Property $C^{\prime \prime}$, strong measure zero sets and subsets of the plane

by
Janusz Pawlikowski (Wrocław)

Abstract

Let X be a set of reals. We show that - X has property $C^{\prime \prime}$ of Rothberger iff for all closed $F \subseteq \mathbb{R} \times \mathbb{R}$ with vertical sections $F_{x}(x \in X)$ null, $\bigcup_{x \in X} F_{x}$ is null; - X has strong measure zero iff for all closed $F \subseteq \mathbb{R} \times \mathbb{R}$ with all vertical sections F_{x} $(x \in \mathbb{R})$ null, $\bigcup_{x \in X} F_{x}$ is null.

1. Introduction. Let Y be a separable metric space. Galvin [G] defined the following game $G^{*}(Y)$. In the nth round, $n \in \omega$, White chooses an open cover $\left\{U_{k}^{n}: k \in \omega\right\}$ of Y, then Black responds with $a_{n} \in \omega$. Black wins if every $y \in Y$ is in some $U_{a_{n}}^{n}$. Let $G^{* \sigma}(Y)$ be Galvin's game with "some" changed to "infinitely many".

Recław $[\mathrm{R}]$ showed that White has a winning strategy in $G^{*}(Y)$ iff for some closed set $D \subseteq Y \times \omega^{\omega}$ with meager vertical sections $D_{y}(y \in Y)$, $\bigcup_{y \in Y} D_{y}=\omega^{\omega}$. His result easily extends to $G^{* \sigma}(Y)$ and \mathbf{F}_{σ} sets. In $[\mathrm{P}]$, I showed that the following are equivalent:

- White has no winning strategy in $G^{*}(Y)$;
- White has no winning strategy in $G^{* \sigma}(Y)$;
- Y has property $C^{\prime \prime}$ of Rothberger.

Thus, $Y \in C^{\prime \prime}$ iff $\bigcup_{y \in Y} D_{y} \neq \omega^{\omega}$ for all closed (equivalently, all \mathbf{F}_{σ}) $D \subseteq Y \times \omega^{\omega}$ with meager sections $D_{y}, y \in Y$. It is not hard to see that ω^{ω} can be replaced here by any Polish space without isolated points (Lemma 4.2). We show that if T carries a nonzero nonatomic σ-finite Borel measure, then $Y \in C^{\prime \prime}$ iff $\bigcup_{y \in Y} F_{y}$ is null for all closed $F \subseteq Y \times T$ with null $F_{y}, y \in Y$. We also give a similar characterization of property C (i.e., strong measure zero sets).

[^0]Throughout the paper T is the Cantor set 2^{ω} (see Note (1) in Section 6 for how to pass to arbitrary T) \mathcal{M} and \mathcal{N} are the ideals of meager and null (i.e. outer measure zero) subsets of $T ; \mathcal{E}$ is the ideal of subsets of T coverable by null \mathbf{F}_{σ} sets. For $X \subseteq Y$ and $F \subseteq Y \times T$, let $F[X]=\bigcup_{x \in X} F_{x}$. Let $F \in \mathcal{M}^{Y}$ mean that $F \subseteq Y \times T$ and for all $y \in Y, F_{y} \in \mathcal{M}$. We similarly use \mathcal{N}^{Y} and \mathcal{E}^{Y}.

Let $X \subseteq Y$, with Y a separable metric space. We say that X has property

- G_{Y}^{σ} if $F[X] \neq T$ for all $\mathbf{F}_{\sigma} F \in \mathcal{M}^{Y}$;
- G_{Y} if $F[X] \neq T$ for all closed $F \in \mathcal{M}^{Y}$;
- E_{Y} if $F[X] \in \mathcal{N}$ for all \mathbf{F}_{σ} (equivalently, closed) $F \in \mathcal{N}^{Y}$;
- $C_{Y}^{\prime \prime}\left(\right.$ resp. $\left.H_{Y}, M_{Y}\right)$ if, given open covers $\left\{U_{k}^{n}: k \in \omega\right\}$ of $Y, n \in \omega$, there are $a_{n} \in \omega$ such that each $x \in X$ is in some $U_{a_{n}}^{n}$ (resp. in some $\bigcup_{k<a_{n}} U_{k}^{n}$, in all but finitely many $\bigcup_{k<a_{n}} U_{k}^{n}$).
- C_{Y} if, given $\varepsilon_{n}>0, n \in \omega$, there are balls B_{n} of radius $<\varepsilon_{n}$ with $X \subseteq \bigcup_{n} B_{n}$.
Instead of $Y \in C_{Y}^{\prime \prime}$ we usually write $Y \in C^{\prime \prime}$. Similarly, $Y \in G$ means $Y \in G_{Y}$, etc.

We refer to $[\mathrm{M}]$ and $[\mathrm{FM}]$ for more information about $C, C^{\prime \prime}, M$ and H. Here just note that for $X \subseteq Y, X \in C$ iff $X \in C_{Y}$, and that "some" in the definition of $C_{Y}^{\prime \prime}$ and M_{Y} can be changed to "infinitely many" (split ω into infinitely many infinite sets).

We prove:
1.1. Theorem. (1) $C^{\prime \prime}=G^{\sigma}=G=E$.
(2) $C_{Y}^{\prime \prime}=G_{Y}^{\sigma}=G_{Y}=E_{Y}$ for finite-dimensional $Y \in M$.
(3) $C_{Y}=G_{Y}^{\sigma}=G_{Y}=E_{Y}$ for finite-dimensional $Y \in H$.

Part (3) follows from part (2) since $H \subseteq M$ and $Y \in H \Rightarrow C_{Y}^{\prime \prime}=C_{Y}$, the last being an easy generalization of a result of Fremlin and Miller [FM, Thm. 8] that $H \cap C=H \cap C^{\prime \prime}$. For σ-compact $Y, C_{Y}=G_{Y}^{\sigma}=G_{Y}$ is an unpublished result of Galvin (see [AR]).

I do not know whether finite-dimensionality is essential. Dropping it I have to replace the last " $=$ " in (2) and (3) by " \subseteq ".

Question. Suppose $X \subseteq[0,1]^{\omega}$ and for all closed $F \subseteq[0,1]^{\omega} \times[0,1]$ with all vertical sections null, $F[X]$ is null. Does X have strong measure zero?

Theorem 1.1 is a special case of the following theorem, which specifies the role of M.
1.2. Theorem. (1) $G_{Y}^{\sigma} \subseteq G_{Y} \subseteq C_{Y}^{\prime \prime} \subseteq E_{Y}$.
(2) $X \in C_{Z}^{\prime \prime} \& Z \in M_{Y} \Rightarrow X \in G_{Y}^{\sigma}$.
(3) $\left(X \in E_{Z}, Z\right.$ finite-dimensional \& $\left.Z \in M_{Y}\right) \Rightarrow X \in G_{Y}^{\sigma}$.

Consider two more properties. Let $X \subseteq Y$, with Y a separable metric space. We say that X has property

- G_{Y}^{+}if for all closed $F \in \mathcal{M}^{Y}, F[X] \in \mathcal{M}$;
- E_{Y}^{+}if for all closed $F \in \mathcal{N}^{Y}, F[X] \in \mathcal{E}$.

We prove:
1.3. Theorem. $H \cap C^{\prime \prime}=G^{+}=E^{+}$.

It is known ([GMS], [P1]) that
$X \in C_{T} \Leftrightarrow D+X \neq T$ for all $D \in \mathcal{M} \Leftrightarrow D+X \in \mathcal{N}$ for all closed $D \in \mathcal{N}$.
From this and Theorem 1.3, if $Y \subseteq T$ has property H then
$Y \in C \Leftrightarrow D+Y \in \mathcal{M}$ for all $D \in \mathcal{M} \Leftrightarrow D+Y \in \mathcal{E}$ for all $D \in \mathcal{E}$.
(Use $H \cap C=H \cap C^{\prime \prime}$ and $D+Y=F[Y]$ for $F=\bigcup_{x \in T}\{x\} \times(D+x)$.)
Theorem 1.3 is a special case of the following theorem, which specifies the role of H.
1.4. Theorem. (1) $G_{Y}^{+} \subseteq H_{Y}$.
(2) $X \in H_{Z} \& Z \in G_{Y} \Rightarrow X \in G_{Y}^{+}$.
(3) $E_{Y}^{+} \subseteq H_{Y}$ for finite-dimensional Y.
(4) $X \in H_{Z} \& Z \in E_{Y} \Rightarrow X \in E_{Y}^{+}$.

We turn to a Borel version of our theorems. Define $\widetilde{C}_{Y}^{\prime \prime}$ and \widetilde{H}_{Y} like $C_{Y}^{\prime \prime}$ and H_{Y} but replacing open sets by Borel ones. Clearly, for $X \subseteq Y$, we have $X \in \widetilde{C}_{Y}^{\prime \prime}$ iff $X \in \widetilde{C}^{\prime \prime}$, and $X \in \widetilde{H}_{Y}$ iff $X \in \widetilde{H}$. Also, it is not hard to see that $X \in \widetilde{C}^{\prime \prime}$ iff all Borel images of X into T have property $C^{\prime \prime}$; likewise for \widetilde{H}.
1.5. Theorem. Let $X \subseteq Y$. Then

$$
\begin{array}{r}
X \in \widetilde{C}^{\prime \prime \prime} \Leftrightarrow \forall \text { Borel } F \in \mathcal{M}^{Y} F[X] \neq T, \\
X \in \widetilde{H} \cap \widetilde{C}^{\prime \prime \prime} \Leftrightarrow \forall \text { Borel } F \in \mathcal{M}^{Y} F[X] \in \mathcal{M} .
\end{array}
$$

If Y is Polish, then also

$$
\begin{aligned}
X \in \widetilde{C}^{\prime \prime \prime} & \Leftrightarrow \text { Borel } F \in \mathcal{E}^{Y} \quad F[X] \in \mathcal{N}, \\
X \in \widetilde{H} \cap \widetilde{C}^{\prime \prime \prime} & \Leftrightarrow \forall \text { Borel } F \in \mathcal{E}^{Y} F[X] \in \mathcal{E} .
\end{aligned}
$$

We will see that the sets F above can be required to have closed vertical sections. I do not know, however, if the assumption that Y is Polish in the second part is essential.

Question. Let $Y \subseteq[0,1]$. Suppose $F \subseteq Y \times[0,1]$ is (relatively) Borel and has all sections $F_{y}(y \in Y)$ closed null. Can we cover F with a Borel subset of $[0,1] \times[0,1]$ whose vertical sections are all coverable by null \mathbf{F}_{σ} sets?

It follows from Theorem 1.5 that

$$
\begin{aligned}
\forall \text { Borel } F & \in \mathcal{M}^{Y} \quad F[X] \in \mathcal{M} \\
& \Leftrightarrow X \in \widetilde{H} \text { and } \forall D \in \mathcal{M} \forall \text { Borel } f: X \rightarrow T D+f[X] \neq T .
\end{aligned}
$$

Similarly, if Y is Polish, then

$$
\begin{aligned}
\forall \text { Borel } F & \in \mathcal{E}^{Y} \quad F[X] \in \mathcal{E} \\
& \Leftrightarrow X \in \widetilde{H} \text { and } \forall D \in \mathcal{E} \forall \text { Borel } f: X \rightarrow T D+f[X] \in \mathcal{N} .
\end{aligned}
$$

(Use Fremlin-Miller's result to see that $H \cap C$ and $H \cap C^{\prime \prime}$ are equivalent for $f[X]$.)

The paper is organized as follows. After fixing some basic notation, we give a proof of $C^{\prime \prime}=E$. Then we introduce a general framework which is suitable for open as well as for Borel properties.
2. Notation and folklore. Let K and L range over subsets of ω, and i, j, k, l, m, n over members of ω. Given sets $B_{k}, k \in K$, let

$$
\bigvee_{k \in K} B_{k}=\left\{x: \exists^{\infty} k \in K x \in B_{k}\right\}, \quad \bigwedge_{k \in K} B_{k}=\left\{x: \forall^{\infty} k \in K x \in B_{k}\right\},
$$

where " $\exists \infty$ " stands for "there exist infinitely many" and " $\forall \infty$ " for "for all but finitely many". Let $1_{K}=K \times\{1\}$.

Given K, μ refers to the product measure in 2^{K} arising from assigning the weight $1 / 2$ to each point in $\{0,1\}$. Note that if $A \subseteq 2^{K}$ with K finite, then $\mu(A)=|A| \cdot 2^{-|K|}$.

Suppose $A \subseteq 2^{K}, L \subseteq K, \tau \in 2^{L}$. Let

$$
\begin{aligned}
A \mid L & =\{\sigma \mid L: \sigma \in A\}, \\
{[A] } & =\bigcup_{\sigma \in A}[\sigma], \quad \text { where }[\sigma]=\left\{t \in 2^{\omega}: \sigma \subseteq t\right\}, \\
A_{\tau} & =\left\{\sigma \in 2^{K \backslash L}: \tau \cup \sigma \in A\right\} .
\end{aligned}
$$

Let $[k, l)=\{i: k \leq i<l\}$. For $a \in \omega^{\omega}$ let $a_{n}=a(n)$. Let $\omega^{\omega} \nearrow$ be the set of all increasing functions from ω to ω.

The following is folklore:

- $A \in \mathcal{M}$ iff for some $a \in \omega^{\omega} \nearrow$ and some $\sigma_{n} \in 2^{\left[a_{n}, a_{n+1}\right)}, n \in \omega$,

$$
\bigvee_{n}\left[\sigma_{n}\right] \subseteq T \backslash A
$$

For such a,

$$
\exists^{\infty} n\left[a_{n}, a_{n+1}\right) \cap K=\emptyset \Rightarrow A \mid(\omega \backslash K) \text { is meager (in } 2^{\omega \backslash K} \text {). }
$$

Hence, given $b \in \omega^{\omega}$ there is a subsequence $\left\{a_{n_{m}}\right\}$ such that

$$
\exists^{\infty} m\left|a_{n_{m}} \cap K\right| \leq b_{n} \Rightarrow A \mid(\omega \backslash K) \text { is meager. }
$$

- $A \in \mathcal{N}$ iff for all (equivalently, for some) $c \in \omega^{\omega}$ with $\sum_{n} 2^{-c_{n}}<\infty$ there exist $a \in \omega^{\omega} \nearrow$ and $B_{n} \subseteq 2^{a_{n}}$ of measure $\leq 2^{-c_{n}}, n \in \omega$, such that

$$
A \subseteq \bigvee_{n}\left[B_{n}\right]
$$

For such a and c,

$$
\left.\sum_{n} 2^{\left|a_{n} \cap K\right|-c_{n}}<\infty \Rightarrow A \mid(\omega \backslash K) \text { is null (in } 2^{\omega \backslash K}\right) .
$$

As a consequence of these facts we have:
2.1. Lemma. (1) Given $b \in \omega^{\omega}$ and $A \in \mathcal{M}$, there is $a \in \omega^{\omega} \nearrow$ such that

$$
\exists^{\infty} n\left|a_{n} \cap K\right| \leq b_{n} \Rightarrow A \mid(\omega \backslash K) \text { is meager. }
$$

(2) Given $b \in \omega^{\omega}$ and $A \in \mathcal{N}$, there is $a \in \omega^{\omega} \nearrow$ such that

$$
\forall^{\infty} n\left|a_{n} \cap K\right| \leq b_{n} \Rightarrow A \mid(\omega \backslash K) \text { is null. }
$$

The next lemma is extracted from [BS].
2.2. Lemma. Let $A \in \mathcal{N}$. Suppose $a \in \omega^{\omega} /$ and $\prod_{n} \varepsilon_{n}>0, \varepsilon_{n}$'s positive. Then for each $\tau \in 2^{a_{n}}$ there is $\Sigma^{\tau} \subseteq 2^{\left[a_{n}, a_{n+1}\right)}$ of measure $<\varepsilon_{n}$ such that for all closed $D \subseteq A$,

$$
D_{\tau} \mid\left[a_{n}, a_{n+1}\right) \subseteq \Sigma^{\tau} \quad \text { for some } n \text { and } \tau \in D \mid a_{n}
$$

Proof. Fix a and ε_{n} 's. Cover A with open $G \subseteq T, \mu(G)<\prod_{n} \varepsilon_{n}$. Define

$$
\Sigma^{\tau}=\left\{\sigma \in 2^{\left[a_{n}, a_{n+1}\right)}: \varepsilon_{n} \mu\left(G_{\tau-\sigma}\right)>\mu\left(G_{\tau}\right)\right\}, \quad \tau \in 2^{a_{n}} .
$$

Then $\mu\left(\Sigma^{\tau}\right)<\varepsilon_{n}$ (apply the Fubini theorem to $G_{\tau} \subseteq 2^{\left[a_{n}, a_{n+1}\right)} \times 2^{\left[a_{n+1}, \omega\right)}$). Also, if $D \subseteq G$ is closed, then for some n and $\tau \in D \mid a_{n}$,

$$
\tau^{\frown} \sigma \in D \mid a_{n+1} \Rightarrow \varepsilon_{n} \mu\left(G_{\tau \sim \sigma}\right)>\mu\left(G_{\tau}\right) \quad \text { for all } \sigma
$$

Indeed, if not, define inductively $t \in T$ with

$$
t\left|a_{n} \in D\right| a_{n} \quad \text { and } \quad \varepsilon_{n} \mu\left(G_{t \mid a_{n+1}}\right) \leq \mu\left(G_{t \mid a_{n}}\right)
$$

Then $t \in D$ and $\varepsilon_{0} \varepsilon_{1} \ldots \varepsilon_{n} \mu\left(G_{t \mid a_{n+1}}\right) \leq \mu(G)$. Since $t \in D \subseteq G$ we have $\forall^{\infty} n\left[t \mid a_{n+1}\right] \subseteq G$, so $\forall^{\infty} n \mu\left(G_{t \mid a_{n+1}}\right)=1$, and we get $\prod_{n} \varepsilon_{n} \leq \mu(G)$. A contradiction.
3. A proof of $E=C^{\prime \prime}$. Before presenting a general framework for our theorems we sketch a proof of $E=C^{\prime \prime}$.
$C^{\prime \prime} \subseteq E$ is easy. Indeed, suppose $Y \in C^{\prime \prime}$. Let $F \in \mathcal{N}^{Y}$ be closed with the complement $\bigcup_{i} U_{i} \times O_{i}, U_{i}$'s open in Y and O_{i} 's open in T. For finite K with $\mu\left(\bigcup_{i \in K} O_{i}\right)>1-2^{-n}$ let $U_{K}^{n}=\bigcap_{i \in K} U_{i}$. Then $\forall n Y=\bigcup_{K} U_{K}^{n}$. Since $Y \in C^{\prime \prime}, Y=\bigvee_{n} U_{K_{n}}^{n}$ for some K_{n} 's. Then

$$
F[Y] \subseteq \bigvee_{n}\left(U \backslash \bigcup_{i \in K_{n}} O_{i}\right) \in \mathcal{N}
$$

The reverse inclusion is longer. Let $Y \in E$.
First note that Y is zero-dimensional. Indeed, let δ be the metric. For $y_{0} \in Y, \Delta=\left\{\left\langle y, \delta\left(y, y_{0}\right)\right\rangle: y \in Y\right\}$ is a closed subset of $Y \times[0, \infty)$ with null vertical sections. As $Y \in E, \Delta[Y]$ is null, so it avoids arbitrarily small $\varepsilon>0$. (Note (1) in Section 6 explains why $[0, \infty)$ can replace 2^{ω} in property E.)

Next we show that $Y \in M$. For each n, let $\left\{U_{k}^{n}: k \in \omega\right\}$ be an open cover of Y. By zero-dimensionality we can, without loss of generality, restrict ourselves to covers whose members are pairwise disjoint. Let $\#: \omega \times \omega \rightarrow \omega$ be 1-1. For $y \in Y$ let $K_{y}=\left\{k_{y}^{n}: n \in \omega\right\}$, where $k_{y}^{n}=\#(n, k)$ for k such that $y \in U_{k}^{n}$. Note that each K_{y} is infinite. Define a closed $F \in \mathcal{N}^{Y}$ by

$$
F_{y}=\left[1_{K_{y}}\right], \quad y \in Y .
$$

As $Y \in E$, we have $F[Y] \in \mathcal{N}$. Use Lemma 2.1 to find $a \in \omega^{\omega} \nearrow$ such that $F[Y] \mid(\omega \subseteq K)$ is null for all K with $\forall n\left|K \cap a_{n}\right| \leq n$. Then $Y \subseteq \bigcup_{k<a_{n}} U_{k}^{n}$. Otherwise, for some $y, \forall n k_{y}^{n} \geq a_{n}$. So

$$
K_{y} \cap a_{n} \subseteq\left\{k_{y}^{m}: m<n\right\}
$$

has size $\leq n$ and thus $F_{y} \mid\left(\omega \backslash K_{y}\right)$ is null, which is absurd.
We can now start the main argument. Let, for each $n,\left\{U_{k}^{n}: k \in \omega\right\}$ be an open cover of Y that consists of pairwise disjoint sets. Let $c(n)=n+n 2^{n}$ and let $\#: \bigcup_{n} \omega^{[n, c(n))} \rightarrow \omega$ be 1-1 such that $\#(\sigma) \geq n$ for $\sigma \in \omega^{[n, c(n))}$. Let

$$
V_{k}^{n}=\bigcap_{n \leq i<c(n)} U_{\sigma(i)}^{i} \quad \text { if } \sigma \in \omega^{[n, c(n))} \text { and } \#(\sigma)=k,
$$

and let $V_{k}^{n}=\emptyset$ otherwise. (So, $k<n \Rightarrow V_{k}^{n}=\emptyset$.)
Clearly, for each n, the V_{k}^{n},s cover Y. As $Y \in M$, find $a \in \omega^{\omega} \nearrow$ such that $a_{n+1} \geq c\left(a_{n}\right)$ and

$$
Y=\bigvee_{n} \bigcup_{a_{n} \leq k<a_{n+1}} V_{k}^{a_{n}}
$$

(This is possible: see Lemma 4.1.)
Let $A_{n}=\left[a_{n}, a_{n+1}\right)$ and let

$$
J_{y}=\bigcup_{n}\left\{k \in A_{n}: y \in V_{k}^{a_{n}}\right\}, \quad y \in Y .
$$

Each J_{y} is infinite and has at most one point in each A_{n}.
Define a closed $F \in \mathcal{N}^{Y}$ by

$$
F_{y}=\left[1_{J_{y}}\right], \quad y \in Y .
$$

Let $A=F[Y]$. As $Y \in E$, we have $A \in \mathcal{N}$. Get Σ^{τ} 's from Lemma 2.2 applied to A, a_{n} and $\varepsilon_{n}=1-2^{-(n+1)}$.

For $\tau \in 2^{a_{n}}$ let

$$
K^{\tau}=\left\{k \in A_{n}:\left[1_{\{k\}}\right] \mid A_{n} \subseteq \Sigma^{\tau}\right\} \quad \text { and } \quad K_{n}=\bigcup_{\tau \in 2^{a_{n}}} K^{\tau}
$$

By independence

$$
2^{-\left|K^{\tau}\right|} \geq 1-\mu\left(\Sigma^{\tau}\right)>1-\varepsilon_{n}=2^{-(n+1)}
$$

So $\left|K^{\tau}\right| \leq n$ and $\left|K_{n}\right| \leq n 2^{a_{n}}$.
CLaim. $Y \subseteq \bigcup_{n, k \in K_{n}} V_{k}^{a_{n}}$.
Proof. Each $\left[1_{J_{y}}\right]$ is a closed subset of A. It follows from Lemma 2.2 that

$$
\left[1_{J_{y}}\right] \mid A_{n} \subseteq \Sigma^{\tau} \quad \text { for some } n \text { and } \tau \in 2^{a_{n}}
$$

As $\mu\left(\Sigma^{\tau}\right)<1$, the left hand side cannot be $2^{A_{n}}$, so it must be of the form $\left[1_{\{k\}}\right] \mid A_{n}$ for a unique $k \in J_{y} \cap A_{n}$. Then $k \in K^{\tau} \subseteq K_{n}$ and $y \in V_{k}^{a_{n}}$.

Pick now $\tau_{n} \in \omega^{\left[a_{n}, c\left(a_{n}\right)\right)}$ that meets each σ with $\#(\sigma)$ in $K_{n}\left(\left|K_{n}\right| \leq\right.$ $n 2^{a_{n}}$ and $\left.\left|\left[a_{n}, c\left(a_{n}\right)\right)\right|=a_{n} 2_{n}^{a}\right)$. Then

$$
\bigcup_{k \in K_{n}} V_{k}^{a_{n}} \subseteq \bigcup_{a_{n} \leq i<c\left(a_{n}\right)} U_{\tau_{n}(i)}^{i}
$$

which in view of the claim ends the proof.
4. Lemmas. Fix a set S and a family \mathcal{S} of subsets of S which is closed under finite intersections and unions and contains \emptyset and S. The intended interpretation is that S is a separable metric space and \mathcal{S} is either $\mathbf{O}(S)$, the family of all open subsets of S, or $\mathbf{B}(S)$, the family of all Borel subsets of S.

Let (indices allowed)

- U and V range over \mathcal{S};
- O range over open subsets of T;
- X, Y and Z range over subsets of S.

We say that Y is $\leq n$-dimensional if for any $U_{k}, k \in K$, there are $V_{k} \subseteq U_{k}$ such that $Y \cap \bigcup_{k} V_{k}=Y \cap \bigcup_{k} U_{k}$ and each $y \in Y$ is in at most $n+1 V_{k}$'s. Clearly, if $\mathcal{S}=\mathbf{B}(S)$ then any Y is zero-dimensional, and if $\mathcal{S}=\mathbf{O}(S)$ then Y is $\leq n$-dimensional iff it is $\leq n$-dimensional in the usual sense of dimension theory.

If $F \subseteq S \times T$ then we say that

- $F \in \mathcal{M}^{Y}$ iff $\forall y \in Y F_{y} \in \mathcal{M}$; similarly for \mathcal{N} and \mathcal{E};
- F is an \mathcal{F} set defined by $\left\{U_{i} \times O_{i}: i \in \omega\right\}$ iff $F=S \times T \backslash \bigcup_{i} U_{i} \times O_{i}$;
- F is an \mathcal{F}_{σ} set if it is a countable union of \mathcal{F} sets.

If $\mathcal{S}=\mathbf{O}(S)$, then \mathcal{F} and \mathcal{F}_{σ} subsets of $S \times T$ are just closed and \mathbf{F}_{σ} subsets of $S \times T$. If S is a Polish space and $\mathcal{S}=\mathbf{B}(S)$ then \mathcal{F} and \mathcal{F}_{σ} sets are just Borel sets with closed and \mathbf{F}_{σ} vertical sections (by theorems of Kunugui, Novikov and Saint-Raymond; see $[\mathrm{Ke}])$. Also, every Borel set from \mathcal{M}^{Y} can be covered by an \mathcal{F}_{σ} set from \mathcal{M}^{Y}; similarly for \mathcal{E}^{Y} if Y is itself Borel (I do not know whether this requirement is essential). (See e.g. [D], p. 290, Remarque (a). Remember that for Borel $F \subseteq S \times T,\left\{s \in S: F_{s} \in \mathcal{M}\right\}$ is Borel, but $\left\{s \in S: F_{s} \in \mathcal{E}\right\}$ may be true coanalytic.)

Definition. Let $X \subseteq Y$. We say that X has property

- $C_{Y}^{\prime \prime}$ (resp. H_{Y}, M_{Y}) if, whenever $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$, then $X \subseteq \bigcup_{n} U_{a_{n}}^{n}$ for some $a \in \omega^{\omega}$ (resp. $X \subseteq \bigwedge_{n} \bigcup_{k<a_{n}} U_{k}^{n}, X \subseteq \bigcup_{n} \bigcup_{k<a_{n}} U_{k}^{n}$);
- G_{Y} if $F[X] \neq T$ for all $F \in \mathcal{F} \cap \mathcal{M}^{Y}$;
- G_{Y}^{σ} if $F[X] \neq T$ for all $F \in \mathcal{F}_{\sigma} \cap \mathcal{M}^{Y}$;
- E_{Y} if $F[X] \in \mathcal{N}$ for all $F \in \mathcal{F} \cap \mathcal{N}^{Y}$;
- S_{Y} if, whenever $Y \subseteq \bigvee_{k} U_{k}$ and $a \in \omega^{\omega} \nearrow$, then $X \subseteq \bigvee_{k \in K} U_{k}$ for some K such that $\forall^{\infty} n\left|K \cap a_{n+1}\right| \leq 2^{a_{n}}$.
Clearly, $C_{Y}^{\prime \prime} \cup H_{Y} \subseteq M_{Y}$. Also, in the definitions of M_{Y} and $C_{Y}^{\prime \prime}$ we can replace " \cup_{n} " by " \bigvee_{n} " (split ω into infinitely many infinite sets).

As to S_{Y} note the following. For $a \in \omega^{\omega} \nearrow$ and $f \in(\omega \backslash 1)^{\omega}$ let

$$
\Phi(a, f)=\left\{K: \forall^{\infty} n\left|K \cap a_{n+1}\right| \leq f(n) \cdot 2^{a_{n}}\right\}
$$

Let $\Phi(a)$ be $\Phi(a, f)$ for $f \equiv 1$. Then $\forall f, a \Phi(a) \subseteq \Phi(a, f)$ and $\forall f, b \exists a \Phi(a, f)$ $\subseteq \Phi(b)$. (For $b \in \omega^{\omega} \nearrow$, choose $c \in \omega^{\omega} \nearrow$ so that $a_{n}=b_{c_{n}}-f(n)$ (for $n \in \omega$) increase and $f(n+1)+f(n) \cdot 2^{a_{n}} \leq 2^{b_{c_{n}}}$. If $\forall^{\infty} n\left|K \cap a_{n+1}\right| \leq f(n) \cdot 2^{a_{n}}$, then $\left.\forall^{\infty} n \mid K \cap b_{c_{n+1}}\right) \mid \leq f(n+1)+f(n) \cdot 2^{a_{n}} \leq 2^{b_{c_{n}}}$.) So, $X \in S_{Y}$ iff for some f, whenever $Y \subseteq \bigvee_{k} U_{k}$ and $a \in \omega^{\omega} \nearrow$, then $\exists K \in \Phi(a, f) X \subseteq \bigvee_{k \in K} U_{k}$.

The following lemma is implicit in [FM].
4.1. Lemma. (1) Suppose $X \in M_{Y}$ and $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. Then $X \subseteq$ $\bigvee_{n} \bigcup_{k<a_{n+1}} U_{k}^{a_{n}}$ for some $a \in \omega^{\omega} \nearrow$.
(2) Suppose $X \in C_{Y}^{\prime \prime}$ and $Y \subseteq \bigvee_{n} \bigcup_{k} U_{k}^{n}$. Then $X \subseteq \bigvee_{n} U_{a_{n}}^{n}$ for some $a \in \omega^{\omega}$.

Proof. (1) For increasing $\sigma \in \omega^{2 n}, n>0$, let

$$
V_{\sigma}=\bigcap_{i<2 n-1} \bigcap_{m \leq \sigma(i)} \bigcup_{k<\sigma(i+1)} U_{k}^{m}
$$

Clearly, for each n, the V_{σ} 's with $|\sigma|=2 n$ cover Y. As $X \in M_{Y}$, we can find finite $\Sigma_{n} \subseteq \omega^{2 n}$ such that

$$
X \subseteq \bigvee_{n} \bigcup_{\sigma \in \Sigma_{n}} V_{\sigma}
$$

We end the proof of (1) by taking $a \in \omega^{\omega} /$ such that $\Sigma_{n} \subseteq\left(a_{n}\right)^{2 n}$. Indeed, given $x \in X$ and $N \in \omega$, choose $n>\left(a_{N}+n-N\right) / 2$ such that $x \in V_{\sigma}$ for some $\sigma \in \Sigma_{n}$. Note that some interval $\left[a_{m}, a_{m+1}\right)$ with $m \in[N, n)$ contains at least two $\sigma(i)$'s; otherwise $|\sigma| \leq a_{N}+n-N<2 n$. Then $x \in \bigcup_{k<a_{m+1}} U_{k}^{a_{m}}$.
(2) For finite K and $\sigma \in \omega^{K}$, let $U_{\sigma}=\bigcap_{k \in K} U_{\sigma(k)}^{n}$. Then, for each n, the U_{σ} 's with $|\sigma|=n$ cover Y. As $X \in C_{Y}^{\prime \prime}$ find σ_{n} of length n such that $X \subseteq \bigvee_{n} U_{\sigma_{n}}$. Inductively choose $m_{n} \in \operatorname{dom}\left(\sigma_{n}\right) \backslash\left\{m_{0}, \ldots, m_{n-1}\right\}$ and take $a \in \omega^{\omega}$ such that $a_{m_{n}}=\sigma_{n}\left(m_{n}\right)$. Then $X \subseteq \bigvee_{m} U_{a_{m}}^{m}$.

Definition. Let $X \subseteq Y$. Using sets from \mathcal{S} as Galvin used open sets define a game $G_{Y}^{*}(X)$ (resp. $\left.G_{Y}^{* \sigma}(X)\right)$ as follows. In the nth round White covers Y with $\left\{U_{k}^{n}: k \in \omega\right\}$, then Black picks $a_{n} \in \omega$. Black wins if $X \subseteq$ $\bigcup_{n} U_{a_{n}}^{n}$ (resp. $X \subseteq \bigvee_{n} U_{a_{n}}^{n}$).
4.2. Lemma. The following are equivalent:
(a) White has no winning strategy in $G_{Y}^{* \sigma}(X)$.
(b) $X \in G_{Y}^{\sigma}$.

Similarly if σ is dropped.
Proof. (Cf. [R], Thm. 1.) (a) \Rightarrow (b). Suppose $F=\bigcup_{i} F_{i}, F_{i} \in \mathcal{F} \cap \mathcal{M}^{Y}$. We seek a point outside $F[X]$.

Find nonempty rectangles $U_{\sigma} \times O_{\sigma}, \sigma \in \omega^{<\omega}$, so that
(1) $U_{\sigma} \times O_{\sigma}$ is disjoint from $\bigcup_{i<|\sigma|} F_{i}$ and $\operatorname{diam}\left(O_{\sigma}\right)<2^{-|\sigma|}$;
(2) $Y \subseteq \bigcup_{n} U_{\sigma \neg n}$;
(3) $\bar{O}_{\sigma \frown n} \subseteq O_{\sigma}$;

Then some $\bigcap_{n} O_{s \mid n}, s \in \omega^{\omega}$, is disjoint from $F[X]$. Indeed, let White play according to U_{σ} 's. He begins with $\left\{U_{\langle n\rangle}: n \in \omega\right\}$, against Black's choice of n he plays $\left\{U_{\langle n, m\rangle}: m \in \omega\right\}$, etc. This is not a winning strategy, so $X \subseteq$ $\bigvee_{n} U_{s \mid n}$ for some $s \in \omega^{\omega}$. Let $t \in \bigcap_{n} O_{s \mid n}$. Then for each $n, \bigcup_{m>n} U_{s \mid m} \times\{t\}$ is disjoint from F_{n}. Hence $\bigvee_{n} U_{s \mid n} \times\{t\}$ is disjoint from $\bigcup_{n} F_{n}$.
(b) \Rightarrow (a). Suppose White has a winning strategy. Thus there exist U_{σ}, $\sigma \in \omega^{<\omega}$, such that for all $\sigma, Y=\bigcup_{n} U_{\sigma \frown n}$, and for no $s \in \omega^{\omega}, X \subseteq \bigvee_{n} U_{s \mid n}$. Choose nonempty $O_{\sigma}, \sigma \in \omega^{<\omega}$, so that $O_{\emptyset}=T$ and for all σ, the $O_{\sigma \frown n}$'s are pairwise disjoint subsets of O_{σ} with diameters $<2^{-|\sigma|}$ and union dense in O_{σ}.

Let F be the complement of $\bigcap_{m} G_{m}, G_{m}=\bigcup_{|\sigma| \geq m} U_{\sigma} \times O_{\sigma}$. Each G_{m} has dense vertical sections for $y \in Y$. (Fix y. Given O, find $O_{\sigma} \subseteq O,|\sigma| \geq m$, next find n with $y \in U_{\sigma \frown n}$. Then $O_{\sigma \frown n} \subseteq\left(G_{m}\right)_{y} \cap O$.) Thus $F \in \mathcal{F}_{\sigma} \cap \overline{\mathcal{M}}^{Y}$. Also, $F[X]=T$. Indeed, if $t \in T \backslash F[X]$, then $x \in X$ yields

$$
\forall m \exists \sigma|\sigma| \geq m \& x \in U_{\sigma} \& t \in O_{\sigma}
$$

so $X \subseteq \bigvee_{n} U_{s \mid n}$ for $s=\bigcup\left\{\sigma: t \in O_{\sigma}\right\}$.

4.3. Proposition.

$$
G_{Y}^{\sigma} \subseteq G_{Y} \subseteq C_{Y}^{\prime \prime} \subseteq E_{Y} \cap S_{Y} \cap M_{Y} .
$$

If Y is finite-dimensional then also

$$
E_{Y} \subseteq S_{Y} \cap M_{Y}
$$

Proof.

- $G_{Y}^{\sigma} \subseteq G_{Y}$. Clear.
- $G_{Y} \subseteq C_{Y}^{\prime \prime}$. Use Lemma 4.2. If $X \notin C_{Y}^{\prime \prime}$ then White wins by playing covers that witness this.
- $C_{Y}^{\prime \prime} \subseteq E_{Y}$. (Cf. [M1], Thm. 2.1.) Let $X \in C_{Y}^{\prime \prime}$ and let $F \in \mathcal{F} \cap \mathcal{N}^{Y}$ be defined by $\left\{U_{i} \times O_{i}: i \in \omega\right\}$. For finite K such that $\mu\left(\bigcup_{i \in K} O_{i}\right)>1-2^{-n}$ let $U_{K}^{n}=\bigcap_{i \in K} U_{i}$. Then $\forall n Y \subseteq \bigcup_{K} U_{K}^{n}$. As $X \in C_{Y}^{\prime \prime}, X \subseteq \bigvee_{n} U_{K_{n}}^{n}$ for some K_{n} 's. Then

$$
F[X] \subseteq \bigvee_{n}\left(T \backslash \bigcup_{i \in K_{n}} O_{i}\right) \in \mathcal{N}
$$

- $C_{Y}^{\prime \prime} \subseteq S_{Y}$. Let $Y \subseteq \bigvee_{k} U_{k}$ and $a \in \omega^{\omega} \nearrow$. Define U_{k}^{n} to be U_{k} if $k \in\left[a_{n}, a_{n+1}\right)$ and \emptyset otherwise. Use Lemma 4.1(2).

Now assume that Y is $<N$-dimensional.

- $E_{Y} \subseteq M_{Y}$. (Cf. [M1], Thms. 1.2 and 2.2.) Let $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. Let $\#: \omega \times \omega \rightarrow \omega$ be 1-1. For $s \in S$ let $K_{s}=\bigcup_{n} K_{s}^{n}$, where $K_{s}^{n}=\{\#(n, k): s \in$ $\left.U_{k}^{n}\right\}$. Without loss of generality, $\forall n \forall y \in Y\left|K_{y}^{n}\right| \leq N$. Define $F \in \mathcal{F} \cap \mathcal{N}^{Y}$ by

$$
\forall s \in S \quad F_{s}=\left[1_{K_{s}}\right] .
$$

Suppose $X \in E_{Y}$. Then $F[X] \in \mathcal{N}$. By Lemma 2.1, find $a \in \omega^{\omega} /$ such that for all K with $\forall n\left|K \cap a_{n}\right| \leq n N, F[X] \mid(\omega \backslash K)$ is null. Fix $x \in X$. It suffices to prove

Claim. $\exists n K_{x}^{n} \cap a_{n} \neq \emptyset$.
Proof. Otherwise

$$
\forall n K_{x} \cap a_{n} \subseteq \bigcup_{m<n} K_{x}^{m}
$$

$\left(m \geq n \& K_{x}^{m} \cap a_{m}=\emptyset \Rightarrow K_{x}^{m} \cap a_{n}=\emptyset\right)$. Since $\left|K_{x}^{m}\right| \leq N,\left|K_{x} \cap a_{n}\right| \leq n N$. It follows that $F_{x} \mid\left(\omega \backslash K_{x}\right)$ is null, which is absurd.

- $E_{Y} \subseteq S_{Y}$. (Cf. [BS], Thm. 2.1.) Suppose $X \in E_{Y}, Y \subseteq \bigvee_{k} U_{k}$ and $a \in \omega^{\omega} \nearrow$. For $s \in S$ let $J_{s}=\left\{k: s \in U_{k}\right\}$. Let $A_{n}=\left[a_{n}, a_{n+1}\right)$. Without loss of generality, $\forall y \in Y\left|A_{n} \cap J_{y}\right| \leq N$. Define $F \in \mathcal{F}_{\sigma} \cap \mathcal{N}^{Y}$ by

$$
\forall s \in S \quad F_{s}=\bigcup_{n}\left[1_{J_{s} \backslash a_{n}}\right] .
$$

As $X \in E_{Y}, F[X] \in \mathcal{N}$. Let Σ^{τ} 's be obtained by Lemma 2.2 applied to $F[X]$, a and $\varepsilon_{n}=1-\left(1-2^{-N}\right)^{(n+1) / N}$. Let $\left\{K_{i}^{\tau}: i<l\right\}$ be a maximal family of pairwise disjoint subsets of A_{n} of size $\leq N$ such that $\forall i\left[1_{K_{i}^{\tau}}\right] \mid A_{n} \subseteq \Sigma^{\tau}$. Let $K^{\tau}=\bigcup_{i<l} K_{i}^{\tau}$. By independence

$$
\left(1-2^{-N}\right)^{l} \geq 1-\mu\left(\Sigma^{\tau}\right)>1-\varepsilon_{n}=\left(1-2^{-N}\right)^{(n+1) / N}
$$

so $l \leq n / N$ and $\left|K^{\tau}\right| \leq l N \leq n$.
Let

$$
K_{n}=\bigcup_{\tau \in 2^{a_{n}}} K^{\tau}
$$

Then $\left|K_{n}\right| \leq n 2^{a_{n}}$.
Let $K=\bigcup_{n} K_{n}$. Clearly, $K_{n}=K \cap A_{n}$.
Claim. $\forall x \in X \exists \exists^{\infty} n K_{n} \cap J_{x} \neq \emptyset$.
Proof. Fix $x \in X, m \in \omega$. As $D=\left[1_{J_{x} \backslash a_{m}}\right]$ is a closed subset of $F[X]$, by Lemma 2.2 find n and $\tau \in D \mid a_{n}$ such that $D_{\tau} \mid A_{n} \subseteq \Sigma^{\tau}$. Clearly, $n \geq m$ (otherwise $D_{\tau} \mid A_{n}=2^{A_{n}}$, but $\mu\left(\Sigma^{\tau}\right)<1$). It follows that

$$
D_{\tau}\left|A_{n}=\left[1_{J_{x}}\right]\right| A_{n}, \quad \text { so } \quad\left[1_{J_{x}}\right] \mid A_{n} \subseteq \Sigma^{\tau}
$$

By the choice of K_{i}^{τ} 's, some K_{i}^{τ} meets J_{x}, so K_{n} meets J_{x}. ■
Proposition 4.3 is proved.
4.4. Proposition. $X \in S_{Z} \& Z \in M_{Y} \Rightarrow X \in G_{Y}^{\sigma}$.

Proof. (Cf. [P], Lemma 2.) Suppose $Y \subseteq \bigcap_{\sigma \in \omega<\omega} \bigcup_{i} U_{\sigma-i}$. We want $s \in \omega^{\omega}$ with $X \subseteq \bigvee_{n} U_{s \mid n}$.

Let $\Sigma=\bigcup_{n>0} n^{n}$. For $\sigma \in \Sigma$ and n let

$$
U_{\sigma}^{n}=\bigcap_{\tau \in n \leq n} \bigcup_{0<i \leq|\sigma|} U_{\tau \sim \sigma \mid i}
$$

Clearly, for each $n, Y \subseteq \bigcup_{\sigma} U_{\sigma}^{n}$. Also, for $\sigma, \tau \in \Sigma$,

$$
n \leq m \Rightarrow U_{\sigma}^{m+|\tau|} \subseteq U_{\tau-\sigma}^{n}
$$

Let $c(n)=2^{n}$ and let $\#: \bigcup_{n} \Sigma^{c(n)} \rightarrow \omega$ be one-to-one and such that

$$
\#\left(\sigma_{1}, \ldots, \sigma_{c(n)}\right) \geq n+\left|\sigma_{1}\right|+\ldots+\left|\sigma_{c(n)}\right|
$$

Let

$$
V_{k}^{n}=U_{\sigma_{1}}^{n} \cap U_{\sigma_{2}}^{n+\left|\sigma_{1}\right|} \cap \ldots \cap U_{\sigma_{c(n)}}^{n+\left|\sigma_{1}\right|+\ldots+\left|\sigma_{c(n)-1}\right|}
$$

if $k=\#\left(\sigma_{1}, \ldots, \sigma_{c(n)}\right)$ and $V_{k}^{n}=\emptyset$ otherwise. (So $k<n \Rightarrow V_{k}^{n}=\emptyset$.) Clearly, for each $n, Y \subseteq \bigcup_{k} V_{k}^{n}$. Since $Z \in M_{Y}$, by Lemma 4.1, find $a \in \omega^{\omega} \nearrow$ such that

$$
Z \subseteq \bigvee_{n} \bigcup_{a_{n} \leq k<a_{n+1}} V_{k}^{a_{n}}
$$

As $X \in S_{Z}$, there exist $K_{n} \subseteq\left[a_{n}, a_{n+1}\right)$ of size $\leq c\left(a_{n}\right)$ such that

$$
X \subseteq \bigvee_{n} \bigcup_{k \in K_{n}} V_{k}^{n}
$$

Now diagonalize. Pick σ_{i}^{j} so that

$$
\#\left(\sigma_{1}^{i}, \ldots, \sigma_{c\left(a_{n}\right)}^{i}\right), \quad i=1, \ldots, c\left(a_{n}\right)
$$

and enumerate (possibly with repetitions) K_{n} in such a way that $j \geq i \Rightarrow$ $\left|\sigma_{i}^{j}\right| \geq\left|\sigma_{i}^{i}\right|$.

Let

$$
\tau_{n}=\sigma_{1}^{1} \frown \sigma_{2}^{2} \frown \ldots \frown \sigma_{c\left(a_{n}\right)}^{c\left(a_{n}\right)} .
$$

Then

$$
\bigcup_{k \in K_{n}} V_{k}^{n} \subseteq U_{\tau_{n}}^{a_{n}}
$$

Note that $\left|\sigma_{1}^{1}\right|+\ldots+\left|\sigma_{i-1}^{i-1}\right| \leq\left|\sigma_{1}^{i}\right|+\ldots+\left|\sigma_{i-1}^{i}\right|$ yields

$$
U_{\sigma_{i}^{i}}^{a_{n}+\left|\sigma_{1}^{i}\right|+\ldots+\left|\sigma_{i-1}^{i}\right|} \subseteq U_{\tau_{n}}^{a_{n}}
$$

As also $\forall m a_{m}+\left|\tau_{m}\right| \leq a_{m+1}$, it follows that

$$
\bigcup_{k \in K_{n}} V_{k}^{n} \subseteq U_{\tau_{n}}^{a_{n}} \subseteq U_{\tau_{n}}^{\left|\tau_{0}\right|+\ldots+\left|\tau_{n-1}\right|}
$$

Finally, since $\tau_{0} \frown \ldots \frown \tau_{n-1} \in \Sigma$,

$$
U_{\tau_{n}}^{\left|\tau_{0}\right|+\ldots+\left|\tau_{n-1}\right|} \subseteq \bigcup_{0<i \leq\left|\tau_{n}\right|} U_{\tau_{0}} \prec \ldots \neg \tau_{n-1} \sim \tau_{n} \mid i .
$$

Thus

$$
\bigcup_{k \in K_{n}} V_{k}^{n} \subseteq \bigcup_{0<i \leq\left|\tau_{n}\right|} U_{\tau_{0} \bigcirc \ldots \neg \tau_{n-1} \neg \tau_{n} \mid i}
$$

hence $X \subseteq \bigvee_{n} U_{s \mid n}$ for $s=\tau_{0} \frown \tau_{1} \frown \ldots$
4.5. Corollary. $G^{\sigma}=G=C^{\prime \prime}=S \cap M \subseteq E$. For finite-dimensional sets, $C^{\prime \prime}$ and E are equivalent.

Proof. By Proposition 4.4, $S \cap M \subseteq G^{\sigma}$. By Proposition 4.3, $G^{\sigma} \subseteq G \subseteq$ $C^{\prime \prime} \subseteq E \cap S \cap M$, and for finite-dimensional sets, $E \subseteq S \cap M$.

Definition. Let $X \subseteq Y$. We say that X has property

- E_{Y}^{+}if $F[X] \in \mathcal{E}$ for all $F \in \mathcal{F} \cap \mathcal{E}^{Y}$;
- G_{Y}^{+}if $F[X] \in \mathcal{M}$ for all $F \in \mathcal{F} \cap \mathcal{M}^{Y}$.
4.6. Proposition. (1) $G_{Y}^{+} \subseteq H_{Y}$.
(2) $E_{Y}^{+} \subseteq H_{Y}$ for finite-dimensional Y.
(3) $X \in H_{Z} \& Z \in G_{Y} \Rightarrow X \in G_{Y}^{+}$.
(4) $X \in H_{Z} \& Z \in E_{Y} \Rightarrow X \in E_{Y}^{+}$.

Proof. For (1) and (2) let $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. Define K_{s} and K_{s}^{n} as in Proposition 4.3 in the proof of $E_{Y} \subseteq M_{Y}$. Without loss of generality, $\forall s \in S \forall n \min \left(K_{s}^{n}\right) \leq \min \left(K_{s}^{n+1}\right)$. (Let the $(n+1)$ th cover refine the nth cover, and define $\#$ so that $\forall k \exists l \#(n+1, k) \geq \#(n, l)$ and $U_{k}^{n+1} \subseteq U_{l}^{n}$.)

For (1) define $F \in \mathcal{F} \cap \mathcal{M}^{Y}$ by

$$
\forall s \in S\left(t \notin F_{s} \Leftrightarrow \exists n \exists k s \in U_{k}^{n} \&|\{l<k: t(l)=1\}|<n\right)
$$

Then

$$
\forall y \in Y\left(t \in F_{y} \Leftrightarrow \forall n\left|\left\{l<\min \left(K_{y}^{n}\right): t(l)=1\right\}\right| \geq n\right)
$$

Let $X \in G_{Y}^{+}$, so that $F[X] \in \mathcal{M}$. Let $a \in \omega^{\omega} \nearrow$ be obtained from Lemma 2.1 applied to $F[X]$ and $b_{n}=n$. Fix $x \in X$. It is enough to prove

Claim. $\forall^{\infty} n K_{x}^{n} \cap a_{n} \neq \emptyset$.
Proof. Suppose otherwise, i.e., $\exists^{\infty} n a_{n} \leq \min \left(K_{x}^{n}\right)$. Define $K=$ $\left\{\min \left(K_{x}^{n}\right): n \in \omega\right\}$. Then $\exists^{\infty} n\left|K \cap a_{n}\right| \leq n$, so $F_{x} \mid(\omega \backslash K)$ is meager. Note, however, that $\left[1_{K}\right] \subseteq F_{x}$. A contradiction.

For (2) note first that, without loss of generality, $\forall n, y\left|K_{y}^{n}\right| \leq N$, for some N. Define $F \in \mathcal{F} \cap \mathcal{E}^{Y}$ by

$$
\forall s \in S F_{s}=\left[1_{K_{s}}\right]
$$

Let $X \in E_{Y}^{+}$, so that $F[X] \in \mathcal{E} \subseteq \mathcal{M}$. Let $a \in \omega^{\omega} \nearrow$ be obtained from Lemma 2.1 applied to $F[X]$ and $b_{n}=n N$. Fix $x \in X$. It suffices to prove

Claim. $\forall^{\infty} n K_{x}^{n} \cap a_{n} \neq \emptyset$.
Proof. If $K_{x}^{n} \cap a_{n}=\emptyset$, then $K_{x} \cap a_{n} \subseteq \bigcup_{m<n} K_{x}^{m}$, so $\left|K_{x} \cap a_{n}\right| \leq n N$. It follows that if $\exists{ }^{\infty} n K_{x}^{n} \cap a_{n}=\emptyset$, then $\exists^{\infty} n\left|K_{x} \cap a_{n}\right| \leq n N$. Thus $F_{x} \mid\left(\omega \backslash K_{x}\right)$ is meager, which is absurd.
(3) (Cf. [T], Thm. 5.3(iii).) Let $X \in H_{Z}$ and $Z \in G_{Y}$. Let $F \in \mathcal{F} \cap \mathcal{M}^{Y}$ be defined by $\left\{U_{i} \times O_{i}: i \in \omega\right\}$. Use Lemma 4.2 to find a dense set $\left\{r_{n}\right.$: $n \in \omega\} \subseteq T \backslash F[Z]$. Let U_{i}^{n} be U_{i} if $r_{n} \in O_{i}$ and \emptyset otherwise. Then for each n, the U_{i}^{n} 's cover Z. Since $X \in H_{Z}$, find $a \in \omega^{\omega}$ with $X \subseteq \bigwedge_{n} \bigcup_{i<a_{n}} U_{i}^{n}$. Define $O^{n}=\bigcap\left\{O_{i}: r_{n} \in O_{i}, i<a_{n}\right\}$. Then $r_{n} \in O^{n}$ and $\forall x \in X \forall^{\infty} n$ $O^{n} \cap F_{x}=\emptyset$. It follows that $\bigvee_{n} O^{n}$ is a dense \mathbf{G}_{δ} set disjoint from $F[X]$.
(4) Let $X \in H_{Z}, Z \in E_{Y}$. Let $F \in \mathcal{F} \cap \mathcal{N}^{Y}$ be defined by $\left\{U_{i} \times O_{i}: i \in \omega\right\}$. As $F[Z] \in \mathcal{N}$, find an increasing sequence of compact sets $C^{n} \subseteq T \backslash F[Z]$ such that $\mu\left(T \backslash \bigcup_{n} C^{n}\right)=0$. For n and finite $K \subseteq \omega$ let U_{K}^{n} be $\bigcap_{i \in K} U_{i}$ if $C^{n} \subseteq \bigcup_{i \in K} O_{i}$ and \emptyset otherwise. Then for each n, the U_{K}^{n} 's cover $Z\left(C^{n}\right.$ are compact!). Since $X \in H_{Z}$, find finite \mathcal{K}_{n} with $X \subseteq \bigwedge_{n} \cup_{K \in \mathcal{K}_{n}} U_{K}^{n}$. Let $O^{n}=\bigcap_{K \in \mathcal{K}_{n}} \bigcup_{i \in K} O_{i}$. Then $C^{n} \subseteq O^{n}$ and $\forall x \in X \forall^{\infty} n O^{n} \cap F_{x}=\emptyset$. It follows that $\bigwedge_{n}\left(T \backslash O^{n}\right)$ is a null \mathbf{F}_{σ} cover of $F[X]$.
4.7. Corollary. $G^{+}=C^{\prime \prime} \cap H$. Further, $G^{+} \subseteq E^{+}$; for finite-dimensional sets, G^{+}and E^{+}are equivalent.

Proof. Clearly, $G^{+} \subseteq G$. By Proposition $4.6, G^{+} \subseteq H$ and $H \cap G \subseteq G^{+}$. Also, by Corollary 4.5, $G=C^{\prime \prime}$. Thus, $G^{+}=H \cap C^{\prime \prime}$. Next, as $C^{\prime \prime} \subseteq E$, we have $G^{+} \subseteq H \cap E$. But $H \cap E \subseteq E^{+}$by Proposition 4.6. So, $G^{+} \subseteq E^{+}$. If $Y \in E^{+}$is finite-dimensional, then $Y \in H \cap E$ by Proposition 4.6. As for finite-dimensional sets, E and $C^{\prime \prime}$ are equivalent, we get $Y \in H \cap C^{\prime \prime}$, hence $Y \in G^{+}$.

The following lemma is straightforward.
4.8. Lemma. If \mathcal{S} is a σ-field then for any property P considered in this section, $X \in P_{Y}$ iff $X \subseteq Y$ and $X \in P$.
5. Proofs of Theorems. Let Y be a separable metric space. Set $S=Y$ and $\mathcal{S}=\mathbf{O}(S)$. Theorem 1.2 follows from Propositions 4.3 and 4.4; and Theorem 1.4 from Proposition 4.6. For Theorems 1.1 and 1.3, use Corollaries 4.5 and 4.7. ($Y \in E$ implies that Y is zero-dimensional; see Section 3.)

For the Borel versions, let $Y \subseteq S, S$ Polish, and $\mathcal{S}=\mathbf{B}(S)$. Then all subsets of Y are zero-dimensional. In view of Lemma 4.8, the results follow from Corollaries 4.5 and 4.7 and the fact that Borel sets from \mathcal{M}^{Y} can be covered by \mathcal{F}_{σ} sets from \mathcal{M}^{Y}, and if $Y=S$ then the same applies to \mathcal{E}^{Y}.
6. Notes. (1) T can be any Polish space with no isolated points and a nonzero and nonatomic (i.e., vanishing on points) σ-finite Borel measure μ. We get the same classes of sets. For G_{Y} and G_{Y}^{σ} this follows from the proof of Lemma 4.2.

For E_{Y} and E_{Y}^{+}, given such a space T, there exist a null \mathbf{F}_{σ} set $F \subseteq T$, a countable $Q \subseteq[0,1]$, and a homeomorphism $f: T \backslash F \rightarrow[0,1] \backslash Q$ such that a subset of $T \backslash F$ is μ-null iff its image is λ-null, λ being the Lebesgue measure. (Change μ so that null sets are the same and $\mu(T)=1$. Remove all open null sets. Next remove a countable dense subset C, and for each $c \in C$ and n remove a sphere which is null, has center c and radius $\leq 2^{-n}$. This can be done because the spheres with a fixed center are pairwise disjoint. We have removed a null \mathbf{F}_{σ} set, and the remaining part T^{\prime} can be identified with the irrationals of $[0,1]$. Define $f:[0,1] \rightarrow[0,1]$ by $f(x)=\mu\left([0, x) \cap T^{\prime}\right)$. Then f is a homeomorphism and for all $A \subseteq T^{\prime}, \mu^{*}(A)=\lambda^{*}(f[A])$.)

For G_{Y}^{+}just note that T contains a dense \mathbf{G}_{δ} copy of ω^{ω}.
(2) Let T be as above.

If $\mathcal{E} \subseteq \mathcal{M}$ (i.e., if open sets have positive measure), then in the definition of $E_{Y}^{+}, " F[X] \in \mathcal{E}$ " can be replaced by " $F[X] \in \mathcal{M} \cap \mathcal{N}$ ".

In G_{Y}^{σ} (similarly in G_{Y}) instead of $F[X] \neq T$ we can require that for all nonmeager $B \subseteq T$ with the Baire property, $B \backslash F[X]$ contains a perfect set.

Indeed, let $X \in G_{Y}^{\sigma}$. Let $O \subseteq T$ be nonempty and let $D_{i}, i \in \omega$, be nowhere-dense subsets of T. Suppose $F=\bigcup_{i} F_{i}, F_{i} \in \mathcal{F} \cap \mathcal{M}^{Y}$. Choose nonempty rectangles $U_{\sigma} \times O_{\sigma, \tau}, \sigma \in \omega^{<\omega}, \tau \in 2^{<\omega},|\sigma|=|\tau|$, so that

$$
\begin{aligned}
& O_{\sigma, \tau} \subseteq O \backslash \bigcup_{i<|\sigma|} D_{i} \text { and } \operatorname{diam}\left(O_{\sigma, \tau}\right) \leq 2^{-|\sigma|} \\
& U_{\sigma} \times O_{\sigma, \tau} \text { is disjoint from each } F_{i} \text { for } i<|\sigma| \\
& Y \subseteq \bigcup_{n} U_{\sigma \frown n} \\
& \bar{O}_{\sigma \frown n, \tau \frown 0} \cup \bar{O}_{\sigma \frown n, \tau \frown 1} \subseteq O_{\sigma, \tau} ; \\
& O_{\sigma \frown n, \tau \frown 0} \cap O_{\sigma \frown n, \tau \frown 1}=\emptyset
\end{aligned}
$$

Let $O_{\sigma}=\bigcup_{\tau} O_{\sigma, \tau}$. Each $\bigcap_{n} O_{s \mid n}, s \in \omega^{\omega}$, is a perfect subset of $O \backslash \bigcup_{i} D_{i}$. To see that some $\bigcap_{n} O_{s \mid n}$ is disjoint from $F[X]$ suppose that White plays according to U_{σ} 's. This is not a winning strategy, so $X \subseteq \bigvee_{n} U_{s \mid n}$ for some $s \in \omega^{\omega}$. Now $y \in \bigcap_{n} O_{s \mid n}$ yields $\forall x \in X \exists^{\infty} n\langle x, y\rangle \in U_{s \mid n} \times O_{s \mid n}$, hence $\forall x \in X \forall i\langle x, y\rangle \notin F_{i}$.
(3) We call $A \subseteq \omega^{\omega}$ diagonalized (resp. dominated) if for some $x \in \omega^{\omega}$ for all $a \in A, \exists^{\infty} n a(n)=x(n)\left(\right.$ resp. $\forall^{\infty} n a(n)<x(n)$). We call $f: Y \rightarrow \omega^{\omega}$ \mathcal{S}-measurable if for all n, m there is $V \in \mathcal{S}$ such that $y \in V \Leftrightarrow f(y)(n)=m$. Clearly, if Y is zero-dimensional, then X is in H_{Y} (resp. $C_{Y}^{\prime \prime}$) iff for all \mathcal{S}-measurable $f: Y \rightarrow \omega^{\omega}, f[X]$ is dominated (resp. diagonalized).

For $\mathcal{S}=\mathbf{O}(S)$ (resp. $\mathcal{S}=\mathbf{B}(S)$), \mathcal{S}-measurable means continuous (resp. Borel). From this, X is in $\widetilde{C}^{\prime \prime}$ (resp. \widetilde{H}) iff all Borel images of X into ω^{ω} are diagonalized (resp. dominated) iff all Borel images of X into a given Polish space T have property $C^{\prime \prime}$ (resp. H). Similarly for zero-dimensional separable metric spaces, properties $C^{\prime \prime}$ and H, and continuous images.
(4) Consistently, $S \nsubseteq M$ (even $S(\mathbf{B}(T)) \nsubseteq M(\mathbf{O}(T))$). Shelah ([Sh], Prop. 2.9) has an ω^{ω} bounding forcing which makes the ground model reals an $S(\mathbf{B}(T))$ set.
(5) The argument of Proposition 4.4 shows that if W is a model of ZFC, $x \in \omega^{\omega}$ is an unbounded real over W, and the union of closed null sets coded in $W[x]$ is null, then there is a Cohen real over W. Do we really need the intermediate unbounded real?
(6) Clearly, E_{Y}, E_{Y}^{+}and G_{Y}^{+}are σ-ideals. So are $C_{Y}^{\prime \prime}, S_{Y}, H_{Y}$ and M_{Y}. For $C_{Y}^{\prime \prime}$ and M_{Y} just split ω into infinitely many infinite sets. (Let $\omega=$ $\bigcup_{i} K_{i}$, with the K_{i} 's infinite pairwise disjoint. Let $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. If $X_{i} \in$ $C_{Y}^{\prime \prime}, i \in \omega$, there exists $a \in \omega^{\omega}$ such that $\forall i X_{i} \subseteq \bigcup_{n \in K_{i}} U_{a_{n}}^{n}$. Then $\bigcup_{i} X_{i} \subseteq$ $\left.\bigcup_{n} U_{a_{n}}^{n}.\right)$

For H_{Y}, suppose $X_{i} \in H_{Y}, i \in \omega$, and $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. Find $a^{i} \in \omega^{\omega}$ with $X_{i} \subseteq \bigwedge_{n} \bigcup_{k<a_{n}^{i}} U_{k}^{n}$. Let $a_{n}=\max _{i \leq n} a_{n}^{i}$. Then $\bigcup_{i} X_{i} \subseteq \bigwedge_{n} \bigcup_{k<a_{n}} U_{k}^{n}$.

For S_{Y}, let $Y \subseteq \bigvee_{k} U_{k}$ and $a \in \omega^{\omega} \nearrow$. Suppose $X_{i} \in S_{Y}, i \in \omega$, and let $K_{i} \in \Phi(a)$ witness this. Set $K=\bigcup_{n} \bigcup_{i \leq n} K_{i} \cap\left[a_{n}, a_{n+1}\right)$. Then $X \subseteq$ $\bigvee_{k \in K} U_{k}$ and $\forall n\left|K \cap\left[a_{n}, a_{n+1}\right)\right| \leq(n+1) 2^{\bar{a}_{n}}$.

I do not know whether G_{Y} and G_{Y}^{σ} are σ-ideals. (Yes, if $Y \in M_{Y}$, as then $G_{Y}=G_{Y}^{\sigma}=C_{Y}^{\prime \prime}$. Note that if $Y=\bigcup_{n} X_{n}$ and $\forall n, X_{n} \in G_{Y}$, then $\forall n X_{n} \in M_{Y}$, hence $Y \in M_{Y}$.)
(7) Assume that S is a separable metric space, sets from \mathcal{S} have the Baire property, $X \subseteq Y$, and all sets meager in X have one of the properties $C_{Y}^{\prime \prime}, E_{Y}, S_{Y}, M_{Y}$. Then X has the respective property. (By σ-additivity, we can replace meager by nowhere-dense.)

We give a proof for S_{Y}. Let $Y \subseteq \bigvee_{k} U_{k}$ and let $a \in \omega^{\omega} \nearrow$. Consider

$$
G=\bigvee_{n} \bigcup_{a_{n} \leq<a_{n+1}}\left(U_{k} \cap X\right) \times\left\{t \in \prod_{n}\left[a_{n}, a_{n+1}\right): t_{n}=k\right\} .
$$

For each $t \in \prod_{n}\left[a_{n}, a_{n+1}\right)$, the horizontal section G^{t} determined by t is covered by $\bigvee_{n} U_{t_{n}}$. All vertical sections of G are dense \mathbf{G}_{δ} sets. Also, G, as a subset of $X \times \prod_{n}\left[a_{n}, a_{n+1}\right)$, has the Baire property. By the KuratowskiUlam theorem, find $t \in \prod_{n}\left[a_{n}, a_{n+1}\right)$ such that $Z=X \backslash G^{t}$ is meager in X. Then $Z \in S_{Y}$, so $Z \subseteq \bigvee_{k \in K} U_{k}$ for some $K \in \Phi(a)$. Let $L=K \cup \operatorname{rng}(t)$. Then $X \subseteq \bigvee_{k \in L} U_{k}$ and $\forall^{\infty} n\left|L \cap a_{n+1}\right| \leq n+2^{a_{n}}$.

I do not know whether the above is true for G_{Y} or G_{Y}^{σ}. (It is if $X=Y$: if all nowhere-dense subsets of X have property G_{X}, then $X \in C^{\prime \prime}$.)
(8) If ν is a σ-finite measure on S, sets from \mathcal{S} are measurable, $X \subseteq Y$, and all null subsets of X have property H_{Y}, then $X \in H_{Y}$.

Indeed, without loss of generality, $\nu^{*}(X)<\infty\left(\nu\right.$ is σ-finite and H_{Y} is σ-additive). Let $Y \subseteq \bigcap_{n} \bigcup_{k} U_{k}^{n}$. For each n pick k_{n} with

$$
\nu^{*}\left(X \backslash \bigcup_{k \leq k_{n}} U_{k}^{n}\right)<2^{-n}
$$

Let $Z=X \backslash \bigwedge_{n} \bigcup_{k \leq k_{n}} U_{k}^{n}$. Then Z is null, so $Z \in H_{Y}$, hence $Z \subseteq$ $\bigwedge_{n} \bigcup_{k \leq l_{n}} U_{k}^{n}$, for some l_{n} 's. It follows that $X \subseteq \bigwedge_{n} \bigcup_{k \leq \max \left(k_{n}, l_{n}\right)} U_{k}^{n}$.
(9) Sierpiński and Lusin sets destroy various extensions of the above. If Y is a Lusin set, then $Y \notin H_{Y}$, but meager subsets of Y are in $G_{Y}^{+} \cap E_{Y}^{+} \subseteq H_{Y}$. If Y is a Sierpiński set, then $G_{Y}^{\sigma}=G_{Y}=C_{Y}^{\prime \prime}=E_{Y}$ (Y is zero-dimensional, $Y \in H_{Y}$ and $H_{Y} \subseteq M_{Y}$). Also, $Y \notin E_{Y}$ (look at the identity function on Y), while null subsets of Y are in E_{Y}.

References

[AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. Math. Phys. 34 (2) (1993), 7-9.
[BS] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110.
[D] C. Dellacherie, Un cours sur les ensembles analytiques, in: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, 1980, 183-316.
[FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
[G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 445-449.
[GMS] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
[Ke] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
[M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 201-233.
[M1] -, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114, and 271 (1982), 347-348.
[P] J. Pawlikowski, Undetermined sets of point-open games, Fund. Math. 144 (1994), 279-285.
[P1] -, A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171-184.
[R] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43-54.
[Sh] S. Shelah, Vive la différence I: Nonisomorphism of ultrapowers of countable models, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Springer, 1992, 357-405.
[T] J. Truss, Sets having calibre \aleph_{1}, in: Logic Colloquium '76, R. Gandy and M. Hyland (eds.), Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.

Department of Mathematics
University of Wrocław
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: pawlikow@math.uni.wroc.pl

[^0]: 1991 Mathematics Subject Classification: 04A15, 03E15.
 Partially supported by KBN grant 2 P03A 01109.

