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The cohomology algebra of certain free loop spaces

by

Katsuhiko K u r i b a y a s h i and
Toshihiro Y a m a g u c h i (Okayama)

Abstract. Let X be a simply connected space and LX the space of free loops on X.
We determine the mod p cohomology algebra of LX when the mod p cohomology of X is
generated by one element or is an exterior algebra on two generators. We also provide lower
bounds on the dimensions of the Hodge decomposition factors of the rational cohomology
of LX when the rational cohomology of X is a graded complete intersection algebra.
The key to both of these results is the identification of an important subalgebra of the
Hochschild homology of a graded complete intersection algebra over a field.

0. Introduction. Let p be a prime number or zero, X a simply con-
nected space and LX the space of free loops on X. In this paper, Z/p means
the rational number field Q if p = 0. In order to calculate the mod p coho-
mology H∗(LX;Z/p) from H∗(X;Z/p), one may use the Eilenberg–Moore
spectral sequence ([5], [13], [15]) for the fiber square F(X):

LX → X
↓ ↓ ∆
X →

∆
X ×X

where ∆ is the diagonal map. In the procedure, the Hochschild homology
HH∗(H∗(X;Z/p), 0) of the commutative differential graded algebra (DGA)
(H∗(X;Z/p), 0) with the trivial differential appears. In fact, the E2-term of
the spectral sequence for F(X) is isomorphic to

TorH∗(X;Z/p)⊗H∗(X;Z/p)(H
∗(X;Z/p),H∗(X;Z/p)),

that is, HH∗(H∗(X;Z/p), 0) with an appropriate bigrading as a bigraded
algebra. If H∗(X;Z/p) is a graded complete intersection algebra (GCI-
algebra), there is a DGA ([15], [11]) whose cohomology is isomorphic to
the E2-term.
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If p = 0, we can use the Sullivan model of LX to calculate its rational
cohomology ([19]). From the argument in the proof of [3, Theorem B], we see
that the homology of the model is isomorphic as an algebra to the Hochschild
homology HH∗(Ω∗(X), ∂) of the Sullivan–de Rham complex (Ω∗(X), ∂).
Therefore, if the space X is formal [9], then HH∗(H∗(X;Q), 0) is isomorphic
to H∗(LX;Q) as an algebra since (H∗(X;Q), 0) is weakly equivalent to
(Ω∗(X), ∂). This means that the above Eilenberg–Moore spectral sequence
collapses at the E2-term and that the extension problem is solved. It is well
known that X is formal if H∗(X;Q) is a GCI-algebra ([9]).

In this paper we study the algebra structure of the Hochschild homology
of a GCI-algebra and then apply our knowledge to calculating the cohomol-
ogy algebra of certain free loop spaces. More precisely, our paper is organized
as follows.

Let kp be a field of characteristic p. In §1, we identify a subalgebra of
the Hochschild homology HH∗(Ξ, 0) of a simply connected GCI-algebra Ξ
over kp. The explicit form of the subalgebra appears in Proposition 1.1. The
proposition also asserts that the subalgebra is isomorphic to HH∗(Ξ, 0) if
Ξ is a tensor product of truncated polynomial algebras.

Let X be a simply connected space. In §2, first we determine the explicit
algebra structure of H∗(LX;Z/p) whose mod p cohomology is generated by
a single element, under some hypotheses on the prime p and the degree of the
single generator in H∗(X;Z/p). The main tool for calculating H∗(LX;Z/p)
is the Eilenberg–Moore spectral sequence for the fiber square F(X). By
degree arguments we can conclude that the spectral sequence collapses at the
E2-term. Moreover, arguments based on total degrees and filtration degrees
of elements in the E0-term enable us to solve all extension problems.

Second, we will consider the algebra structure of H∗(LX;Z/p) when
H∗(X;Z/p) is an exterior algebra generated by two elements. In particular,
we treat the case in which the collapsing at the E2-term of the Eilenberg–
Moore spectral sequence is guaranteed by the p-formality of X ([2], [6]) or
by [17, Theorem]. We then solve the extension problems by application of
the Steenrod operations on the Eilenberg–Moore spectral sequence. After
each calculation of H∗(LX;Z/p) for some class of spaces X, we point out
the extension problems that cannot be solved with our tools.

Burghelea, Fiedorowicz and Gajda [3] clarified the connection between
the minimal model of LX ([19]) and the Hodge decomposition ofH∗(LX;Q).
The connection implies that the dimension of each Hodge decomposition
factor can be determined from the algebra structure of H∗(X;Q). In §3 we
provide lower bounds on the dimensions of the Hodge decomposition factors
of H∗(LX;Q) when H∗(X;Q) is a GCI-algebra.

The authors wish to thank the referee for his many kind corrections of
errors in the first version.



The cohomology algebra of certain free loop spaces 59

1. A useful subalgebra of Hochschild homology

Notations. Before we state the main results in this section, we prepare
some notations which are used in this paper.

Let kp be a field of characteristic p and (C, d) a differential graded
commutative algebra (DGA) over kp endowed with a differential d of de-
gree +1. Then we denote the Hochschild homology of (C, d) ([7], [3], [4])
by HH∗(C, d).

Let Γ [ω1, . . . , ωm] be the divided power algebra over kp. Note that, as
a vector space, Γ [ω] is generated by elements γi(ω) (i > 0) and a unit
γ0(ω) = 1, and the multiplication is defined by γk(ωi)γl(ωi) =

(
k+l
k

)
γk+l(ωi).

Furthermore, Γ+[ω1, . . . , ωs] denotes the subalgebra of Γ [ω1, . . . , ωs] gener-
ated by the monomials {γk1(ω1) . . . γks(ωs) : k1 > 0, . . . , ks > 0} (cf. [1]).
When p = 0, we regard the algebra Γ [ω1, . . . , ωm] and an element γk(ωi) in
Γ [ω1, . . . , ωm] as the polynomial algebra k0[ω1, . . . , ωm] and ωki , respectively.

For any algebra B, let A, I and S be a subalgebra, an ideal and a subset of
B, respectively. Then A/I denotes the quotient algebra of A by the ideal A∩I
and (S)A denotes the sub-A-module of B generated by S when we regard B
as an A-module. If A = B, then (S)A is the ideal of A generated by S. For
an algebra A and elements a1, . . . , as of A, we denote by AnnA(a1, . . . , as)
the ideal of A generated by the elements {a : a · ai = 0 for 1 ≤ i ≤ s}.

A graded complete intersection algebra (GCI-algebra) is a commuta-
tive graded algebra Ξ = Λ(y1, . . . , yl) ⊗ kp[x1, . . . , xn]/(%1, . . . , %m) where
%1, . . . , %m is a regular sequence (or m = 0) and where deg yj is odd and
deg xi is even if p 6= 2. We say that Ξ is simply connected if Ξ1 = 0.

The proof of the following proposition is based upon the projective res-
olution of Ξ as a (Ξ ⊗Ξ)-module, constructed in [15] (see also [11]).

Proposition 1.1. (i) Suppose

Ξ = Λ(y1, . . . , yl)⊗ kp[x1, . . . , xn]/(%1, . . . , %m)

is a simply connected GCI-algebra, where %i is decomposable for any i. Then
there exists a monomorphism of algebras

ψ : B = Λ(y1, . . . , yl)⊗ Γ [y1, . . . , yl]

⊗
{(
A⊕

m∑
s=1

∑

i1<...<is

AnnA(d(ωi1), . . . , d(ωis))

⊗ Γ+[ωi1 , . . . , ωis ]
)/

(dΓ [ω1, . . . , ωm])A
}

↪→ TorΞ⊗Ξ(Ξ,Ξ) = HH∗(Ξ, 0),

where A = kp[x1, . . . , xn]/(%1, . . . , %m)⊗Λ(x1, . . . , xn), d(ωj) =
∑n
i=1

∂%j
∂xi

xi,
deg yi = deg yi − 1, deg xi = deg xi − 1 and degωj = deg %j − 2.
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(ii) In the case
Ξ = Λ(y1, . . . , yl)⊗ kp[z1, . . . , zm]⊗ kp[x1, . . . , xn]/(xs1+1

1 , . . . , xsn+1
n ),

there exists an isomorphism of algebras

ψ : B = Λ(y1, . . . , yl)⊗ Γ [y1, . . . , yl]⊗ kp[z1, . . . , zm]⊗ Λ(z1, . . . , zm)

⊗
n⊗

i=1

{Ai/((si + 1)xsii xi)⊕ ((εi, xi, xi)Ai/((si + 1)xsii xi)Ai)⊗ Γ+[ωi]}
∼= TorΞ⊗Ξ(Ξ,Ξ) = HH∗(Ξ, 0),

where Ai = kp[xi]/(xsi+1
i )⊗Λ(xi), and the element εi is the unit 1 in Ai if

si + 1 = 0 in kp; otherwise, it is zero.

P r o o f. (i) The Koszul–Tate complex associated to the GCI-algebra Ξ is

K = (Λ(y1, . . . , yl)⊗ Γ [y1, . . . , yl]⊗A⊗ Γ [ω1, . . . , ωm], d),

where d(yi) = d(yi) = d(A) = 0 and d(ωj) =
∑n
i=1

∂%j
∂xi

xi. Since this DGA
K is regarded as the complex where H∗(K) ∼= HH∗(Ξ, 0) (cf. [15], [11]), it
follows that there exists a natural inclusion ψ. Let C be

A⊕
m∑
s=1

∑

i1<...<is

AnnA(d(ωi1), . . . , d(ωis))⊗ Γ+[ωi1 , . . . , ωis ].

Then we note that the ideal (dΓ [ω1, . . . , ωm])A⊗Γ [ω1,...,ωm] ∩C of C is equal
to (dΓ [ω1, . . . , ωm])A ∩ C in A⊗ Γ [ω1, . . . , ωm].

(ii) Let Ξ be a truncated algebra kp[xi]/(xsi+1
i ). By direct calculation,

we see that HH∗(Ξ, 0) ∼= Ai/((si+1)xsii xi)⊕(εi, xi, xi)Ai/((si+1)xsii xi)Ai⊗
Γ+[ωi] as an algebra. From the Künneth theorem for the Hochschild homol-
ogy, we have the isomorphism ψ.

The following example shows that the monomorphism ψ in Proposi-
tion 1.1(i) is not an isomorphism in general. Consider the algebra A =
K[x, y]/(x4 + y2, y4) ⊗ Λ(x, y) over a field K of characteristic zero, where
deg x = 2, deg y = 4, deg x = 1 and deg y = 3. Let (C, d) be a differential
graded algebra (A⊗K[ω1, ω2], d) endowed with a differential d of degree +1,
satisfying

d(ω1) =
(
∂

∂x
x+

∂

∂y
y

)
(x4 + y2) = 4x3x+ 2yy and

d(ω2) =
(
∂

∂x
x+

∂

∂y
y

)
y4 = 4y3y,

where degω1 = 6 and degω2 = 14. The element

α = 2y2xω1 − xω2

is a cycle element with degree 15 in C. In fact,

d(α) = −2y2x(4x3x+ 2yy) + x(4y3y) = −4y3xy + 4y3xy = 0.
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If there exists an element β such that d(β) = α, then β must have the
elements ωk2 (k ≥ 2) or ωk2ω

s
1 (s ≥ 1, k ≥ 1) as terms since α has the

non-zero term xω2. Though the degree of β is 14, degωk2 = 14k > 14 and
degωk2ω

s
1 = 14k + 6s > 14. Therefore α represents a non-zero element of

H∗(C, d). Let

Γ = A⊕AnnA(dω1)⊗K+[ω1]

⊕AnnA(dω2)⊗K+[ω2]⊕AnnA(dω1, dω2)⊗K+[ω1, ω2].

If the monomorphism ψ is an isomorphism, then there exists an element
γ ∈ Γ which maps α+d(β) by the lifting map of ψ : Γ → H∗(C, d) for some
element β ∈ C. Since the degree of γ is 15, γ can be written as b0 + b1ω1 +
b2ω

2
1 + b3ω2, where b0 ∈ A and b1, b2 ∈ AnnA(d(ω1)) and b3 ∈ AnnA(d(ω2)).

Then ψ−1d(β) = γ − ψ−1(α) = b0 + (b1 − 2y2x)ω1 + b2ω
2
1 + (b3 + x)ω2.

Applying the above argument about degrees again, we have b3 = −x. On
the other hand, x 6∈ AnnA(d(ω2)) = AnnA(4y3y), which is a contradiction.

R e m a r k 1.2. Let (Ω∗(X), ∂) be the Sullivan–de Rham complex over a
field k0 where H∗(Ω∗(X), ∂) = H∗(X; k0) is isomorphic to a GCI-algebra
Λ = Λ(y1, . . . , yl) ⊗ k0[x1, . . . , xn]/(%1, . . . , %m), where %i is decomposable.
Then the DGA has minimal model M = (∧V, ∂̃) defined by ∧V = Λ(y1, . . .

. . . , yl) ⊗ k0[x1, . . . , xn] ⊗Λ(τ1, . . . , τm), ∂̃(yi) = ∂̃(xi) = 0 and ∂̃(τj) = %j .
Here ∧V denotes the free commutative graded algebra over a graded vector
space V =

⊕
i>1 V

i. To calculate the cohomology of LX over k0, one can
use the complex ε(M) = (∧V ⊗ ∧V , δ) defined in [4], [19]. This DGA has
the following properties:

(i) V i = V i+1, that is, we have ∧V = k0[y1, . . . , yl] ⊗ Λ(x1, . . . , xn) ⊗
k0[τ1, . . . , τm].

(ii) When β is the unique derivation of degree −1 extending the maps
β(xi) = xi, β(yj) = yj , β(τk) = τk and β(xi) = β(yj) = β(τk) = 0, then

the differential δ is the unique derivation of degree +1 with δ|∧V = ∂̃ and
δβ + βδ = 0, that is, δ(yi) = δ(xi) = δ(yi) = δ(xi) = 0, δ(τj) = %j and
δ(τ j) = −∑n

i=1
∂%j
∂xi

xi.
(iii) H∗(ε(M)) ∼= H∗(LX;k0).

Let K be the (not free) DGA over k0 defined in the proof of Proposi-
tion 1.1. In this case, we see that there is a natural map from ε(M) to K
which induces H∗(ε(M)) ∼= H∗(K). This is given by the correspondences:
xi 7→ xi, yi 7→ yi, τj 7→ 0, xi 7→ xi, yi 7→ yi, τ j 7→ ωj and δ 7→ −d.

2. The mod p cohomology of LX. In this section, we denote the
Eilenberg–Moore spectral sequence for the fiber square F(X) by {E∗,∗r , dr}
with dr of bidegree (r, 1 − r). The spectral sequence is lying in the second
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quadrant, that is, Ep,qr is bigraded with p ≤ 0 and q ≥ 0. We may call the
indices p and p+q the filtration degree and the total degree, respectively. The
E2-term is isomorphic to TorH∗(X;Z/p)⊗H∗(X;Z/p)(H∗(X;Z/p),H∗(X;Z/p)),
that is, to the Hochschild homology HH∗(H∗(X;Z/p), 0). Notice that the
target of the spectral sequence is H∗(LX;Z/p). To be exact, there exists
a decreasing filtration {F iH∗(LX;Z/p)}i≤0 on H∗(LX;Z/p) and the limit
term E∗,∗∞ is isomorphic to E∗,∗0 as bigraded algebras. Here Ei,j0 is defined
by F iHi+j(LX;Z/p)/F i+1Hi+j(LX;Z/p).

By virtue of Proposition 1.1(ii), we can determine the mod p cohomology
of a space LX of free loops on a space X whose mod p cohomology ring is
generated by one element.

Theorem 2.1. Let X be a simply connected space whose mod p cohomol-
ogy is isomorphic to Λ(y), where deg y is odd. Then

H∗(LX;Z/p) ∼= Λ(y)⊗ Γ [y]

as an algebra, where deg y = deg y − 1.

Theorem 2.2. Let X be a simply connected space whose mod p cohomol-
ogy is isomorphic to Z/p[x]/(xs+1).

(i) When s+ 1 ≡ 0 mod p and when p 6= 2 or deg x 6= 2,

H∗(LX;Z/p) ∼= Z/p[x]/(xs+1)⊗ Λ(x)⊗ Γ [ω]

as an algebra, where deg x = deg x− 1 and degω = (s+ 1) deg x− 2.
(ii) When s+ 1 ≡ /0 mod p and when s > 1 or deg x 6= 2,

H∗(LX;Z/p) ∼= {(Z/p[x]/(xs+1)⊗ Λ(x))/(xsx)A}
⊕ {(x, x)A/(xsx)A)} ⊗ Γ+[ω]

as an algebra, where A = Z/p[x]/(xs+1) ⊗ Λ(x), deg x = deg x − 1 and
degω = (s+ 1) deg x− 2.

Next we consider the algebra structure of H∗(LX;Z/p) in the case when
mod p cohomology of a simply connected space X is an exterior algebra gen-
erated by two elements xt and xu with t ≤ u. If H̃i(X;Z/p) is zero whenever
i is outside an interval of the form [k + 1, 3k + 1], that is, t ≤ u ≤ 2t − 2,
then X is p-formal [2, Lemma 9]. Therefore, consideration of the proof
of [10, Proposition 3.1] enables us to conclude that the singular cochains
(C∗(X;Z/p), d) and the DGA (H∗(X;Z/p), 0) are connected by a chain
of DGA-quasi-isomorphisms. Moreover, since the Eilenberg–Moore map in-
duces an isomorphism of algebras from TorC∗(X)⊗C∗(X)(C∗(X), C∗(X)) to
H∗(LX;Z/p), it follows that H∗(LX;Z/p) is isomorphic to

TorH∗(X;Z/p)⊗H∗(X;Z/p)(H
∗(X;Z/p),H∗(X;Z/p))

as a vector space. Consequently, the Eilenberg–Moore spectral sequence
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{Er, dr} collapses at the E2-term if t ≤ u ≤ 2t−2. By solving the extension
problem of the Eilenberg–Moore spectral sequence, we have

Theorem 2.3. Suppose that the mod p cohomology of a simply connected
space X is isomorphic to the exterior algebra Λ(xt, xu), where t ≤ u ≤ 2t−2.
If p > 3 or u 6= 3, u 6= 2t− 3 and p = 3, then, as an algebra,

H∗(LX;Z/p) ∼= Λ(xt, xu)⊗ Γ [xt, xu].

R e m a r k 2.4. Under the condition that t ≤ u ≤ 2t− 2, the p-formality
of X enables us to conclude that the spectral sequence {Er, dr} collapses
at the E2-term. Note that it is not easy to deduce the above fact under
the conditions t ≤ u ≤ 2t − 2 from degree considerations as the proof of
Theorem 2.1 or 2.2. In fact, in the case p = 3, t = 5 and u = 7, simple degree
considerations do not suffice to eliminate the possibility that d2(γ3(x5)) =
x7x7 + . . . in the E2-term.

Suppose that H∗(X;Z/2) is isomorphic to the truncated polynomial
algebra Z/2[x1, . . . , xn]/(x2u1

1 , . . . , x2un
n ). Then [17, Theorem] asserts that

the Eilenberg–Moore spectral sequence collapses at the E2-term if Sq1 ≡ 0
on H∗(X;Z/2). Moreover, from the argument of the proof, we see that the
same conclusion holds if the vector space Im(Sq1)2k+1mi+2 is zero for any
k ≥ 0 and 1 ≤ i ≤ n, where mi = 2ui−1i− 1. In consequence, we have

Theorem 2.5. Suppose that the mod 2 cohomology of a simply connected
space X is isomorphic to the exterior algebra Λ(xt, x2t−1).

(i) If Sqt−1 xt = 0 and t > 3, then, as an algebra,

H∗(LX;Z/2) ∼= Λ(xt, x2t−1)⊗ Γ [xt, x2t−1].

(ii) If Sqt−1 xt = x2t−1 and t > 3 or Sq1 x2 = x3, Sq2 x3 = 0 and t = 2,
then, as an algebra,

H∗(LX;Z/2) ∼= Λ(xt, x2t−1)⊗
⊗

i≥0

Z/2[γ2i(xt)]/(γ2i(xt)
4).

Let V be a vector space and x, y elements of V . In the proofs of The-
orems 2.1, 2.2, 2.3 and 2.5, we will say that x contains y if the element x
can be represented by a linear combination in which the element y has a
non-zero coefficient.

P r o o f o f T h e o r e m 2.2. (i) By Proposition 1.1(ii), we have

E∗,∗2
∼= Z/p[x]/(xs+1)⊗ Λ(x)⊗ Γ [ω],

where bideg x = (0, deg x), bideg x = (−1, deg x) and bideg γi(ω) = (−2i,
i(s+ 1) deg x).
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First we prove the theorem under the assumption that deg x is even.
Suppose that dr(γi(ω)) contains the element xlxγj(ω). Then we have

• i((s+ 1) deg x− 2) + 1 = (l + 1) deg x− 1 + j((s+ 1) deg x− 2) and
• −2i+ r = −2j − 1

by an argument on total degrees and filtration degrees respectively. We have
i = j + (r + 1)/2 > j + 1 from the latter. This contradicts the former since
s > l. Thus we can conclude that E∗,∗2

∼= E∗,∗∞ ∼= E∗,∗0 as bigraded algebras.
Let us solve extension problems. In this case, it suffices to prove that

x · x does not contain x and γpf (ω)p does not contain xlγk(ω) since E0

contains Γ [ω] as a subalgebra and the relations of Γ [ω] as an algebra are
{γpf (ω)p = 0 : f ≥ 0}. If x ·x contains x, we have deg x = 2. Then there is a
contradiction since p 6= 2 from the assumption. Next suppose that γpf (ω)p

contains xlγk(ω). Then we have an equality of the total degrees:

(T) pf+1((s+ 1) deg x− 2) = l deg x+ k((s+ 1) deg x− 2).

Since the filtration induced on H∗(LX;Z/p) as the limit term of the Eilen-
berg–Moore spectral sequence is invariant under the action of the Steenrod
operations, it follows that γpf (ω)p is in the filtration F−2pfH∗(LX;Z/p).
Thus we have an inequality of the filtration degrees:

(F) pf ≥ k.
From (T) and (F), we have p = 2 and deg x = 2. For, we have

pf+1((s+ 1) deg x− 2) ≥(a) (k + 1)((s+ 1) deg x− 2)

= (s+ 1) deg x− 2 + k((s+ 1) deg x− 2)

≥(b) l deg x+ k((s+ 1) deg x− 2)

in general. Here (a) follows from (F) and (b) follows from s + 1 > l. Then
(a) and (b) are equalities by (T). The inequality of (F) and the equality of
(a) imply that p = 2, f = 0 and k = 1. The equality of (b) shows that s = l
and deg x = 2. Thus the assumption of Theorem 2.2(i) implies that γpf (ω)p

does not contain xlγk(ω), that is, γpf (ω)p = 0 in H∗(LX;Z/p).
Second, we prove the theorem under the assumption that deg x is odd

and p = 2. The fact that dr(γi(ω)) does not contain xlxγj(ω) follows by the
same argument as above. Suppose that dr(γi(ω)) contains xlγj(ω). Then we
have

• i((s+ 1) deg x− 2) + 1 = l deg x+ j((s+ 1) deg x− 2) and
• −2i+ r = −2j

by an argument on total degrees and column degrees respectively. We have
i = j+ r/2 ≥ j+ 1 from the latter. This contradicts the former as s+ 1 > l.
Thus we can conclude that E∗,∗2

∼= E∗,∗∞ ∼= E∗,∗0 as bigraded algebras.
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Let us solve extension problems. In this case, it suffices to prove that
γpf (ω)p does not contain either xlγk(ω) or xlxγk(ω). The fact that γpf (ω)p

does not contain xlγk(ω) follows from the same argument as above. Suppose
that γpf (ω)p contains xlxγk(ω). Then we have

• pf+1((s+ 1) deg x− 2) = (l + 1) deg x− 1 + k((s+ 1) deg x− 2) and
• 2pf > 2k + 1

by the argument as above on total degrees and filtration degrees respectively.
Then these contradict each other since s > l. Thus we can conclude that
γpf (ω)p does not contain xlxγk(ω), that is, γpf (ω)p = 0 in H∗(LX;Z/p).
Thus we have Theorem 2.2(i).

(ii) By Proposition 1.1(ii), we have

E∗,∗2
∼= A/((s+ 1)xsx)A ⊕ {(x, x)A/((s+ 1)xsx)A} ⊗ Γ+[ω],

where A = Z/p[x]/(xs+1)⊗ Λ(x) as a bigraded algebra. Let

Al,i = deg xlγi(ω) = l deg x+ i((s+ 1) deg x− 2),

Bj = deg xγj(ω) = deg x− 1 + j((s+ 1) deg x− 2),

Cm,k = deg xxmγk(ω) = (m+ 1) deg x− 1 + k((s+ 1) deg x− 2).

Then we can conclude that the Eilenberg–Moore spectral sequence {E∗,∗r , dr}
collapses at the E∗,∗2 -term since the following inequalities hold:

Al,i + 1 > Bj (i > j + 1), Bj + 1 > Al,i (j > i),

Cm,k + 1 > Al,i (k > i), Bj + 1 > Cm,k (j > k),

Al,i + 1 > Ak,j (i > j), Bj + 1 > Bi (j > i),

Al,i + 1 > Cm,k (i > k + 1),

Cm,k + 1 > Bj (k > j),

Cm,k + 1 > Cn,l (k > l).

Here the inequalities in ( ) are induced by an argument on column degrees.
Note that last five inequalities have meaning only in the case when p = 2 and
deg x is odd. Thus we can conclude that E∗,∗2

∼= E∗,∗∞ ∼= E∗,∗0 as a bigraded
algebra.

Let us consider extension problems. We must verify that the following
equalities hold in H∗(LX;Z/p):

(1) xs · xγi(ω) = 0,
(2) xs · xγi(ω) = 0,
(3) x · xγi(ω) = 0,
(4) xγj(ω) · xγk(ω) = 0,
(5) xγj(ω) · xlγk(ω) = 0 if

(
j+k
j

) ≡ modp,
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(6) xlγj(ω) · xmγk(ω) = 0 if
(
j+k
j

) ≡ 0 mod p,

where i, j, k, l,m > 0 for (1), (4), (5), (6) and i ≥ 0 for (2), (3).
Let us first verify that (1) holds. It suffices to prove that xs ·xγi(ω) does

not contain either xmγj(ω) or xmxγj(ω). Suppose that xs · xγi(ω) contains
xmγj(ω). Then we have

• (s+ 1) deg x+ i((s+ 1) deg x− 2) = mdeg x+ j((s+ 1) deg x− 2) and
• i > j

by an argument on total degrees and filtration degrees respectively. These
contradict each other since s+ 1 > m.

Suppose that xs · xγi(ω) contains xmxγj(ω), where p = 2 and degx is
odd. Then we have

• (s+ 1) deg x+ i((s+ 1) deg x− 2)
= (m+ 1) deg x− 1 + j((s+ 1) deg x− 2) and
• 2i > 2j + 1

by an argument on total degrees and filtration degrees respectively. These
contradict each other since s > m. Thus the equality (1) holds. Applying
the same argument as above, it follows that equalities (2), (5) and (6) hold.

Let us next verify that (3) holds. It suffices to prove that x · xγi(ω) does
not contain either xlγj(ω) or xlxγj(ω).

Suppose that x · xγi(ω) contains xlγj(ω). Then we have

• 2(deg x− 1) + i((s+ 1) deg x− 2) = l deg x+ j((s+ 1) deg x− 2) and
• i+ 1 > j

by an argument on total degrees and filtration degrees respectively. Then
since s+ 1 > l, we have i = j, l = 1 and deg x = 2. In this case, it turns out
that x · xγi(ω) = λxγi(ω) for some constant λ. If x · x = 0 in H∗(LX;Z/p),
then λx ·xγi(ω) = x · (x ·xγi(ω)) = (x ·x) ·xγi(ω) = 0. Since s > 1, it follows
that x · xγi(ω) 6= 0 in E∗,∗0 H∗(LX;Z/p), and therefore in H∗(LX;Z/p)
as well. Hence we have λ = 0. Thus it suffices to show that x · x = 0 in
H∗(LX;Z/p).

When p 6= 2, it is clear that x ·x = 0. If p = 2 and x ·x 6= 0, by the usual
argument on total degrees and degrees of filtrations, we see that x·x = µx for
some non-zero constant µ. The indecomposable element x in H∗(LX;Z/p)
is the image of the indecomposable element x in H∗(X;Z/p) by the map
π∗ induced from the projection of the fibration π : LX → X. Let s∗ be
the homomorphism which is induced from the section s : X → LX defined
by s(a)(t) = a (for a ∈ X and t ∈ S1). Since µx = µs∗π∗(x) = µs∗(x) =
s∗(x) · s∗(x) in H∗(X;Z/p), it follows that the element x in H∗(X;Z/p) is
decomposable, which is a contradiction.
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Suppose that x ·xγi(ω) contains xlxγj(ω), where p = 2 and deg x is odd.
Then we have

• 2(deg x− 1) + i((s+ 1) deg x− 2)
= (l + 1) deg x− 1 + j((s+ 1) deg x− 2) and
• i+ 1 > j

by an argument on total degrees and filtration degrees respectively. If i = j,
then from the equality of the total degrees we have (l−1) deg x = −1, which
is a contradiction. If i > j, then from s > l we have

(i− j)((s+ 1) deg x− 2) ≥ (s+ 1) deg x− 2 > l deg x > (l − 1) deg x+ 1,

which contradicts the equality of the total degrees.
Thus equality (3) holds. Applying the same argument as above, we see

that (4) holds as well. Thus we have Theorem 2.2(ii).

By a similar argument on total degrees and filtration degrees, we can
prove Theorem 2.1. The details are left to the reader.

R e m a r k 2.6. In the case where s+1 ≡ 0 mod p, p = 2 and deg x = 2 or
p is odd, s = 1 and deg x = 2, we can see that the Eilenberg–Moore spectral
sequence converging to H∗(LX;Z/p) collapses at the E2-term. However,
we cannot solve extension problems by using the usual argument on total
degrees and column degrees of the associated bigraded algebra E∗,∗0 . For
example, there is no immediate contradiction to the existence of the relation
ω2 = xsω when s + 1 ≡ 0 mod p, p = 2 and deg x = 2 or the relations
x · xγi(ω) = xγi(ω) (i > 0) when p is odd, s = 1 and deg x = 2.

P r o o f o f T h e o r e m 2.3. It suffices to prove that the elements
γpf (xt)p and γpf (xu)p do not contain the element xtxuγi(xt)γj(xu), where
pf > i+ j ≥ 0 and f ≥ 0, as in the proof of Theorem 2.2(i).

If f = 0, then i+ j = 0. If p > 3, we have

deg xtxu < deg xpt ≤ deg xpu.

Therefore we can conclude that xpu and xpt do not contain the element xtxu
if p > 3. If p = 3, we have deg xpu = deg xtxu if and only if t = u = 3 and
deg xpt = deg xtxu if and only if u = 2t − 3. So if u 6= 3 and u 6= 2t − 3, we
can conclude that xpu and xpt do not contain the element xtxu since t ≤ u.

If f > 0, since p 6= 2 and t ≤ u ≤ 2t− 2, we have

deg xtxuγi(xt)γj(xu) < deg γpf (xt)p ≤ deg γpf (xu)p.

Therefore γpf (xt)p and γpf (xu)p do not contain xtxuγi(xt)γj(xu). It turns
out that γpf (xt)p = 0 = γpf (xu)p in H∗(LX;Z/p). Thus we have Theo-
rem 2.3.
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R e m a r k 2.7. In the case when p = 2, the Eilenberg–Moore spectral
sequence {E∗,∗r , dr} collapses at the E2-term becauseX is p-formal. However,
for instance, we cannot decide whether γ2(x4)2 is equal to x3x4x3x4 for
p = 2, t = u = 2 by the usual consideration of degrees.

Let us compare two different resolutions of the GCI-algebra

Ξ =
⊗

k

Λ(xk),

an exterior algebra over Z/2, before proving Theorem 2.5. Let B∗(Ξ⊗Ξ,Ξ)
denote the bar resolution of Ξ, considered as a left (Ξ ⊗Ξ)-module. Let

F =
(
Ξ ⊗Ξ ⊗

⊗

k

Γ [xk], d
)

where
d(γi(xk)) = (xk ⊗ 1− 1⊗ xk)γi−1(xk).

Then F µ→Ξ → 0 is a proper projective resolution of Ξ, considered as a left
(Ξ ⊗Ξ)-module, where µ denotes the multiplication on Ξ.

Lemma 2.8 ([11, Lemma 1.5]). There exists a morphism of resolutions
from B∗(Ξ ⊗ Ξ,Ξ) to F , inducing an automorphism φ of TorΞ⊗Ξ(Ξ,Ξ)
such that

φ
( i times︷ ︸︸ ︷

[xk ⊗ 1− 1⊗ xk| . . . |xk ⊗ 1− 1⊗ xk]
)

= γi(xk).

P r o o f. Since the elements z = 1⊗ 1[xk⊗ 1− 1⊗xk| . . . |xk⊗ 1− 1⊗xk]
are part of a (Ξ⊗Ξ)-basis of the bar resolution B∗(Ξ⊗Ξ,Ξ), we can define
a morphism ψ from B∗(Ξ ⊗Ξ,Ξ) to F so that ψ(z) = 1⊗ 1⊗ γi(xk). Then
ψ induces the required isomorphism φ.

P r o o f o f T h e o r e m 2.5. Using Proposition 1.1, we can determine
the algebra structure of E∗,∗2 explicitly. If t > 3, then the spectral sequence
{Er, dr} collapses at the E2-term by [17, Theorem] since a degree argument
shows that Sq1 = 0.

To solve the extension problem, we use the Steenrod operations
{SqiEM}i≥0 on the Eilenberg–Moore spectral sequence ([12], [14]), which are
induced from operations on the bar construction. Notice that the operations
SqiEM (i ≥ 0) on E∗,∗∞ coincide with the operations on E∗,∗0 H∗(LX;Z/2) in-
duced from the ordinary Steenrod operations on H∗(LX;Z/2). Since

Sq2f (t−1)
EM

2f times︷ ︸︸ ︷
[xt ⊗ 1− 1⊗ xt| . . . |xt ⊗ 1− 1⊗ xt]

=

2f times︷ ︸︸ ︷
[Sqt−1 xt ⊗ 1− 1⊗ Sqt−1 xt| . . . | Sqt−1 xt ⊗ 1− 1⊗ Sqt−1 xt]
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in E∗,∗∞ , it follows from Lemma 2.8 that γ2f (xt)2 = 0 if Sqt−1 = 0 and
γ2f (xt)2 = Sq2f (t−1) γ2f (xt) = γ2f (x2t−1) if Sqt−1 6= 0 in E∗,∗0 . Since
Sq2t−2 x2t−1 = 0 for t > 3, by the same argument as above, we see that
γ2f (x2t−1)2 = 0 in E∗,∗0 .

In order to complete the proof of Theorem 2.5(i), we must show that
γ2f (xt)2 = 0 and γ2f (x2t−1)2 = 0 in H∗(LX;Z/2) if Sqt−1 = 0. To this end,
we verify that γ2f (xt)2 and γ2f (x2t−1)2 do not contain either γi(xt)γj(x2t−1),
xtγi(xt)γj(x2t−1), x2t−1γi(xt)γj(x2t−1) or xtx2t−1γi(xt)γj(x2t−1), where 2f

> i+ j.
Suppose γ2f (xt)2 contains γi(xt)γj(x2t−1). Then we have 2f+1(t− 1) =

i(t−1)+j(2t−2) by an argument on total degrees. This contradicts 2f > i+j.
Suppose γ2f (xt)2 contains xtx2t−1γi(xt)γj(x2t−1). Then we have

2f+1(t− 1) = t+ 2t− 1 + i(t− 1) + j(2t− 2)

by an argument on total degrees. Though t − 1 divides the left-hand side
of the equation, it does not divide the right-hand side, since t > 3. Thus
we deduce that γ2f (xt)2 does not contain xtx2t−1γi(xt)γj(x2t−1). By simi-
lar arguments, we can eliminate the other possibilities. Therefore we have
γ2f (xt)2 = 0 in H∗(LX;Z/2) if Sqt−1 = 0. The usual argument on total
degrees and filtration degrees allows us to conclude that γ2f (x2t−1)2 = 0 in
H∗(LX;Z/2).

To prove Theorem 2.5(ii), we consider the case when t = 2. Though the
action of Sq1 on H∗(X;Z/2) is not trivial, the vector space Im (Sq1)2k+1mi+2

= 0 for any k ≥ 0 and 1 ≤ i ≤ 2 because Im (Sq1)even = 0. Therefore the
Eilenberg–Moore spectral sequence collapses at the E2-term.

Furthermore, we can see γ2f (x3) = γ2f (x2)2 + P for any f ≥ 0, where
P is a polynomial generated by the elements x2, x3, γ2f−1(x2), γ2f−2(x2), . . .
. . . , γ2(x2) and x2. From the usual argument on total degrees and filtration
degrees it follows that γ2f (x3)2 = 0 in H∗(LX;Z/2). Thus we can construct
an isomorphism η of algebras from

H∗(LX;Z/2) ∼= Λ(x2, x3)⊗
⊗

i≥0

Z/2[γ2i(x2)]/(γ2i(x2)4)

to H∗(LX;Z/2) with η(γ2f (x2)) = γ2f (x2) and η−1(γ2f (x3)) = γ2f (x2)2

+ P . The same argument works for t > 3.

R e m a r k 2.9. In the case of t = 2 or t = 3, there are some extension
problems which cannot be solved by a mere argument with the Steenrod
operation on the Eilenberg–Moore spectral sequence and degree considera-
tions as in the proof of Theorem 2.5. For example, there is the problem of
whether γ2(x2)2 = x2x3 in the case t = 2 or γ22(x3)2 = x3x5γ2(x5) in the
case t = 3.
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3. The Hodge decomposition of the rational cohomology of LX.
Let X be a simply connected space and ϕn the power map ϕn : LX → LX

defined by ϕn(γ)(eiθ) = γ(einθ). Then we put H∗(LX;Q) =
⊕

i≥0HH
(i)
∗ ,

where HH(i)
∗ is the eigenspace of the eigenvalue ni of the power operation ϕ∗n

(see [3]). Here HH(i)
∗ is called the i-factor of the Hodge decomposition of the

rational cohomology of LX. In general, for the minimal modelM = (∧V, ∂̃)
of X there is a minimal model ε(M) = (∧V ⊗ ∧V , δ), where H∗(ε(M)) ∼=
H∗(LX;Q) (see Remark 1.2). Here V i = V i+1. Then we can decompose
∧V ⊗ ∧V as

⊕
i(∧V ⊗ ∧iV ). Since δ(∧V ⊗ ∧iV ) ⊂ ∧V ⊗ ∧iV , we can put

H∗(∧V ⊗ ∧V , δ) =
⊕

iH∗(∧V ⊗ ∧iV , δ) (cf. [4]). Then it is known that
HH

(i)
∗ ∼= H∗(∧V ⊗ ∧iV , δ) according to [3]. We will take advantage of this

identification throughout the remainder of this section.
In this section, we consider only the case in which H∗(X;Q) is a GCI-

algebra, so thatM is uniquely determined by H∗(X;Q), since H∗(X;Q) is
then intrinsically formal ([9]). ThisM is isomorphic to theM of Remark 1.2
with k0 = Q and l = 0.

In the proofs of the following theorems, we use the notation of Proposi-
tion 1.1(i), in particular the correspondence of ε(M) and K, as made explicit
in Remark 1.2.

Theorem 3.1. Let H∗(X;Q) be a GCI-algebra

Ξ = Q[x1, . . . , xn]/(%1, . . . , %m)

where %i is decomposable and let HH(i)
∗ denote the vector space

HH
(i)
∗ /HH

(0)
∗ ·HH(i)

∗ .

Then

(i) For m ≤ n,

dimQHH
(i)
∗ ≥

{(m−n+i−1
i−n

)
when i > n,(

n
i

)
when i ≤ n.

In particular , dimQHH
(i)
∗ 6= 0 for any i ≥ 0.

(ii) If m = n then

dimQHH
(i)
∗ ≥

{(
i−1
i−n
)

+
(
n+i−1

i

)
when i > n,(

n
i

)
+
(
n+i−1

i

)
when 1 ≤ i ≤ n.

Theorem 3.2. Suppose m = n. Let [Ξ] be the fundamental class of the
algebra Ξ (see [16]). If %t is the element of the greatest degree in the regu-
lar sequence %1, . . . , %n, then for all i, HH(i)

j = 0 whenever j > deg[Ξ] +

i(deg %t − 2). Moreover , dimQHH
(i)
deg[Ξ]+i(deg %t−2) = 1.
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P r o o f o f T h e o r e m 3.1. (i) Since x1 . . . xn belongs to AnnA(d(ωi1),
. . . , d(ωis)) for any i1, . . . , is, it follows that the elements x1 . . . xnω

k1
1 . . . ωkmm

(k1 ≥ 0, . . . , km ≥ 0) represent elements of HH(i)
∗ , where k1 + . . .+ km + n

= i from Proposition 1.1(i). Moreover, (dQ[ω1, . . . , ωm])A does not contain
any linear combination of elements x1 . . . xnω

k1
1 . . . ωkmm . Therefore Proposi-

tion 1.1(i) also enables us to conclude that the elements x1 . . . xnω
k1
1 . . . ωkmm

(k1 ≥ 0, . . . , km ≥ 0) are linearly independent in HH(i)
∗ . Thus dimQHH

(i)
∗ ≥(

m−1+i−n
i−n

)
when i > n. Furthermore, since the elements xj1 · xj2 . . . xji

(1 ≤ j1 < . . . < ji ≤ n) are linearly independent in HH∗, it follows that
dimQHH

(i)
∗ ≥

(
n
i

)
when i ≤ n.

(ii) Let [Ξ] be the fundamental class of the GCI-algebra Ξ. Since [Ξ]
annihilates the augmentation ideal Ξ, it follows from Proposition 1.1(i) that
the elements [Ξ]ωk1

1 . . . ωknn represent non-zero elements in HH(k1+...+kn)
∗

from Proposition 1.1(i). Moreover, we see that the elements x1 . . . xnω
k1
1 . . .

. . . ωknn (k1 + . . . + kn + n = i) and [Ξ]ωl11 . . . ωlnn (l1 + . . . + ln = i) are
linearly independent in HH(i)

∗ when i > n. In the case i ≤ n, we can deduce
that the elements xj1 . . . xji (1 ≤ j1 < . . . < ji ≤ n) and [Ξ]ωl11 . . . ωlnn
(l1 + . . .+ ln = i) are linearly independent in HH

(i)
∗ .

P r o o f o f T h e o r e m 3.2. By the same argument as in the proof of
Theorem 3.1, we see that [Ξ]ωit represents a non-zero element of HH(i)

∗ .
Any element u of AnnA(d(ωi1), . . . , d(ωis)) · ωk1

1 . . . ωkmm can be written as
u = (

∑
l albl) · ωk1

1 . . . ωkmm with monomials al ∈ Ξ and bl ∈ Λ(x1, . . . , xn).
Since the algebra Ξ is a finite-dimensional vector space, it follows that
deg xi < deg %t for any i. Therefore deg xi ≤ deg %t − 2 = degωt. So
deg(blω

k1
1 . . . ωknn ) ≤ degωit when bl = xj1 . . . xjs and k1+. . .+kn+s = i. The

fact that Ξk = 0 for any k > deg[Ξ] enables us to conclude that HH(i)
j = 0

whenever j > deg([Ξ]ωit). Moreover, since Ξdeg[Ξ] is a 1-dimensional vec-
tor space generated by [Ξ] (cf. [16]), it follows that HH(i)

deg[Ξ]+i(deg %t−2) is
generated by the element [Ξ]ωit.

Example 3.3. The minimal modelM of the Sullivan–de Rham complex
(Ω∗(X), ∂) for X = U(2 + 2)/U(2)× U(2) is

M = (Q[c1, c2]⊗ Λ(τ1, τ2), ∂̃),

where deg ci = 2i, deg τj = 2 · 2 + 2j − 1, ∂̃(ci) = 0, ∂̃(τ1) = %1 = 2c1c2 − c31
and ∂̃(τ2) = %2 = c22 − 3c21c2 + c41 (see [11, Lemma 2.3]). Since

d(τ1) =
∂%1

∂c1
c1 +

∂%1

∂
c2c2 = (2c2 − 3c21)c1 + 2c1c2

in K, it follows that the element v = c21c1 − c1c2 belongs to Ann(dτ1). We
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can see that vτ i−1
1 (i ≥ 1) is a non-zero element of HH(i)

∗ for degree reasons.
Indeed, suppose that vτ i−1

1 is zero in HH
(i)
∗ . Then we can write vτ i−1

1 =
d(
∑i
j=0 ajτ

i−j
1 τ j2) for some aj ∈ Q[c1, c2]/(%1, %2) ⊗ ∧(c1, c2) in general.

Since deg v = deg d(τ1) < deg d(τ2), it follows that vτ i−1
1 = d(a0τ

i
1) and

deg(a0) = 0. Therefore we have c21c1− c1c2 = (2a0c2− 3a0c
2
1)c1 + 2a0c1c2 in

Q[c1, c2]/(%1, %2)⊗∧(c1, c2), which is a contradiction. Thus we can conclude
that vτ i−1

1 6= 0 in HH
(i)
∗ .

In particular, vτ i−1
1 (i ≥ 1) is different from a linear combination of the

elements which we have chosen in the proof of Theorem 3.1(ii). Thus we
have from Theorem 3.1(ii),

dimQHH
(i)
∗ >

{
2i for i > 2,
4 for i = 2,
4 for i = 1.

Since the degree of the fundamental class of H∗(X;Q) is 8, from Theo-
rem 3.2, we have dimQHH

(i)
8+6i = 1 and HH

(i)
j = 0 for j > 8 + 6i.
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[18] M. Vigu é -Po i r r i e r and D. Burghe lea, A model for cyclic homology and alge-

braic K-theory of 1-connected topological spaces, J. Differential Geom. 22 (1985),
243–253.
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