden-
tity, so ϕ∗ : C∗A(X;G) → C∗A′(X;G) and ϕ∗ : C∗U (X;G) → C∗U ′(X;G) are
chain homotopic to the restriction map. We now observe that U ranges over
a cofinal subset of all open coverings of X if we consider all subdivisions
of X. Hence taking direct limits of the groups C∗U (X;G) produces Mdzi-
narishvili’s complex C∗(X;G) with cohomology h∗(X;G). The direct limit
of the cochain complexes C∗A(X;G) produces a cochain complex with co-
homology h(X;G). We obtain a natural transformation h∗ → h∗, which is
evidently an isomorphism for one-point spaces. Since it is also compatible
with the long exact Mayer–Vietoris sequences constructed above it must be
an isomorphism for all polyhedra. To summarize:

Proposition 2. h∗(X;G) = h∗(X;G) for any polyhedron X and each
coefficient group G.

3. Classifying complexes. Let G be a simplicial Abelian group; in our
applications G will be the singular complex of G. We define a sequence of
simplicial Abelian groups E(G, n) by E(G, n)p := Hom(∆[p]n+1,G) for n ≥
−1 and E(G, n) = 0 for n < −1, where the homomorphism ϕ∗ : E(G, n)p →
E(G, n)q induced by ϕ : ∆[q] → ∆[p] is given by ϕ∗ := Hom(ϕn+1,G).
Hom(K,L) denotes the set of simplicial maps K→ L. ∆[p]0 is understood as
a one-point complex. The 0-skeleton E0(G, n) of E(G, n) may be identified
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with the 0-skeleton of G. We observe that E(G, n) is a Kan complex [5,
Thm. 17.1].

We denote by pi : ∆[p]n+1 → ∆[p]n the projection map omitting the
ith coordinate, 0 ≤ i ≤ n, and define a simplicial homomorphism δ :
E(G, n− 1)→ E(G, n) by δ :=

∑n
i=0(−1)i Hom(pi,G). This turns E into a

cochain complex of simplicial Abelian groups.

Lemma 3. The sequence

. . .→ E(G, n− 1) δ→ E(G, n) δ→ E(G, n+ 1)→ . . .

is exact.

P r o o f. δ2 = 0 follows from pjpi = pipj+1 for j ≥ i. Now consider the
simplicial maps ϕi : ∆[p]n → ∆[p]n+1, which operate as identities on the
jth coordinates for j ≤ i and are 0 on the other coordinates. Then

pjϕi =
{
ϕi−1pj for j < i,
ϕipj−1 for j > i+ 1,

piϕi = piϕi−1 for 1 < i ≤ n,
p1ϕ1 = 0, pn+1ϕn = 1.

For fixed p we define a homomorphism %n : E(G, n + 1)p → E(G, n)p by
%n :=

∑n
i=1(−1)i Hom(ϕi,G). (% is not required to be a simplicial map,

in fact it does not commute with the 0th boundary operator.) Then %δ +
δ% = q − 1, where q : E(G, n)p → E(G, n)p is induced by the zero map 0 :
∆[p]n → ∆[p]n. This implies that every cocycle of E(G, n) is cohomologous
to a cocycle in E0(G, n). Now observe that on the 0-skeleton the coboundary
operator δ : E0(G, n)→ E0(G, n+ 1) is δ = 0 if n is odd, δ = 1 if n is even,
and therefore its cohomology is trivial.

Lemma 4. For n ≥ 0 the simplicial homomorphism α : E(G, n) ³ G
induced by the diagonal map ∆[p]→ ∆[p]n+1 is surjective and is a homotopy
equivalence.

P r o o f. α has a right inverse induced by any of the projections ∆[p]n+1

→ ∆[p], in particular α is surjective and hence [5, Lemma 18.2] a Kan fibra-
tion. Let F(G, n) ⊆ E(G, n) be its fiber; we will show π∗(F(G, n)) = 0. De-
note by Γ ⊆ ∆[p]n+1 the union of the diagonal and all faces (di∆[p−1])n+1,
0 ≤ i ≤ p, where di : ∆[p−1]→ ∆[p] is the ith face map. Its geometric real-
ization is a deformation retract of (∆p)n+1, because there is a deformation
H : (∆p)n+1 × I → (∆p)n+1 defined by

H(x0, . . . , xn; t) = (y0, . . . , yn), yi := (1− t)xi +
t

n+ 1

n∑

j=0

xj ,
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moving the whole space to the diagonal and leaving Γ invariant. This means
that Γ ↪→ ∆[p]n+1 is an anodyne extension [2, Ch. IV, Def. 2.1.4]. An
element of πp(F(G, n)) is represented by a simplicial map ω : ∆[p]n+1 → G
which is 0 on Γ , and two such maps represent the same element if they are
homotopic relative Γ . Since Γ ↪→ ∆[p]n+1 is an anodyne extension and G a
Kan complex we must have πp(F(G, n)) = 0.

The diagram
E(G, n) α→ G
↓ δ ↓

E(G, n+ 1) α→ G

is commutative if we take for the vertical map G→ G the zero map for even
n and the identity for odd n, and consequently δ : E(G, n)→ E(G, n+ 1) is
nullhomotopic, respectively a homotopy equivalence.

We set B(G, n) := im{δ : E(G, n − 1) → E(G, n)} = ker{δ : E(G, n) →
E(G, n+ 1)}. Then δ : E(G, n)→ B(G, n+ 1) is a Kan fibration with fiber
B(G, n). Let F(G, n) ⊆ E(G, n) be the fiber of α : E(G, n) ³ G.

Proposition 5. B(G, n+1)∩F(G, n+1) = BB(G, n) and B(G, n+2) =
B(B(G, n+ 1) ∩ F(G, n+ 1)) for odd n ≥ 1.

This proposition inductively determines these groups beginning with
B(G, 1) = G/G0.

P r o o f. We observe π∗(F(G, n)) = 0 and consider the following exact
diagram:

0 → F(G, n+ 2) → E(G, n+ 2) ∼→ G → 0
δ ↑ 0 ↑

0 → F(G, n+ 1) → E(G, n+ 1) ∼→ G → 0
δ ↑ 1 ↑

0 → F(G, n) → E(G, n) ∼→ G → 0

This implies

B(G, n) ⊆ F(G, n),

δ(F(G, n)) = B(G, n+ 1) ∩ F(G, n+ 1),

E(G, n+ 1) = F(G, n+ 1) + B(G, n+ 1).

The last equation follows from α(B(G, n+1)) = α(E(G, n)) = G and implies
δ(F(G, n+ 1)) = B(G, n+ 2). We obtain two fiber sequences:

0→ B(G, n)→ F(G, n)→ F(G, n)/B(G, n)→ 0,

0→ B(G, n+ 1) ∩ F(G, n+ 1)→ F(G, n+ 1) δ→ B(G, n+ 2)→ 0.

Both bundles are classifying because their total spaces are contractible,
hence F(G, n)/B(G, n) = BB(G, n) and B(G, n + 2) = BH with H :=
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B(G, n+ 1) ∩ F(G, n+ 1) ≈ F(G, n)/B(G, n). This isomorphism is induced
by δ : F(G, n)→ B(G, n+ 1) ∩ F(G, n+ 1).

Definition 6. For any complex K we define a cochain complex C(K; G)∗

by C(K; G)n := Hom(K,E(G, n)) for n ≥ 0, C(K; G)n = 0 for n < 0, with
coboundary operator induced by δ : E(G, n)→ E(G, n+ 1). Its cohomology
is denoted by h∗(K; G) and is called the cohomology of K with coefficients
in G.

Observe that the n-cocycles of C(K; G)∗ are simplicial maps K→B(G, n),
and coboundaries are those simplicial maps that can be lifted over the Kan
fibration δ : E(G, n − 1) → B(G, n). Since B(G, n) is also a Kan complex
the homomorphism h∗(i) : h∗(L; G) → h∗(K; G) induced by an anodyne
extension i : K ↪→ L is an isomorphism, and therefore h∗(K; G) is actually a
homotopy invariant functor of the geometric realization |K|.

Proposition 7. For odd n ≥ 3 there is a natural isomorphism hn(K; G)
≈ [K; B(G, n)]. For even n ≥ 2 there is a natural isomorphism hn(K; G) ≈
[K; B(G, n) ∩ F(G, n)].

P r o o f. 1) Consider n ≥ 3 odd. We have seen that δ : E(G, n − 1) →
E(G, n) is nullhomotopic, and we want to show that it is also nullhomotopic
when considered as a map δ : E(G, n− 1) → B(G, n). If β : E(G, n − 1) →
E(G, n − 2) is homotopy inverse to δ : E(G, n − 2) → E(G, n − 1), then
δ ' δ2β = 0.

By definition hn(K; G) is the cokernel of δ∗ : Hom(K,E(G, n − 1)) →
Hom(K,B(G, n)), and because δ : E(G, n − 1) → B(G, n) is a Kan fibra-
tion a map K → B(G, n) can be lifted to E(G, n − 1) if and only if it is
nullhomotopic. Hence hn(K; G) = [K,B(G, n)].

2) Now consider n ≥ 2 even and let βn : G → E(G, n) be a simplicial
homomorphism with αnβn = 1, and for any map f : K → B(G, n) define
f ′ := (1 − δβn−1αn)f : K → F(G, n) ∩B(G, n). Observe that αnδ = αn−1

because n is even and therefore αn(1− δβn−1αn) = αn − αn−1βn−1αn = 0.
Define hn(K; G) → [K; B(G, n) ∩ F(G, n)] by f 7→ f ′. This assignment is
surjective because for f(K) ⊆ B(G, n) ∩ F(G, n) we get f ′ = f . Now, f can
be lifted over δ : E(G, n− 1) → B(G, n) if and only if f ′ can be lifted over
δ : δ−1(F(G, n)) = F(G, n − 1) → B(G, n) ∩ F(G, n), but since F(G, n − 1)
is contractible this holds if and only if f ′ is nullhomotopic.

Proposition 8. h0(K; G) is the ordinary cohomology H0(K; G0) of K
with coefficients in the group of 0-simplexes of G, and if G is connected and
G̃ its universal covering group, then there is a short exact sequence

0→ H1(K;π1(G))→ H1(K; G̃0)→ h1(K; G)→ 0.

Observe that π1(G) is the fiber of G̃→ G and hence is a subgroup of G̃0.
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P r o o f. The equation h0(K; G) = H0(K; G0) follows from B(G, 0) = G0.
Now assume that G is connected and let G̃ be the universal covering group
of G. We observe G̃/G̃0 = G/G0 = B(G, 1), furthermore E(G, 0) = G
and δ : E(G, 0) → B(G, 1) corresponds to the quotient map G → G/G0.
This allows us to identify π1(B(G, 1)) with G̃0 and the image of the in-
duced homomorphism δ# : π1(E(G, 0)) → π1(B(G, 1)) with π1(G) ⊆ G̃0.
Without loss of generality we may assume that K is also connected. Since
δ : E(G, 0) → B(G, 1) is a covering projection a map f : K → B(G, 1)
can be lifted over δ if and only if im f# ⊆ π1(G), hence the assignment
f 7→ f# : π1(K)→ G̃0 embeds h1(K; G) into

Hom(π1(K), G̃0)/Hom(π1(K), π1(G)) = H1(K; G̃0)/H1(K;π1(G)).

On the other hand, B(G, 1) as a simplicial Abelian group has trivial Post-
nikov invariants [5, Thm. 24.5] and therefore every homomorphism π1(K)→
π1(B(G, 1)) is induced by a map K→ B(G, 1).

Theorem 9. Consider a polyhedron X and take for K the semisimplicial
complex determined by its simplexes. Let G be a topological Abelian group
and G := S(G) its singular complex. Then h∗(K; G) is isomorphic to the
Alexander–Spanier cohomology of |K| = X with continuous coefficients in
G in the sense of Mdzinarishvili. The isomorphism is natural in K and G.

Observe that in view of Propositions 5 and 7 this theorem also proves
equation (3) in the introduction.

P r o o f. Let A be the closed covering of X by its simplexes and denote by
C∗A(X;G) ⊇ C∗A(X;G) the complex of all k-continuous cochains A∗+1 → G.
The inclusion map C∗A(X;G) ↪→ C∗A(X;G) induces a natural transforma-
tion of the corresponding cohomology functors which is an isomorphism
for one-point spaces. Since the reasoning of Section 2 can be repeated for
C∗A(X;G) it has the same excision properties as C∗A(X;G) and hence our
natural transformation must be an isomorphism for all polyhedra X. We will
identify H(C∗A(X;G)) with h∗(X;G) and will show C∗(K; G) = C∗A(X,G)
and therefore h∗(K; G) = h∗(X;G). A cochain of CnA(X,G) assigns to every
simplex σ ∈ K a map (∆dimσ)n+1 = |∆[dimσ]n+1| → G, which by ad-
junction can be identified with a simplicial map ∆[dimσ]n+1 → S(G) and
hence with a simplex of E(G, n). In this way we obtain a 1-1 correspondence
between n-cochains of C∗A(X,G) and simplicial maps K→ E(G, n).

4. The metrizable or compact Hausdorff case. Here all spaces are
assumed to be metrizable or compact Hausdorff and coefficient groups are
required to be ANR-spaces.

First let us explain that the modified Mayer–Vietoris sequence intro-
duced in Section 2 for polyhedra carries over to the present context. There
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is an exact diagram of cochain complexes similar to the one considered there:

0 → C∗(X;G) → C∗(A;G)× C∗(B;G) α→ C∗(C;G)
↓ χ ↓ χ

[A;G]× [B;G]
β→ [C;G]

↓ ↓
0 0

Here A and B are closed subspaces whose interiors cover X, and C = A∩B.
We claim that the equation imα = χ−1(imβ) still holds and hence that the
construction of the Mayer–Vietoris sequence from Section 2 can be repeated.
imα ⊆ χ−1(imβ) follows from commutativity, so let us consider a cochain
ϕ ∈ χ−1(imβ), where ϕ is represented by a map ϕ : U → G defined on a
neighborhood U of the diagonal ∆C in Cn+1. By assumption there are maps
ψA : ∆A → G and ψB : ∆B → G such that ψB − ψA ' ϕ on ∆C . Since G
is an ANR these maps may be extended over closed neighborhoods VA, VB
of the diagonals ∆A, ∆B in An+1, Bn+1, respectively, and we may assume
VA ∩ VB ⊆ U . Taking advantage of the ANR-property once more we may,
after shrinking VA and VB if necessary, extend the homotopy ψB − ψA ' ϕ
over VA ∩ VB . Then ψB ' ψA + ϕ on VA ∩ VB and ψB can be replaced
by a homotopic copy satisfying the strict equality ψB = ψA + ϕ, and these
maps represent cochains ψA ∈ C∗(A;G) and ψB ∈ C∗(B;G) in the inverse
image of ϕ under α. This shown, we obtain the same kind of Mayer–Vietoris
sequence as in Proposition 1.

Lemma 10. The functors hn are pointwise taut , that is, hn(x0;G) =
lim−→hn(U ;G), where U varies over the system of neighborhoods of a point x0

of a metrizable space.

P r o o f. This is a special case of [6, Thm. 6.1], where tautness around
neighborhood retracts is shown: The restriction chain map lim−→C∗(U ;G)→
C∗(x0;G) is an epimorphism and is easily seen to be a cochain homotopy
equivalence by means of the cochain homotopy

%(ϕ)(y0, . . . , yn−1) :=
n−1∑

i=0

(−1)iϕ(y0, . . . , yi, x0, . . . , x0).

Theorem 11. The functors hn satisfy the Čech continuity property.

We observe that this means that equations (3) and (4) from the intro-
duction carry over to the present context if Čech cohomology is used for H∗.
Equation (1) does not carry over, because direct products and direct limits
do not commute.

P r o o f. We enforce continuity by taking for ȟ∗ the Čech extension from
polyhedra to metrizable spaces using limits over nerves of coverings or ANR-
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neighborhoods in suitable ambient spaces, according to one’s preferences.
Then ȟ∗ satisfies the same set of axioms as h∗, including the modified Mayer–
Vietoris sequence and pointwise tautness, and there is a natural transforma-
tion of cohomology functors ȟ∗ → h∗, which is an isomorphism for one-point
spaces. Now our modified Mayer–Vietoris sequence is strong enough to re-
peat the proof of a theorem of Lawson [4, Thm. 3.2] (cf. also [7]), showing
that ȟ∗ ≈ h∗.

5. Continuous versus discontinuous cocycles. This section applies
to either of the two cases specified in the introduction.

Let G be a topological group and hn(X;G) → Hn(X;G) the nat-
ural homomorphism induced by the inclusion of the complex of contin-
uous Alexander–Spanier cochains into the complex of all cochains. It is
our purpose to determine when this homomorphism is epimorphic. We set
G := S(G). Furthermore, let G be the singular complex of G with the chaotic
topology. Then G0 = G0, G is contractible and G/G0 = K(G, 1). We set
G̃ := (G, 0)(I,0)/Γ , where Γ ⊆ ΩG ⊆ (G, 0)(I,0) is the subgroup of nullho-
motopic loops and identify the evaluation map e1 : G̃→ G with the homo-
morphism of the fundamental groups π1(G/G0)→ π1(G/G0) induced by the
inclusion map G/G0 ↪→ G/G0. If G is connected, locally path-connected and
semilocally 1-connected, then e1 : G̃ → G is the universal covering group
of G.

Proposition 12. For every group G the following two conditions are
equivalent :

1. Every discontinuous Alexander–Spanier cocycle in dimension ≥ 2 on
a CW-complex is cohomologous to a continuos one.

2. e1 : G̃ → G is a split epimorphism, where the section s : G → G̃ is
not required to be continuous.

These conditions are satisfied for instance if G is simply connected or if
G is free (in the algebraic sense) and path connected.

Observe that a free Abelian group can carry non-simply connected topol-
ogies, for instance the free Abelian group generated by S1 is a K(Z, 1).

P r o o f. Propositions 5 and 7 imply that the homomorphism hn(X;G)→
Hn(X;G) may be identified with the map [X,Yn] → [X,K(G,n)] induced
by a certain map Yn := Bn−1|G/G0| → K(G,n), hence 1 holds if and only
if Yn → K(G,n) has a right homotopy inverse. Since Yn is (n−1)-connected
and has trivial Postnikov invariants such a right homotopy inverse exists if
and only if the induced homomorphism πn(Yn) = π1(G/G0)→ π1(G/G0) =
πn(K(G,n)) splits; but this homomorphism is precisely our e1 : G̃→ G.
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