More set-theory around the weak Freese-Nation property

by
Sakaé Fuchino (Berlin and Kitami) and Lajos Soukup (Budapest)

Abstract

We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang's Conjecture for \aleph_{ω}, we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals, a lot of ccc complete Boolean algebras of cardinality $\leq \lambda$ have the \aleph_{1}-Freese-Nation property provided that $\mu^{\aleph_{0}}=\mu$ holds for every regular uncountable $\mu<\lambda$ and the very weak square principle holds for each cardinal $\aleph_{0}<\mu<\lambda$ of cofinality ω (Theorem 15). Finally, we prove that there is no \aleph_{2}-Lusin gap if $\mathcal{P}(\omega)$ has the \aleph_{1}-Freese-Nation property (Theorem 17).

1. Introduction. For a regular κ, a partial ordering P is said to have the κ-Freese-Nation property (the κ-FN for short) if there is a mapping (κ-FN mapping) $f: P \rightarrow[P]^{<\kappa}$ such that for any $p, q \in P$ if $p \leq q$ then there is $r \in f(p) \cap f(q)$ such that $p \leq r \leq q$.

Freese and Nation [5] used the \aleph_{0}-FN in a characterization of projective lattices and asked if this property alone already characterizes the projectiveness. L. Heindorf gave a negative answer to the question showing that the Boolean algebras with the \aleph_{0}-FN are exactly those which are openly generated. It is known that the class of openly generated Boolean algebras contains projective Boolean algebras as a proper subclass (see [8]-openly generated Boolean algebras are called "rc-filtered" there). Heindorf and Shapiro [8] then studied the \aleph_{1}-FN which they called the weak Freese-Nation property and proved some elementary properties of the Boolean algebras with this property. Partial orderings with the κ-FN for arbitrary regular κ were

[^0]further studied in Fuchino, Koppelberg and Shelah [6]. Koppelberg [10] gives some nice applications of the $\aleph_{1}-\mathrm{FN}$.

In the following we shall quote some elementary facts from [6] which we need later. First of all, it can be readily seen that every small partial ordering has the κ-FN:

Lemma 1 ([6]). Every partial ordering P of cardinality $\leq \kappa$ has the $\kappa-F N$.

For a partial ordering P and a subordering $Q \subseteq P$, we say that Q is a κ-subordering of P and write $Q \leq_{\kappa} P$ if, for every $p \in P$, the set $\{q \in Q$: $q \leq p\}$ has a cofinal subset of cardinality $<\kappa$ and the set $\{q \in Q: q \geq p\}$ has a coinitial subset of cardinality $<\kappa$.

Lemma 2 ([6]). Suppose that δ is a limit ordinal and $\left(P_{\alpha}\right)_{\alpha \leq \delta}$ a continuously increasing chain of partial orderings such that $P_{\alpha} \leq_{\kappa} P_{\delta}$ for all $\alpha<\delta$. If P_{α} has the κ-FN for every $\alpha<\delta$, then P_{δ} also has the $\kappa-F N$.

For application of Lemma 2, it is enough to have $P_{\alpha} \leq_{\kappa} P_{\delta}$ and the κ-FN of P_{α} for every $\alpha<\delta$ such that either α is a successor or of cofinality $\geq \kappa$: $P_{\alpha} \leq_{\kappa} P_{\delta}$ for $\alpha<\delta$ of cofinality $<\kappa$ follows from this since such a P_{α} can be represented as the union of $<\kappa$ many κ-suborderings of P_{δ}. Hence by inductive application of Lemma 2, we can show that P_{α} satisfies the κ-FN for every $\alpha \leq \delta$. Similarly, if δ is a cardinal $>\kappa$, then it is enough to have $P_{\alpha}<_{\kappa} P_{\delta}$ and the κ-FN of P_{α} for every limit $\alpha<\delta$ of cofinality $\geq \kappa$.

Proposition 3 ([6]). For a regular κ and a partial ordering P, the following are equivalent:
(1) P has the $\kappa-F N$;
(2) For some, or equivalently, any sufficiently large χ, if $M \prec \mathcal{H}_{\chi}=$ $\left(\mathcal{H}_{\chi}, \in\right)$ is such that $P \in M, \kappa \subseteq M$ and $|M|=\kappa$ then $P \cap M \leq{ }_{\kappa} P ;$
(3) $\left\{C \in[P]^{\kappa}: C \leq_{\kappa} P\right\}$ contains a club set.

Though Proposition 3(2) is quite useful to show that a partial ordering has the κ-FN, sometimes it is quite difficult to check Proposition 3(2) as in the case of the \aleph_{1}-FN of $P(\omega)$ or $[\kappa]^{<\omega}$: in these cases it is independent if Proposition $3(2)$ holds. With applications like Corollary 11 in mind, we could think of another possible variant of Proposition 3(2) in terms of the following weakening of the notion of internal approachability from [4]: for a regular κ and a sufficiently large χ, we shall call an elementary submodel M of $\mathcal{H}_{\chi} V_{\kappa}$-like if either $\kappa=\aleph_{0}$ and M is countable, or there is an increasing sequence $\left(M_{\alpha}\right)_{\alpha<\kappa}$ of elementary submodels of M of cardinality less than κ such that $M_{\alpha} \in M_{\alpha+1}$ for all $\alpha<\kappa$ and $M=\bigcup_{\alpha<\kappa} M_{\alpha}$.

In [6], a characterization of the κ-FN using V_{κ}-like elementary submodels in place of elementary submodels in Proposition 3(2) was discussed. Unfortunately, it appeared that some consequences of $\neg 0^{\#}$ are necessary for the characterization (see "Added in Proof" in [6]). In this paper, we introduce a weakening of the very weak square principle from [3]-the principle $\square_{\kappa, \mu}^{* * *}$. In Section 2 we show the equivalence of $\square_{\kappa, \mu}^{* * *}$ with the existence of a matrix $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mathrm{cf}(\mu)}$-which we called a (weak) (κ, μ)-dominating matrix - of elementary submodels of $\mathcal{H}(\chi)$ for sufficiently large χ with certain properties. This fact is used in Section 3 to show that $\square_{\kappa, \lambda}^{* * *}$ together with a very weak version of the Singular Cardinals Hypothesis yields the characterization of partial orderings with the κ-FN in terms of V_{κ}-like elementary submodels (Theorem 10). ZFC or even ZFC + GCH is not enough for this characterization: in Section 4, we show that, under Chang's Conjecture for \aleph_{ω}, there is a counter-example to the characterization. Together with Theorem 10, this counter-example also shows that $\square_{\aleph_{1}, \aleph_{\omega}}^{* * *}$ is not a theorem in $\mathrm{ZFC}+\mathrm{GCH}$.

One of the most natural questions concerning the κ-FN is whether $(\mathcal{P}(\omega)$, $\subseteq)$ has the $\aleph_{1}-\mathrm{FN}$. It is easy to see that $(\mathcal{P}(\omega), \subseteq)$ has the \aleph_{1} - FN iff $\left(\mathcal{P}(\omega) /\right.$ fin,$\left.\subseteq^{*}\right)$ does (see [6]). See also Koppelberg [10] for some consequences of the \aleph_{1}-FN of $\mathcal{P}(\omega) /$ fin. By Lemma $1, \mathcal{P}(\omega)$ has the \aleph_{1}-FN under CH. In Section 5, we show that $\mathcal{P}(\omega)$ and a lot of other ccc complete Boolean algebras still have the \aleph_{1}-FN in a model obtained by adding an arbitrary number of Cohen reals to a model of, say, $V=L$. On the other hand, it can happen very easily that $\mathcal{P}(\omega)$ does not have the $\aleph_{1}-$ FN. In [6], it was shown that this is the case when $\mathbf{b}>\aleph_{1}$ or, more generally, if there is a \subseteq^{*}-sequence of elements of $\mathcal{P}(\omega)$ of order-type $\geq \omega_{2}$. In Section 6 , we show that the existence of an \aleph_{2}-Lusin gap can be another reason for failure of the $\aleph_{1}-\mathrm{FN}$. At the moment the authors do not know if there are yet other reasons for failure of the $\aleph_{1}-\mathrm{FN}$ of $\mathcal{P}(\omega)$:

Problem 1. Suppose that $\mathcal{P}(\omega)$ does not have any increasing chain of length $\geq \aleph_{2}$ with respect to \subseteq^{*} and that there is no \aleph_{2}-Lusin gap. Does it follow that $\mathcal{P}(\omega)$ has the $\aleph_{1}-F N$?

Our notation is fairly standard. The following are possible deviations from the standard: for $C \subseteq \kappa$, we denote by $(C)^{\prime}$ the set of limit points of C other than κ. For an ordinal $\alpha, \operatorname{Lim}(\alpha)=\{\beta<\alpha: \beta$ is a limit ordinal $\}$. For a partial ordering $P, \operatorname{cf}(P)=\min \{|X|: X \subseteq P, X$ is cofinal in $P\} .[\lambda]^{<\kappa}=$ $\{X \subseteq \lambda:|X|<\kappa\}$ is often seen as the partial ordering $\left([\lambda]^{<\kappa}, \subseteq\right)$. If Q is a subordering of a partial ordering P and $p \in P$ then $Q \uparrow p=\{q \in Q: q \geq p\}$ and $Q \upharpoonright p=\{q \in Q: q \leq p\}$. Let I be an infinite set. Adopting the notation of [12], we denote by $\operatorname{Fr}(I, 2)$ the standard partial ordering for adding $|I|$ Cohen reals, i.e. $\operatorname{Fr}(I, 2)$ is the partial ordering $\{p: p$ is a mapping with $\operatorname{dom}(p) \in$ $[I]^{<\aleph_{0}}$ and range $\left.(p) \subseteq 2\right\}$ with the inverse inclusion.
2. Very weak square and dominating matrix. For a cardinal μ, the weak square principle for μ (notation: \square_{μ}^{*}) is the statement: there is a sequence $\left(\mathcal{C}_{\alpha}\right)_{\alpha \in \operatorname{Lim}\left(\mu^{+}\right)}$such that for every $\alpha \in \operatorname{Lim}\left(\mu^{+}\right)$,
(w1) $\mathcal{C}_{\alpha} \subseteq \mathcal{P}(\alpha)$ and $\left|\mathcal{C}_{\alpha}\right| \leq \mu$;
(w2) every $C \in \mathcal{C}_{\alpha}$ is a club in α and if $\operatorname{cf}(\alpha)<\mu$ then otp $(C)<\mu$;
(w3) for every $C \in \mathcal{C}_{\alpha}$ and $\delta \in(C)^{\prime}$, we have $C \cap \delta \in \mathcal{C}_{\delta}$.
Clearly we have $\square_{\mu} \rightarrow \square_{\mu}^{*}$. Jensen [9] proved that \square_{μ}^{*} is equivalent to the existence of a special Aronszajn tree on μ^{+}. Ben-David and Magidor [2] showed that the weak square principle for a singular μ is actually weaker than the square principle: they constructed a model of $\square_{\aleph_{\omega}}^{*}$ and $\neg \square_{\aleph_{\omega}}$ starting from a model with a supercompact cardinal.

Foreman and Magidor considered in [3] the following principle which is, e.g. under GCH, a weakening of the \square^{*} principle: for a cardinal μ, the very weak square principle for μ holds if there is a sequence $\left(C_{\alpha}\right)_{\alpha<\mu^{+}}$and a club $D \subseteq \mu^{+}$such that for every $\alpha \in D$,
(v1) $C_{\alpha} \subseteq \alpha, C_{\alpha}$ is unbounded in α;
(v2) for all bounded $x \in\left[C_{\alpha}\right]^{<\omega_{1}}$, there is $\beta<\alpha$ such that $x=C_{\beta}$.
In this paper, we shall use the following yet weaker variant of the very weak square principle. For a regular cardinal κ and $\mu>\kappa$, let $\square_{\kappa, \mu}^{* * *}$ be the following assertion: there exists a sequence $\left(C_{\alpha}\right)_{\alpha<\mu^{+}}$and a club set $D \subseteq \mu^{+}$ such that for $\alpha \in D$ with $\operatorname{cf}(\alpha) \geq \kappa$,
(y1) $C_{\alpha} \subseteq \alpha, C_{\alpha}$ is unbounded in α;
(y2) $[\alpha]^{<\kappa} \cap\left\{C_{\alpha^{\prime}}: \alpha^{\prime}<\alpha\right\}$ dominates $\left[C_{\alpha}\right]^{<\kappa}$ (with respect to \subseteq).
Since (y2) remains valid when C_{α} 's for $\alpha \in D$ are shrunk, we may replace (y1) by
($\mathrm{y} 1^{\prime}$) $C_{\alpha} \subseteq \alpha, C_{\alpha}$ is unbounded in α and $\operatorname{otp}\left(C_{\alpha}\right)=\operatorname{cf}(\alpha)$.
A corresponding remark holds also for the sequence of the very weak square principle.

Lemma 4. (a) The very weak square principle for μ implies $\square_{\omega_{1}, \mu}^{* * *}$.
(b) For a singular cardinal μ and a regular κ such that $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right) \leq \mu$ for every $\lambda<\mu, \square_{\mu}^{*}$ implies $\square_{\kappa, \mu}^{* * *}$.

Proof. (a) is clear. For (b), let $\left(\mathcal{C}_{\alpha}\right)_{\alpha \in \operatorname{Lim}\left(\mu^{+}\right)}$be a weak square sequence. Let $\mathcal{C}_{\alpha}=\left\{C_{\alpha, \beta}: \beta<\mu\right\}$ for every $\alpha \in \operatorname{Lim}\left(\mu^{+}\right)$. By shrinking $C_{\alpha, \beta}$'s if necessary, we may assume that $\left|C_{\alpha, \beta}\right|<\mu$ for every $\alpha \in \operatorname{Lim}\left(\mu^{+}\right)$and $\beta<\mu$. Note that we need here the assumption that μ be singular. For $\alpha \in \operatorname{Lim}\left(\mu^{+}\right)$ and $\beta<\mu$, let $X_{\alpha, \beta}$ be a cofinal subset of $\left[C_{\alpha, \beta}\right]^{<\kappa}$ of cardinality $\leq \mu$ and let $\left\{C_{\alpha}: \alpha \in \mu^{+} \backslash \operatorname{Lim}\left(\mu^{+}\right)\right\}$be an enumeration of $\bigcup\left\{X_{\alpha, \beta}: \alpha \in \operatorname{Lim}\left(\mu^{+}\right)\right.$, $\beta<\mu\}$. For each $\alpha \in \operatorname{Lim}\left(\mu^{+}\right)$, let $C_{\alpha}=C_{\alpha, 0}$. Let $F: \mu^{+} \rightarrow \mu^{+}$be defined
by $F(\xi)=\min \left\{\gamma<\mu^{+}: X_{\xi, \beta} \subseteq\left\{C_{\alpha}: \alpha<\gamma\right\}\right.$ for every $\left.\beta<\mu\right\}$. Let $D \subseteq \mu^{+}$be a club set closed with respect to F. Then $\left(C_{\alpha}\right)_{\alpha<\mu^{+}}$and D are as in the definition of $\square_{\kappa, \mu}^{* * *}$. To see that (y2) is satisfied, let $\alpha \in D$ be such that $\operatorname{cf}(\alpha) \geq \kappa$ and $x \in\left[C_{\alpha}\right]^{<\kappa}$. By definition we have $C_{\alpha}=C_{\alpha, 0}$. Hence there are $\alpha^{\prime} \in \alpha \cap \operatorname{Lim}\left(\mu^{+}\right)$and $\beta<\lambda$ such that $x \in\left[C_{\alpha^{\prime}, \beta}\right]^{<\kappa}$. Since α is closed with respect to F, there is some $\gamma<\alpha$ such that $x \subseteq C_{\gamma} \in\left[C_{\alpha^{\prime}, \beta}\right]^{<\kappa}$. $\mathbf{■}_{\text {Lemma } 4}$
$\square_{\kappa, \mu}^{* * *}$ has some influence on cardinal arithmetic of cardinals below μ :
Lemma 5. Suppose that κ is regular and μ is such that $\operatorname{cf}(\mu)<\kappa$. If $\square_{\kappa, \mu}^{* * *}$ holds, then $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)<\mu$ for every $\lambda<\mu$.

Proof. Let $\left(C_{\alpha}\right)_{\alpha<\mu^{+}}$and $D \subseteq \mu^{+}$be witnesses of $\square_{\kappa, \mu}^{* * *}$. For $\lambda<\mu$, let $\delta \in D$ be such that $\operatorname{cf}(\delta) \geq \lambda+\kappa$. Then $\left\{C_{\alpha}: \alpha<\delta\right\} \cap[\delta]^{<\kappa}$ is cofinal in $\left[C_{\delta}\right]^{<\kappa}$. Since $|\delta| \leq \mu$ it follows that $\operatorname{cf}\left(\left[C_{\delta}\right]^{<\kappa}, \subseteq\right) \leq \mu$. As the order type of C_{δ} is at least λ, it follows that $\nu=\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right) \leq \mu$. But $\operatorname{cf}(\nu) \geq \kappa$. Hence $\nu<\mu$. ■ Lemma

Suppose now that κ is a regular cardinal and $\mu>\kappa$ is such that $\operatorname{cf}(\mu)<\kappa$. Let $\mu^{*}=\operatorname{cf}(\mu)$. For a sufficiently large χ and $x \in \mathcal{H}(\chi)$, let us call a sequence $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ a (κ, μ)-dominating matrix over x - or just a dominating matrix over x if it is clear from the context which κ and μ are meant-if the following conditions hold:
(j1) $M_{\alpha, \beta} \prec \mathcal{H}(\chi), x \in M_{\alpha, \beta}, \kappa+1 \subseteq M_{\alpha, \beta}$ and $\left|M_{\alpha, \beta}\right|<\mu$ for all $\alpha<\mu^{+}$and $\beta<\mu^{*}$;
(j2) $\left(M_{\alpha, \beta}\right)_{\beta<\mu^{*}}$ is an increasing sequence for each $\alpha<\mu^{+}$;
(j3) if $\alpha<\mu^{+}$is such that $\operatorname{cf}(\alpha) \geq \kappa$, then there is $\beta^{*}<\mu^{*}$ such that, for every $\beta^{*} \leq \beta<\mu^{*},\left[M_{\alpha, \beta}\right]^{<\kappa} \cap M_{\alpha, \beta}$ is cofinal in $\left(\left[M_{\alpha, \beta}\right]^{<\kappa}, \subseteq\right)$.

For $\alpha<\mu^{+}$, let $M_{\alpha}=\bigcup_{\beta<\mu^{*}} M_{\alpha, \beta}$. By (j1) and (j2), we have $M_{\alpha} \prec$ $\mathcal{H}(\chi)$.
(j4) $\left(M_{\alpha}\right)_{\alpha<\mu^{+}}$is continuously increasing and $\mu^{+} \subseteq \bigcup_{\alpha<\mu^{+}} M_{\alpha}$.
Foreman and Magidor [3] called a sequence of subsets of μ^{+}having some properties similar to those of the sequence $\left(\mu^{+} \cap M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ for $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ as above a Jensen matrix. Our definition of dominating matrices and some ideas in the proofs in this section are inspired by their paper. Note that, in the case of $2^{<\kappa}=\kappa$, (j3) can be replaced by the following seemingly stronger property:
($\mathrm{j} 3^{\prime}$) if $\alpha<\mu^{+}$is such that $\operatorname{cf}(\alpha) \geq \kappa$, then there is $\beta^{*}<\mu^{*}$ such that, for every $\beta^{*} \leq \beta<\mu^{*},\left[M_{\alpha, \beta}\right]^{<\kappa} \subseteq M_{\alpha, \beta}$.

This is simply because of the following observation:

Lemma 6. Suppose that $2^{<\kappa}=\kappa$ and M is an elementary submodel of $\mathcal{H}(\chi)$ for some sufficiently large χ and $\kappa \subseteq M$. If $[M]^{<\kappa} \cap M$ is cofinal in $[M]^{<\kappa}$, then $[M]^{<\kappa} \subseteq M$.

Proof. Let $x \in[M]^{<\kappa}$. We show that $x \in M$. By assumption there is $y \in[M]^{<\kappa} \cap M$ such that $x \subseteq y$. Let $\eta=|\mathcal{P}(y)|$. Then $\eta \in M$ and $\eta \leq \kappa$. Let $\left(y_{\alpha}\right)_{\alpha<\eta} \in M$ be an enumeration of $\mathcal{P}(y)$. Then there is an $\alpha_{0}<\eta$ such that $x=y_{\alpha_{0}}$. But since $\kappa \subseteq M$, we have $\alpha_{0} \in M$ and $y_{\alpha_{0}} \in M$ as well. $\mathbf{■}_{\text {Lemma } 6}$

Note also that, if $M \prec \mathcal{H}(\chi)$ is V_{κ}-like, then $[M]^{<\kappa} \cap M$ is cofinal in $[M]^{<\kappa}$. Hence, under $2^{<\kappa}=\kappa, M \prec \mathcal{H}(\chi)$ is V_{κ}-like if and only if $|M|=\kappa$ and $[M]^{<\kappa} \subseteq M$.

In the following theorem, we show that $\square_{\kappa, \mu}^{* * *}$ together with a very weak version of the Singular Cardinals Hypothesis below μ implies the existence of a dominating matrix:

Theorem 7. Suppose that κ is a regular cardinal and $\mu>\kappa$ is such that $\operatorname{cf}(\mu)<\kappa$. If $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)=\lambda$ for cofinally many $\lambda<\mu$ and $\square_{\kappa, \mu}^{* * *}$ holds, then, for any sufficiently large χ and $x \in \mathcal{H}(\chi)$, there is a (κ, μ)-dominating matrix over x.

Proof. Let $\mu^{*}=\operatorname{cf}(\mu)$ and $\left(\mu_{\beta}\right)_{\beta<\mu^{*}}$ be an increasing sequence of cardinals below μ such that $\mu_{0}>\mu^{*}, \sup \left\{\mu_{\beta}: \beta<\mu^{*}\right\}=\mu$ and $\operatorname{cf}\left(\left[\mu_{\beta}\right]^{<\kappa}, \subseteq\right)$ $=\mu_{\beta}$ for every $\beta<\mu^{*}$. Let $\left(C_{\alpha}\right)_{\alpha \in \mu^{+}}$and $D \subseteq \mu^{+}$be as in the definition of $\square_{\kappa, \mu}^{* * *}$. Without loss of generality, we may assume that $\left|C_{\alpha}\right| \leq \operatorname{cf}(\alpha)$ for all $\alpha<\mu^{+}$. We may also assume that $\alpha>\mu$ for every $\alpha \in D$.

In the following, we fix a well-ordering \unlhd on $\mathcal{H}(\chi)$ and, when we talk about $\mathcal{H}(\chi)$ as a structure, we mean $\mathcal{H}(\chi)=(\mathcal{H}(\chi), \in, \unlhd) . X \subseteq \mathcal{H}(\chi)$ as a substructure of $\mathcal{H}(\chi)$ is thus the structure ($X, \in \cap X^{2}, \unlhd \cap X^{2}$)-for notational simplicity we shall denote such a structure simply by (X, \in, \unlhd).

Let $N \in \mathcal{H}(\chi)$ be an elementary substructure of $\mathcal{H}(\chi)$ such that N contains everything needed below-in particular, we assume that $\mu^{+} \subseteq N$ and $x,\left(C_{\alpha}\right)_{\alpha<\mu^{+}}, D,\left(\mu_{\alpha}\right)_{\alpha<\mu^{*}} \in N$. Let $\left(N_{\xi}\right)_{\xi<\kappa}$ be an increasing sequence of elementary submodels of $\mathcal{H}(\chi)$ such that
(0) $N_{0}=N$;
(1) $N_{\xi} \in \mathcal{H}(\chi)$ for every $\xi<\kappa$ and
(2) $\left(N_{\eta}\right)_{\eta \leq \xi} \in N_{\xi+1}$ for every $\xi<\kappa$.

Now, for each $\xi<\kappa$, let

$$
\mathcal{N}_{\xi}=\left(N_{\xi}, \in, \unlhd, R_{\xi}, \kappa, \mu, \mu^{*}, D,\left(C_{\alpha}\right)_{\alpha<\mu^{+}},\left(\mu_{\alpha}\right)_{\alpha<\mu^{*}}, x, \eta\right)_{\eta<\xi}
$$

where R_{ξ} is the relation $\left\{\left(\eta, N_{\eta}\right): \eta<\xi\right\}$. For $X \subseteq \mu^{+}$, denote by $\operatorname{sk}_{\xi}(X)$ the Skolem-hull of X with respect to the built-in Skolem functions of \mathcal{N}_{ξ} (induced from \unlhd). For $\xi<\xi^{\prime}<\kappa, \mathcal{N}_{\xi}$ is an element of $\mathcal{N}_{\xi^{\prime}}$ by (2) and the Skolem functions of \mathcal{N}_{ξ} are also elements of $\mathcal{N}_{\xi^{\prime}}$. In particular, we have
$\operatorname{sk}_{\xi}(X) \subseteq \operatorname{sk}_{\xi^{\prime}}(X)$. It follows that $\operatorname{sk}(X)=\bigcup_{\xi<\kappa} \operatorname{sk}_{\xi}(X)$ is an elementary submodel of $\mathcal{H}(\chi)$. Note also that, if $X \subseteq \mu^{+}$is an element of $\operatorname{sk}_{\xi^{\prime}}(Y)$ then, since $\operatorname{sk}_{\xi}(X)$ is definable in $\operatorname{sk}_{\xi^{\prime}}(Y)$, we have $\operatorname{sk}_{\xi}(X) \in \operatorname{sk}_{\xi^{\prime}}(Y)$.

For the proof of the theorem, it is clearly enough to construct $M_{\alpha, \beta}$ with (j1)-(j4) for every α in the club set D and for every $\beta<\mu^{*}$. Let

$$
M_{\alpha, \beta}=\operatorname{sk}\left(\mu_{\beta} \cup C_{\alpha}\right)
$$

for $\alpha \in D$ and $\beta<\mu^{*}$. We show that $\left(M_{\alpha, \beta}\right)_{\alpha \in D, \beta<\mu^{*}}$ is as desired. It is clear that (j 1) and (j 2) hold. We need the following claim to show the other properties:

Claim 7.1. $M_{\alpha}=\operatorname{sk}(\alpha)$ for every $\alpha \in D$.
\vdash " \subseteq " is clear since $\mu_{\beta} \cup C_{\alpha} \subseteq \alpha$ for every $\alpha \in D$ and $\beta<\mu^{*}$. For " \supseteq ", it is enough to show that $\alpha \subseteq M_{\alpha}$. Let $\gamma<\alpha$. By (y 1), there is $\gamma_{1} \in C_{\alpha}$ such that $\gamma<\gamma_{1}$. Let $f \in M_{\alpha, 0}$ be a surjection from μ to γ_{1}, and let $\delta<\mu$ be such that $f(\delta)=\gamma$. Then $\gamma=f(\delta) \in M_{\alpha, \beta^{*}} \subseteq M_{\alpha}$ for $\beta^{*}<\mu^{*}$ such that $\delta<\mu_{\beta^{*}} . \dashv_{\text {Claim }} 7.1$

For (j3), suppose that $\alpha \in D$ and $\operatorname{cf}(\alpha) \geq \kappa$. Let β^{*} be such that $\left|C_{\alpha}\right|<$ $\mu_{\beta^{*}}$ and $[\alpha]^{<\kappa} \cap\left\{C_{\alpha^{\prime}}: \alpha^{\prime}<\alpha, \alpha^{\prime} \in M_{\alpha, \beta^{*}}\right\}$ dominates $\left[C_{\alpha}\right]^{<\kappa}$. The last property is possible by (y2), Claim 7.1 and $\mu^{*}<\kappa$. We show that this β^{*} is as needed in (j3). Let $\beta<\mu^{*}$ be such that $\beta^{*} \leq \beta$ and suppose that $x \in\left[M_{\alpha, \beta}\right]^{<\kappa}$. Then there are $u \in\left[\mu_{\beta}\right]^{<\kappa}$ and $v \in\left[C_{\alpha}\right]^{<\kappa}$ such that $x \subseteq \operatorname{sk}(u \cup v)$. Since $\mu_{\beta} \in M_{\alpha, \beta}$ and $\operatorname{cf}\left(\left[\mu_{\beta}\right]^{<\kappa}, \subseteq\right)=\mu_{\beta}$, there is $X \in M_{\alpha, \beta}$ such that $X \subseteq\left[\mu_{\beta}\right]^{<\kappa},|X|=\mu_{\beta}$ and X is cofinal in $\left(\left[\mu_{\beta}\right]^{<\kappa}, \subseteq\right)$. Since $\mu_{\beta} \subseteq M_{\alpha, \beta}$, it follows that $X \subseteq M_{\alpha, \beta}$. Hence there is $u^{\prime} \in M_{\alpha, \beta} \cap\left[\mu_{\beta}\right]^{<\kappa}$ such that $u \subseteq u^{\prime}$. On the other hand, by definition of $\beta^{*}, \operatorname{cf}(\alpha) \geq \kappa$, there is $\alpha^{\prime} \in \alpha \cap M_{\alpha, \beta}$ such that $C_{\alpha^{\prime}} \in[\alpha]^{<\kappa}$ and $v \subseteq C_{\alpha^{\prime}}$. Thus, $x \subseteq \operatorname{sk}(u \cup v) \subseteq$ $\operatorname{sk}\left(u^{\prime} \cup C_{\alpha^{\prime}}\right)$. By regularity of κ, there is $\xi<\kappa$ such that $x \subseteq \operatorname{sk}_{\xi}\left(u^{\prime} \cup C_{\alpha^{\prime}}\right)$. But $\mathrm{sk}_{\xi}\left(u^{\prime} \cup C_{\alpha^{\prime}}\right) \in M_{\alpha, \beta}$ and $\left|\operatorname{sk}_{\xi}\left(u^{\prime} \cup C_{\alpha^{\prime}}\right)\right|<\kappa$.
(j4) follows immediately from Claim 7.1. ©Theorem 7
Note that, in the proof above, the sequence $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ satisfies also:
(j5) for $\alpha<\alpha^{\prime}<\mu^{+}$and $\beta<\mu^{*}$, there is $\beta^{\prime}<\mu^{*}$ such that $M_{\alpha, \beta} \subseteq$ $M_{\alpha^{\prime}, \beta^{\prime}}$.
[Suppose that $\alpha, \alpha^{\prime} \in D$ are such that $\alpha<\alpha^{\prime}$ and $\beta<\mu^{*}$. By Claim 7.1, there is $\beta^{\prime}<\mu^{*}$ such that $\beta<\beta^{\prime}, \alpha \in M_{\alpha^{\prime}, \beta^{\prime}}$ and otp $\left(C_{\alpha}\right) \leq \mu_{\beta^{\prime}}$. Then $C_{\alpha} \in M_{\alpha^{\prime}, \beta^{\prime}}$ and $C_{\alpha} \subseteq M_{\alpha^{\prime}, \beta^{\prime}}$. Also $\mu_{\beta} \in M_{\alpha^{\prime}, \beta^{\prime}}$ and $\mu_{\beta} \subseteq \mu_{\beta^{\prime}} \subseteq M_{\alpha^{\prime}, \beta^{\prime}}$. Hence it follows that $M_{\alpha, \beta}=\operatorname{sk}\left(\mu_{\beta} \cup C_{\alpha}\right) \subseteq M_{\alpha^{\prime}, \beta^{\prime}}$.]

Conversely, the existence of a (κ, μ)-dominating matrix (over some/any $x)$ implies $\square_{\kappa, \mu}^{* * *}$:

Theorem 8. Suppose that κ is a regular cardinal and $\mu>\kappa$ is such that $\operatorname{cf}(\mu)<\kappa$. If there exists a (κ, μ)-dominating matrix, then $\square_{\kappa, \mu}^{* * *}$ holds.

Proof. Let $\mu^{*}=\operatorname{cf}(\mu)$ and $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ be a (κ, μ)-dominating matrix. Let $M_{\alpha}=\bigcup_{\beta<\mu^{*}} M_{\alpha, \beta}$ for each $\alpha<\mu^{+}$. For

$$
X=\bigcup\left\{\left[M_{\alpha, \beta}\right]^{<\kappa} \cap M_{\alpha, \beta}: \alpha<\mu^{+}, \beta<\mu^{*}\right\},
$$

let $\left\{C_{\alpha+1}: \alpha<\mu^{+}\right\}$be an enumeration of X. Let

$$
\begin{aligned}
D=\left\{\alpha<\mu^{+}: M_{\alpha} \cap \mu^{+}=\alpha,\left\{C_{\alpha^{\prime}+1}: \alpha^{\prime}<\alpha\right\}\right. & \supseteq\left[M_{\alpha^{\dagger}, \beta}\right]^{<\kappa} \cap M_{\alpha^{\dagger}, \beta} \\
& \left.\quad \text { for every } \alpha^{\dagger}<\alpha, \beta<\mu^{*}\right\} .
\end{aligned}
$$

By $(\mathrm{j} 4), D$ is a club subset of μ^{+}. For $\alpha \in D$ with $\operatorname{cf}(\alpha) \geq \kappa$, let $C_{\alpha}=$ $M_{\alpha, \beta_{\alpha}} \cap \alpha$ where $\beta_{\alpha}<\mu^{+}$be such that $M_{\alpha, \beta_{\alpha}} \cap \alpha$ is cofinal in α (this is possible as $M_{\alpha} \cap \mu^{+}=\alpha$ and $\mu^{*}<\kappa$) and that $\left[M_{\alpha, \beta_{\alpha}}\right]^{<\kappa} \cap M_{\alpha, \beta_{\alpha}}$ is cofinal in $\left[M_{\alpha, \beta_{\alpha}}\right]^{<\kappa}$ (possible by (j3)). For $\alpha \in \operatorname{Lim}\left(\mu^{+}\right) \backslash\{\alpha \in D: \operatorname{cf}(\alpha) \geq \kappa\}$, let C_{α} be anything, say $C_{\alpha}=\emptyset$. We claim that $\left(C_{\alpha}\right)_{\alpha<\mu^{+}}$and D as above satisfy the conditions in the definition of $\square_{\kappa, \mu}^{* * *}$: y 1) is clear by definition of C_{α} 's. To show (y2), let $\alpha \in D$ be such that $\operatorname{cf}(\alpha) \geq \kappa$ and $x \in\left[C_{\alpha}\right]^{<\kappa}$. Then, by the choice of β_{α}, there is $y \in[\alpha]^{<\kappa} \cap M_{\alpha, \beta_{\alpha}}$ such that $x \subseteq y$. By (j 4), there are $\alpha^{\dagger}<\alpha$ and $\beta^{\dagger}<\mu^{*}$ such that $y \in M_{\alpha^{\dagger}, \beta^{\dagger}}$. By definition of D, it follows that $y=C_{\alpha^{\prime}+1}$ for some $\alpha^{\prime}<\alpha$. This shows that $[\alpha]^{<\kappa} \cap\left\{C_{\alpha^{\prime}}: \alpha^{\prime}<\alpha\right\}$ dominates $\left[C_{\alpha}\right]^{<\kappa}$. Theorem 8

Thus, by Theorems 7 and 8 , if $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)=\lambda$ for cofinally many $\lambda<\mu$, $\square_{\kappa, \mu}^{* * *}$ is equivalent to the existence of a (κ, μ)-dominating matrix. The assumption " $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)=\lambda$ for cofinally many $\lambda<\mu$ " cannot be removed from this equivalence theorem since $\square_{\kappa, \mu}^{* * *}$ implies this. However, using the following weakening of the notion of dominating matrix, we obtain a characterization of $\square_{\kappa, \mu}^{* * *}$ in ZFC: for a regular cardinal κ and $\mu>\kappa$ such that $\mu^{*}=\operatorname{cf}(\mu)<\kappa$, let us call a matrix $\left(M_{\alpha, \beta}\right)_{\alpha<\mu^{+}, \beta<\mu^{*}}$ of elementary submodels of $\mathcal{H}(\chi)$ for a sufficiently large χ a weak (κ, μ)-dominating matrix over x if it satisfies (j 1), (j 2), (j 4) for $M_{\alpha}=\bigcup_{\beta<\mu^{*}} M_{\alpha, \beta}, \alpha<\mu^{+}$, and
($\mathrm{j} 3^{-}$) if $\alpha<\mu^{+}$is such that $\operatorname{cf}(\alpha) \geq \kappa$, then there is $\beta^{*}<\mu^{*}$ such that, for every $\beta^{*} \leq \beta<\mu^{*},\left[M_{\alpha, \beta}\right]^{<\kappa} \cap M_{\alpha}$ is cofinal in $\left(\left[M_{\alpha, \beta}\right]^{<\kappa}, \subseteq\right)$.

Since $\mu^{*}<\kappa$, the condition above is equivalent to:
$\left(\mathrm{j} 3^{*}\right)$ if $\alpha<\mu^{+}$is such that $\operatorname{cf}(\alpha) \geq \kappa$, then there is $\beta^{*}<\mu^{*}$ such that, for every $\beta^{*} \leq \beta<\mu^{*}$, there is $\beta^{\prime}<\mu^{*}$ such that $\left[M_{\alpha, \beta}\right]^{<\kappa} \cap M_{\alpha, \beta^{\prime}}$ is cofinal in $\left(\left[M_{\alpha, \beta}\right]^{<\kappa}, \subseteq\right)$.

Theorem 9. Suppose that κ is a regular cardinal and $\mu>\kappa$ is such that $\mu^{*}=\operatorname{cf}(\mu)<\kappa$. Then $\square_{\kappa, \mu}^{* * *}$ holds if and only if there is a weak (κ, μ) dominating matrix over some/any x.

Proof. For the forward direction the proof is almost the same as that of Theorem 7. We let $\left(\mu_{\beta}\right)_{\beta<\mu^{*}}$ be here merely an increasing sequence of regular cardinals with the limit μ. Then $\left(M_{\alpha, \beta}\right)_{\alpha \in D, \beta<\mu^{*}}$ is constructed just as in the proof of Theorem 7. Lemma 5 is then used to see that $\left(\mathrm{j} 3^{-}\right)$is satisfied by this matrix. For the converse, just the same proof as that of Theorem 8 will do. Theorem 9

Existence of a (weak) dominating matrix is not a theorem in ZFC: we show in Section 4 that Chang's Conjecture for \aleph_{ω} together with $2^{\aleph_{\omega}}=\aleph_{\omega+1}$ implies that there is no ($\aleph_{n}, \aleph_{\omega}$)-dominating matrix for any $n \geq 1$.
3. A characterization of the κ-Freese-Nation property. The following game over a partial ordering P was considered in $[6,7]$. Let $\mathcal{G}^{\kappa}(P)$ be the following game played by Players I and II: in a play in $\mathcal{G}^{\kappa}(P)$, Players I and II choose subsets X_{α} and Y_{α} of P of cardinality less than κ alternately for $\alpha<\kappa$ such that

$$
X_{0} \subseteq Y_{0} \subseteq X_{1} \subseteq Y_{1} \subseteq \ldots \subseteq X_{\alpha} \subseteq Y_{\alpha} \subseteq \ldots \subseteq X_{\beta} \subseteq Y_{\beta} \subseteq \ldots
$$

for $\alpha \leq \beta<\kappa$. Thus a play in $\mathcal{G}^{\kappa}(P)$ looks like
Player I: $X_{0}, X_{1}, \ldots, X_{\alpha}, \ldots$
Player II: $Y_{0}, Y_{1}, \ldots, Y_{\alpha}, \ldots$
where $\alpha<\kappa$. Player II wins the play if $\bigcup_{\alpha<\kappa} X_{\alpha}=\bigcup_{\alpha<\kappa} Y_{\alpha}$ is a κ subordering of P. Let us call a strategy τ for Player II simple if, in τ, each Y_{α} is decided from the information of the set $X_{\alpha} \subseteq P$ alone (i.e. also independent of α).

Another notion we need here is the following generalization of V_{κ}-likeness. Let κ be regular and χ be sufficiently large. For $\mathcal{D} \subseteq\{M \prec \mathcal{H}(\chi)$: $|M|<\kappa\}$, we say that $M \in[\mathcal{H}(\chi)]^{\kappa}$ is \mathcal{D}-approachable if there is an increasing sequence $\left(D_{\alpha}\right)_{\alpha<\kappa}$ of elements of \mathcal{D} such that
(a) $D_{\alpha} \cup\left\{D_{\alpha}\right\} \subseteq D_{\alpha+1}$ for every $\alpha<\kappa$; and
(b) $M=\bigcup_{\alpha<\kappa} D_{\alpha}$.

Clearly $M \prec \mathcal{H}(\chi)$ is V_{κ}-like if and only if M is \mathcal{D}-approachable for $\mathcal{D}=$ $\{M \prec \mathcal{H}(\chi):|M|<\kappa\}$.

A slightly weaker version of the following theorem was announced in [6]:
Theorem 10. Let κ be a regular uncountable cardinal and $\kappa \leq \lambda$. Suppose that
(i) $\left([\mu]^{<\kappa}, \subseteq\right)$ has a cofinal subset of cardinality μ for every μ such that $\kappa<\mu<\lambda$ and $\operatorname{cf}(\mu) \geq \kappa$; and
(ii) $\square_{\kappa, \mu}^{* * *}$ holds for every μ such that $\kappa \leq \mu<\lambda$ and $\operatorname{cf}(\mu)<\kappa$.

Then, for a partial ordering P of cardinality $\leq \lambda$, the following are equivalent:
(1) P has the $\kappa-F N$;
(2) Player II has a simple winning strategy in $\mathcal{G}^{\kappa}(P)$;
(3) for some, or equivalently any sufficiently large χ, and any V_{κ}-like $M \prec \mathcal{H}(\chi)$ with $P, \kappa \in M$, we have $P \cap M \leq{ }_{\kappa} P$;
(4) for some, or equivalently any sufficiently large χ, there is $\mathcal{D} \subseteq$ $[\mathcal{H}(\chi)]^{<\kappa}$ such that \mathcal{D} is cofinal in $[\mathcal{H}(\chi)]^{<\kappa}$ and for any \mathcal{D}-approachable $M \subseteq \mathcal{H}(\chi)$, we have $P \cap M \leq_{\kappa} P$.

Note that $\neg 0^{\#}$ implies the conditions (i) and (ii). Also note that, for every $\lambda<\kappa^{+\omega}$, the condition (i) holds in ZFC. Hence the characterization above holds for partial orderings of cardinality $\leq \kappa^{+\omega}$ without any additional assumptions.

Proof (of Theorem 10). A proof of $(1) \Rightarrow(2) \Rightarrow(3)$ is given in [6]. For $(3) \Rightarrow(4)$, suppose that P satisfies (3). Then P together with $\mathcal{D}=\{M \prec$ $\mathcal{H}(\chi):|M|<\kappa, P, \kappa \in M\}$ satisfies (4). The proof of (4) $\Rightarrow(1)$ is done by induction on $\nu=|P| \leq \lambda$. If $\nu \leq \kappa$, then P has the κ-FN by Lemma 1. For $\nu>\kappa$, let P and \mathcal{D} be as in (4) and assume that $(4) \Rightarrow(1)$ holds for every partial ordering of cardinality $<\nu$. We need the following claims:

Claim 10.1. Let χ^{*} be sufficiently large above χ. Suppose that M is an elementary submodel of $\mathcal{H}\left(\chi^{*}\right)$ such that $P, \mathcal{H}(\chi), \mathcal{D} \in M, \kappa+1 \subseteq M$ and $[M]^{<\kappa} \cap M$ is cofinal in $[M]^{<\kappa}$ with respect to \subseteq. Then $P \cap M \leq{ }_{\kappa} P$.
\vdash Suppose not. Then there is $b \in P$ such that either
(a) $(P \cap M) \upharpoonright b$ has no cofinal subset of cardinality $<\kappa$; or
(b) $(P \cap M) \uparrow b$ has no coinitial subset of cardinality $<\kappa$.

To be definite, assume that we have case (a) -for case (b), just the same argument will do. We can construct an increasing sequence $\left(N_{\alpha}\right)_{\alpha<\kappa}$ of elements of \mathcal{D} such that
(c) $N_{\alpha} \in M$ and $\left|N_{\alpha}\right|<\kappa$ for $\alpha<\kappa$ (since $\kappa+1 \subseteq M$, it follows that $\left.N_{\alpha} \subseteq M\right) ;$
(d) $N_{\alpha} \in N_{\alpha+1}$ for every $\alpha<\kappa$;
(e) $\left(P \cap N_{\alpha}\right) \upharpoonright b$ is not cofinal in $\left(P \cap N_{\alpha+1}\right) \upharpoonright b$ for every $\alpha<\kappa$.

Then $N=\bigcup_{\alpha<\kappa} N_{\alpha}$ is a \mathcal{D}-approachable elementary submodel of $\mathcal{H}(\chi)$ by (c) and (d). Hence, by (4), we have $P \cap M \leq_{\kappa} P$. But, by (e), $(P \cap N) \upharpoonright b$ has no cofinal subset of cardinality $<\kappa$. This is a contradiction.

To see that the construction of N_{γ} is possible at a limit $\gamma<\kappa$, assume that $N_{\alpha}, \alpha<\gamma$, have been constructed in accordance with (c), (d) and (e). Let $N^{\prime}=\bigcup_{\alpha<\gamma} N_{\alpha}$. By (c), we have $N^{\prime} \subseteq M$ and $\left|N^{\prime}\right|<\kappa$. Since $[M]^{<\kappa} \cap M$ is cofinal in $[M]^{<\kappa}$, there is some $N^{\prime \prime} \in M$ such that $N^{\prime} \subseteq N^{\prime \prime} \subseteq \mathcal{H}(\chi)$ and $\left|N^{\prime \prime}\right|<\kappa$. Hence by elementarity of M and by $\mathcal{D} \in M$ there is $N^{\prime \prime \prime} \in M \cap \mathcal{D}$ such that $N^{\prime \prime} \subseteq N^{\prime \prime \prime}$. Clearly, we may let $N_{\gamma}=N^{\prime \prime \prime}$. For the construction at
a successor step, assume that N_{α} have been chosen in accordance with (c), (d) and (e). By assumption, there is $c \in(P \cap M) \upharpoonright b$ such that there is no $c^{\prime} \in$ $\left(P \cap N_{\alpha}\right) \upharpoonright b$ with $c \leq c^{\prime}$. By elementarity of M there is $N^{*} \in M \cap \mathcal{D}$ such that $N_{\alpha} \cup\left\{N_{\alpha}, c\right\} \subseteq N^{*}$ and $\left|N^{*}\right|<\kappa$. Then $N_{\alpha+1}=N^{*}$ is as desired. $\dashv_{\text {Claim 10.1 }}$

Claim 10.2. If $Q \leq_{\kappa} P$, then for every \mathcal{D}-approachable $M \prec \mathcal{H}(\chi)$ with $Q \in M$ we have $Q \cap M \leq_{\kappa} Q$. In particular, such a Q also satisfies condition (4).
\vdash Let $M \prec \mathcal{H}(\chi)$ be \mathcal{D}-approachable with $Q \in M$. By assumption, we have $P \cap M \leq_{\kappa} P$. By elementarity of M and since $Q \in M$, we have $Q \cap M \leq_{\kappa} P \cap M$. It follows that $Q \cap M \leq_{\kappa} P$ and hence $Q \cap M \leq_{\kappa} Q$. Now, let $\mathcal{D}_{0}=\{M \in \mathcal{D}: Q \in M\}$. Then it is clear that Q satisfies (4) with \mathcal{D}_{0} in place of $\mathcal{D} . \dashv_{\text {Claim } 10.2}$

Now we are ready to prove the induction steps.
Case I: ν is a limit cardinal or $\nu=\mu^{+}$with $\operatorname{cf}(\mu) \geq \kappa$. Let $\nu^{*}=\operatorname{cf} \nu$. Then, by (i), we can find an increasing sequence $\left(M_{\alpha}\right)_{\alpha<\nu^{*}}$ of elementary submodels of $\mathcal{H}\left(\chi^{*}\right)$ such that, for every $\alpha<\nu^{*},\left|M_{\alpha}\right|<\nu$ and M_{α} satisfies the conditions in Claim 10.1; and $P \subseteq \bigcup_{\alpha<\nu^{*}} M_{\alpha}$. By Claim 10.1, $P \cap M_{\alpha} \leq_{\kappa}$ P for every $\alpha<\nu^{*}$. For $\alpha<\nu^{*}$ let

$$
P_{\alpha}= \begin{cases}P \cap M_{\alpha} & \text { if } \alpha \text { is a successor, } \\ P \cap\left(\bigcup_{\beta<\alpha} M_{\beta}\right) & \text { otherwise. }\end{cases}
$$

Then $\left(P_{\alpha}\right)_{\alpha<\nu^{*}}$ is a continuously increasing sequence of suborderings of P such that $\left|P_{\alpha}\right|<\nu$ for every $\alpha<\nu^{*}$ and $P=\bigcup_{\alpha<\nu^{*}} P_{\alpha}$. We also have $P_{\alpha} \leq_{\kappa} P$ for every $\alpha<\nu^{*}$: for a successor $\alpha<\nu^{*}$ this is clear. If a limit $\alpha<\nu^{*}$ has cofinality $<\kappa$ then P_{α} can be represented as the union of an increasing sequence of $<\kappa$ many κ-subordering of P and hence $P_{\alpha} \leq_{\kappa} P$. If $\alpha<\nu^{*}$ is a limit with cofinality $\geq \kappa$, then $P_{\alpha}=P \cap M$ where $M=\bigcup_{\beta<\alpha} M_{\beta}$. Now it is clear that M satisfies the conditions in Claim 10.1. Hence we again obtain $P_{\alpha}=P \cap M \leq_{\kappa} P$. Now, by Claim 10.2, each of $P_{\alpha}, \alpha<\nu^{*}$, satisfies condition (4) and hence, by the induction hypothesis, has the κ-FN. Thus, by Lemma $2, P$ also has the κ-FN.

Case II: $\nu=\mu^{+}$with $\operatorname{cf}(\mu)<\kappa$. Let $\mu^{*}=\operatorname{cf}(\mu)$. Without loss of generality we may assume that the underlying set of P is ν. By Theorem 7 , there is a (κ, μ)-dominating matrix $\left(M_{\alpha, \beta}\right)_{\alpha<\nu, \beta<\mu^{*}}$ over $(P, \mathcal{H}(\chi))$. For $\alpha<\nu$ and $\beta<\mu^{*}$, let $P_{\alpha, \beta}=P \cap M_{\alpha, \beta}$ and $P_{\alpha}=\bigcup_{\beta<\mu^{*}} P_{\alpha, \beta}$. By (j4), the sequence $\left(P_{\alpha}\right)_{\alpha<\nu}$ is continuously increasing and $\bigcup_{\alpha<\nu} P_{\alpha}=P .\left|P_{\alpha}\right| \leq \mu$ for every $\alpha<\nu$ by (j 1).

Claim 10.3. $P_{\alpha} \leq_{\kappa} P$ for every $\alpha<\nu$.
\vdash For $\alpha<\nu$ such that $\operatorname{cf}(\alpha) \geq \kappa$, we have $P_{\alpha, \beta} \leq_{\kappa} P$ for every sufficiently large $\beta<\mu^{*}$ by (j3) and Claim 10.1. Since $\mu^{*}<\kappa$, it follows that $P_{\alpha} \leq_{\kappa} P$.

If $\operatorname{cf}(\alpha)<\kappa$, then, by the argument above, we have $P_{\alpha^{\prime}} \leq_{\kappa} P$ for every $\alpha^{\prime}<\alpha$ with $\operatorname{cf}\left(\alpha^{\prime}\right) \geq \kappa$. Since a P_{α} can be represented as the union of $<\kappa$ such $P_{\alpha^{\prime}}$'s, it follows again that $P_{\alpha} \leq_{\kappa} P . \dashv_{\text {Claim } 10.3}$

Now, by Claim 10.2, each of $P_{\alpha}, \alpha<\nu$, satisfies the condition of (4). Hence, by the induction hypothesis, they have the κ-FN. By Lemma 2, it follows that P also has the κ-FN. ©Theorem 10

Corollary 11. Suppose that κ and λ satisfy (i), (ii) in Theorem 10 and $2^{<\kappa}=\kappa$. Then:
(a) Every κ-cc complete Boolean algebra of cardinality $\leq \lambda$ has the κ-FN.
(b) For any μ such that $\mu^{<\kappa} \leq \lambda$, the partial ordering $\left([\mu]^{<\kappa}, \subseteq\right)$ has the κ-FN.

Proof. Let χ be sufficiently large. For (a), let B be a κ-cc complete Boolean algebra. We show that B satisfies (3) of Theorem 10. Let $M \prec \mathcal{H}(\chi)$ be V_{κ}-like with $B, \kappa \in M$. By $2^{<\kappa}=\kappa$, Lemma 6 and by the remark after the lemma, we have $[M]^{<\kappa} \subseteq M$. Hence $B \cap M$ is a complete subalgebra of B. It follows that $B \cap M \leq_{\kappa} M$. For (b), let $M \prec \mathcal{H}(\chi)$ be V_{κ}-like with $\lambda, \kappa \in M$. Then as above we have $[M]^{<\kappa} \subseteq M$. Hence, letting $X=\lambda \cap M$, we have $[\lambda]^{<\kappa} \cap M=[X]^{<\kappa} \leq_{\kappa}[\lambda]^{<\kappa}$. Corollary 11
4. Chang's Conjecture for \aleph_{ω}. Recall that $(\kappa, \lambda) \rightarrow(\mu, \nu)$ is the following assertion:

For any structure $\mathcal{A}=(A, U, \ldots)$ of countable signature with $|A|=$ $\kappa, U \subseteq A$ and $|U|=\lambda$, there is an elementary substructure $\mathcal{A}^{\prime}=$ $\left(A^{\prime}, U^{\prime}, \ldots\right)$ of \mathcal{A} such that $\left|A^{\prime}\right|=\mu$ and $\left|U^{\prime}\right|=\nu$.
In [13], a model of ZFC + GCH + Chang's Conjecture for \aleph_{ω}, i.e. $\left(\aleph_{\omega+1}, \aleph_{\omega}\right)$ $\rightarrow\left(\aleph_{1}, \aleph_{0}\right)$, is constructed starting from a model with a cardinal having a property slightly stronger than huge. The following theorem together with Corollary 11 shows that the \aleph_{1}-FN of the partial ordering ($\left[\aleph_{\omega}\right]^{\aleph_{0}}, \subseteq$) is independent of ZFC (or even of ZFC +GCH).

Theorem 12. Suppose that $\left(\aleph_{\omega}\right)^{\aleph_{0}}=\aleph_{\omega+1}$ and $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$. Then $\left(\left[\aleph_{\omega}\right]^{\aleph_{0}}, \subseteq\right)$ does not have the $\aleph_{1}-F N$.

Proof. Assume to the contrary that there is an \aleph_{1}-FN mapping F : $\left[\aleph_{\omega}\right]^{\aleph_{0}} \rightarrow\left[\left[\aleph_{\omega}\right]^{\aleph_{0}}\right]^{\aleph_{0}}$. Fix an enumeration $\left(b_{\alpha}\right)_{\alpha<\aleph_{\omega+1}}$ of $\left[\aleph_{\omega}\right]^{\aleph_{0}}$ and consider the structure

$$
\mathcal{A}=\left(\aleph_{\omega+1}, \aleph_{\omega}, \leq, E, f, g, h\right)
$$

where
(1) \leq is the canonical ordering on $\aleph_{\omega+1}$;
(2) $E=\left\{(\alpha, \beta): \alpha \in \aleph_{\omega}, \beta \in \aleph_{\omega+1}, \alpha \in b_{\beta}\right\}$;
(3) $f: \aleph_{\omega+1} \times \aleph_{\omega+1} \rightarrow \aleph_{\omega+1}$ is such that, for each $\alpha \in \aleph_{\omega+1}, F\left(b_{\alpha}\right)=$ $\left\{b_{f(\alpha, n)}: n \in \omega\right\}$;
(4) $g: \aleph_{\omega+1} \times \aleph_{\omega+1} \rightarrow \aleph_{\omega}$ is such that, for each $\alpha \in \aleph_{\omega+1}, g(\alpha, \cdot) \upharpoonright \alpha$ is an injective mapping from α to \aleph_{ω}; and
(5) $h: \aleph_{\omega+1} \times \aleph_{\omega+1} \times \aleph_{\omega+1} \rightarrow \omega+1$ is such that for each $\alpha, \beta \in \aleph_{\omega+1}$, $h(\alpha, \beta, \cdot) \upharpoonright\left(b_{\alpha} \cap b_{\beta}\right)$ is injective.

Note that, by (5) and since ω is definable in \mathcal{A}, we can express " $b_{\alpha} \cap b_{\beta}$ is finite" as a formula $\varphi(\alpha, \beta)$ in the language of \mathcal{A}. Now, applying Chang's Conjecture for \mathcal{A} with $A=\aleph_{\omega+1}$ and $U=\aleph_{\omega}$, we obtain an elementary substructure $\mathcal{A}^{\prime}=\left(A^{\prime}, U^{\prime}, \leq^{\prime}, E^{\prime}, f^{\prime}, g^{\prime}, h^{\prime}\right)$ of \mathcal{A} such that $\left|A^{\prime}\right|=\aleph_{1}$ and $\left|U^{\prime}\right|=\aleph_{0}$.

Claim 12.1. otp $\left(A^{\prime}\right)=\omega_{1}$.
\vdash By (4) and elementarity of \mathcal{A}^{\prime}, every initial segment of A^{\prime} can be mapped into U^{\prime} injectively and hence is countable. Since $\left|A^{\prime}\right|=\aleph_{1}$, it follows that otp $\left(A^{\prime}\right)=\omega_{1} . \dashv_{\text {Claim }} 12.1$

Claim 12.2. For any $\alpha<\aleph_{\omega+1}$, there is $\gamma<\aleph_{\omega+1}$ such that $b_{\beta} \cap b_{\gamma}$ is finite for every $\beta<\alpha$.
\vdash Since $|\alpha| \leq \aleph_{\omega}$, we can find a partition $\left(I_{n}\right)_{n \in \omega}$ of α such that $\left|I_{n}\right|<\aleph_{\omega}$ for every $n<\omega$. For $n<\omega$, let $\eta_{n}=\min \left(\aleph_{\omega} \backslash \bigcup\left\{b_{\xi}: \xi \in \bigcup_{m<n} I_{m}\right\}\right)$. Let $z=\left\{\eta_{n}: n \in \omega\right\}$ and $\gamma<\aleph_{\omega+1}$ be such that $b_{\gamma}=z$. For any $\beta<\alpha$, if $\beta \in I_{m_{0}}$ for some $m_{0}<\omega$, then $b_{\beta} \cap b_{\gamma} \subseteq\left\{\eta_{n}: n<m_{0}\right\}$. Thus this γ is as desired. $\dashv_{\text {Claim } 12.2}$

Claim 12.3. For any countable $I \subseteq A^{\prime}$, there is $\gamma \in A^{\prime}$ such that $b_{\beta} \cap b_{\gamma}$ is finite for every $\beta \in I$.
\vdash By Claim 12.1, there is $\alpha \in A^{\prime}$ such that $I \subseteq \alpha$. By elementarity of \mathcal{A}^{\prime}, the formula with the parameter α expressing the assertion of Claim 12.2 for this α holds in \mathcal{A}^{\prime}. Hence there is some $\gamma \in A^{\prime}$ such that $b_{\beta} \cap b_{\gamma}$ is finite for every $\beta \in A^{\prime} \cap \alpha$. $\dashv_{\text {Claim }} 12.3$

Let

$$
I=\left\{\xi \in A^{\prime}: b_{\xi} \in F\left(U^{\prime}\right)\right\}
$$

Then I is countable. Hence, by Claim 12.3 , there is $\gamma \in A^{\prime}$ such that $b_{\beta} \cap b_{\gamma}$ is finite for every $\beta \in I$. As $b_{\gamma} \subseteq U^{\prime}$ (this holds in virtue of $h(\gamma, \gamma, \cdot)$), there is $b \in F\left(b_{\gamma}\right) \cap F\left(U^{\prime}\right)$ such that $b_{\gamma} \subseteq b \subseteq U^{\prime}$. Let $b=b_{\xi_{0}}$. Then $\xi_{0} \in I$ and $\left|b_{\gamma} \cap b_{\xi_{0}}\right|=\left|b_{\gamma}\right|=\aleph_{0}$. This is a contradiction to the choice of γ. ©Theorem 12

We do not know if the assumption of Theorem 12 yields a counterexample to Corollary 11 (a) for $\kappa=\aleph_{1}$. Or, more generally:

Problem 2. Is there a model of $\mathrm{ZFC}+\mathrm{GCH}$ where some ccc complete Boolean algebra does not have the $\aleph_{1}-F N$?

Of course, we need the consistency strength of some large cardinal to obtain such a model by Corollary 11.

The following corollary slightly improves Theorem 4.1 of [3].
Corollary 13. Suppose that $\left(\aleph_{\omega}\right)^{\aleph_{0}}=\aleph_{\omega+1}$ and $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$. Then the equivalence of the assertions in Theorem 10 fails. Hence we have $\neg \square_{\aleph_{1}, \aleph_{\omega}}^{* * *}$ under these assumptions.

Proof. By Theorem 12 and Corollary 11(b). © Corollary 13
Similarly we can prove $\neg \square_{\aleph_{n}, \aleph_{\omega}}^{* * *}$ for every $n \in \omega$ under the assumption of $2^{\aleph}{ }^{\omega}=\aleph_{\omega+1}$ and $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.
5. Cohen models. Let V be our ground model and let G be a V generic filter over $P=\operatorname{Fn}(\tau, 2)$ for some τ. Suppose that B is a ccc complete Boolean algebra in $V[G]$. Without loss of generality we may assume that the underlying set of B is a set X in $V . B$ is said to be tame if there is a P-name $\dot{\leq}$ of partial ordering of B and a mapping $t: X \rightarrow[\tau]^{\aleph_{0}}$ in V such that, for every $p \in P$ and $x, y \in X$, if $p \Vdash_{P} " x \dot{\leq} y$ ", then $p \upharpoonright(t(x) \cup t(y)) \Vdash_{P}$ " $x \dot{\leq} y$ ". A lot of "natural" ccc complete Boolean algebras in $V[G]$ are contained in the class of tame Boolean algebras:

Lemma 14. Let G be as above. Suppose that $V[G] \vDash$ " B is a ccc complete Boolean algebra" and either:
(i) there is a Boolean algebra B^{\prime} in V such that B^{\prime} is dense subalgebra of B in $V[G]$; or
(ii) B is the completion of a Suslin forcing in $V[G]$.

Then B is tame.
For Suslin forcing, see e.g. [1].
Theorem 15. Let P, G be as above and λ an infinite cardinal. Assume that, in V,
(i) $\mu^{\aleph_{0}}=\mu$ for every regular uncountable μ such that $\mu<\lambda$; and
(ii) $\square_{\aleph_{1}, \mu}^{* * *}$ holds for every μ such that $\aleph_{0}<\mu<\lambda$ and $\operatorname{cf}(\mu)=\omega$.

Then for any tame ccc complete Boolean algebra B in $V[G]$ of cardinality $\leq \lambda$ we have $V[G] \vDash$ " B has the $\aleph_{1}-F N$ ".

Proof. Let $X, \dot{\leq}$ and t be as in the definition of tameness for B above. We may assume \Vdash_{P} " X is the underlying set of \dot{B} " and \Vdash_{P} " \dot{B} is a ccc complete Boolean algebra" where \dot{B} is a P-name for B. Let χ be sufficiently large. The following is the key lemma to the proof:

Claim 15.1. Suppose that $M \prec \mathcal{H}(\chi)$ is such that $\tau, X, \dot{\leq}, t \in M$ and $[M]^{\aleph_{0}} \subseteq M$. Let $I=\tau \cap M, P^{\prime}=\operatorname{Fn}(I, 2), G^{\prime}=G \cap P^{\prime}, X^{\prime}=X \cap M$ and $\dot{\leq}^{\prime}=\dot{\leq} \cap M$. Then
(a) $\dot{\leq}^{\prime}$ is a P^{\prime}-name, \Vdash_{P} " $B^{\prime}=\left(X^{\prime}, \dot{\leq}^{\prime}\right)$ is a ccc complete Boolean algebra", B^{\prime} is tame (in $V\left[G^{\prime}\right]$) and the infinite sum Σ^{B} in $V[G]$ is an extension of the infinite sum $\Sigma^{B^{\prime}}$ in $V\left[G^{\prime}\right]$.
(b) $\Vdash_{P} "\left(X^{\prime}, \dot{\leq}^{\prime}\right) \leq_{\sigma}(X, \dot{\leq}) "$.
\vdash (a) It is easy to see that $\Vdash_{P^{\prime}}$ " $\left(X^{\prime}, \dot{\leq}^{\prime}\right)$ is a Boolean algebra" and \Vdash_{P} " $\left(X^{\prime}, \dot{\leq}^{\prime}\right)$ is a subalgebra of $(X, \dot{\leq})$ ". Since \Vdash_{P} " $(X, \dot{\leq})$ has the ccc", it follows that $\Vdash_{P^{\prime}}$ " $\left(X^{\prime}, \dot{\leq}^{\prime}\right)$ has the ccc". By elementarity of M, it is also easy to see that $t \upharpoonright X^{\prime}$ witnesses the tameness of B^{\prime} in $V\left[G^{\prime}\right]$. To see that $\Vdash_{P^{\prime}}$ " $\left(X^{\prime}, \dot{\leq}^{\prime}\right)$ is complete" it is enough to see that every countable subset of B^{\prime} has its supremum in $V\left[G^{\prime}\right]$. Let \dot{C} be a P^{\prime}-name of countable subset of X^{\prime}. Without loss of generality, we may assume that \dot{C} is countable and consists of sets of the form (p, \check{x}) where $p \in P^{\prime}$ and $x \in X^{\prime}$. Since $[M]^{\aleph_{0}} \subseteq M$, $\dot{C} \in M$. Clearly, we have $M \vDash$ " \dot{C} is a P-name of countable subset of X ". Hence, $M \vDash " \exists p \in P \exists y \in X\left(p \Vdash_{P} " \Sigma \dot{C}=y "\right) "$. Let $p \in P$ and $y \in X$ be such elements of M. Then $p \in P^{\prime}$ and $y \in X^{\prime}$. By elementarity of M, we have $p \Vdash_{P}$ " $\Sigma^{B} \dot{C}=y$ ". On the other hand, from $M \vDash " p \Vdash_{P} " \Sigma \dot{C}=y " "$ it follows that $p \Vdash_{P^{\prime}} " \Sigma^{B^{\prime}} \dot{C}=y$ ".
(b) By assumption, for $x \in X$ and $y \in X^{\prime}$, we have $y \leq x$ in $V[G]$ if and only if there is $p \in G$ with $\operatorname{dom}(p) \subseteq t(x) \cup t(y)$ such that $p \Vdash_{P}$ " $y \leq x$ ". For $q \in G \cap \operatorname{Fn}(t(y), 2)$, the set $U_{q}=\left\{y \in X^{\prime}: \exists p \in G^{\prime}\left(p \cup q \Vdash_{P} " y \leq x "\right)\right\}$ is in $V\left[G^{\prime}\right]$. Hence, by (a), $\Sigma^{B} U_{q}$ is an element in B^{\prime}. Since X^{\prime} is closed under t, it follows that $\left\{\Sigma^{B} U_{q}: q \in G \cap \operatorname{Fn}(t(y), 2)\right\}$ is cofinal in $B^{\prime} \upharpoonright y$. $\dashv_{\text {Claim } 15.1}$

Now, let $\nu=|X|$. Without loss of generality, we may assume that $X=\nu$. We show by induction on ν that \Vdash_{P} " \dot{B} has the \aleph_{1}-FN". For $\nu \leq \aleph_{1}$ the assertion follows from Lemma 1 (applied in V^{P}). In the induction steps, we mimic the proof of Theorem 10. Let χ be sufficiently large.

Case I: ν is a limit cardinal or $\nu=\mu^{+}$for some μ with $\operatorname{cf}(\mu) \geq \omega_{1}$. By (i), we can construct a continuously increasing sequence $\left(M_{\alpha}\right)_{\alpha<\nu}$ of elementary submodels of $\mathcal{H}(\chi)$ such that
(0) $\tau, \nu, \dot{\leq}, t \in M_{0}$;
(1) $\left|M_{\alpha}\right|<\nu$ for every $\alpha<\nu$;
(2) $\left[M_{\alpha+1}\right]^{\aleph_{0}} \subseteq M_{\alpha+1}$ for every $\alpha<\nu$ (note that it follows that the inclusion also holds for every limit $<\nu$ of cofinality $\geq \omega_{1}$); and
(3) $\nu \subseteq \bigcup_{\alpha<\nu} M_{\alpha}$.

For each $\alpha<\nu$, let $X_{\alpha}=X \cap M_{\alpha}$ and $\dot{\leq}^{\alpha}=\dot{\leq} \cap M_{\alpha}$ and let \dot{B}_{α} be the P-name corresponding to $\left(X_{\alpha}, \dot{\leq}^{\alpha}\right)$. By Claim 15.1, we have \Vdash_{P} " \dot{B}_{α} is a ccc complete Boolean algebra and $\dot{B}_{\alpha} \leq_{\aleph_{1}} \dot{B}$ ", for all $\alpha<\nu$ such that either α is a successor or of cofinality $\geq \omega_{1}$. By the induction hypothesis, we have \Vdash_{P} " \dot{B}_{α} has the $\aleph_{1}-\mathrm{FN}$ " for such α 's. Hence by Lemma 2
and the remark after the lemma (applied in V^{P}) it follows that \Vdash_{P} " \dot{B} has the \aleph_{1}-FN".

Case II: $\nu=\mu^{+}$for a μ with $\operatorname{cf}(\mu)=\omega$. By (ii), there is an $\left(\aleph_{1}, \mu\right)$ dominating matrix $\left(M_{\alpha, n}\right)_{\alpha<\nu, n<\omega}$ over $(\tau, \nu, \dot{\leq}, t)$. For $\alpha<\nu$, let $M_{\alpha}=$ $\bigcup_{n<\omega} M_{\alpha, n}$. For $\alpha<\nu$ and $n<\omega$, let $X_{\alpha, n}=X \cap M_{\alpha, n}, \dot{\leq}^{\alpha, n}=\dot{\leq} \cap$ $M_{\alpha, n}$ and $\dot{B}_{\alpha, n}$ be the P-name corresponding to ($X_{\alpha, n}, \dot{\leq}^{\alpha, n}$). Likewise, let $X_{\alpha}=X \cap M_{\alpha}, \dot{\leq}^{\alpha}=\dot{\leq} \cap M_{\alpha}$ and \dot{B}_{α} be the P-name corresponding to $\left(X_{\alpha}, \dot{\leq}^{\alpha}\right)$. Then we have $X_{\alpha}=\bigcup_{n<\omega} X_{\alpha, n}, \dot{\leq}^{\alpha}=\bigcup_{n<\omega} \dot{\leq}^{\alpha, n}$ and \Vdash_{P} " $\dot{B}_{\alpha}=\bigcup_{n<\omega} \dot{B}_{\alpha, n}$ ". By Lemma 6 and (i), ($\mathrm{j} 3^{\prime}$) holds for the dominating matrix. Hence, by Claim 15.1, we have $\Vdash_{P} " \dot{B}_{\alpha, n} \leq_{\aleph_{1}} \dot{B}_{\alpha}$ and $\dot{B}_{\alpha, n}$ is a ccc complete Boolean algebra" for every $\alpha<\nu$ with $\operatorname{cf}(\alpha)>\omega$ and every sufficiently large $n<\omega$. By the induction hypothesis, it follows that \Vdash_{P} " $\dot{B}_{\alpha, n}$ has the \aleph_{1}-FN" for such α and n. By Lemma $2\left(\right.$ applied in $\left.V^{P}\right)$ it follows that \Vdash_{P} " \dot{B}_{α} has the \aleph_{1}-FN" for every $\alpha<\nu$ with $\operatorname{cf}(\alpha)>\omega$. Hence again by Lemma 2 and the remark after it (applied in V^{P}) we conclude that \Vdash_{P} " \dot{B} has the \aleph_{1}-FN". ©Theorem 15

Corollary 16. Suppose that $V=L$ holds and let G be V-generic over $P=\operatorname{Fn}(\tau, 2)$ for some τ. Then (among others) the following ccc complete Boolean algebras have the $\aleph_{1}-F N: \mathcal{C}_{\kappa}(\cong$ the completion of $\operatorname{Fn}(\kappa, 2))$ for any $\kappa ; \mathcal{P}(\omega)$ (hence also $\mathcal{P}(\omega) /$ fin $)$; Borel $(\mathbb{R}) /$ Null-sets.

In connection with Theorem 15, we would like to mention the following open problems:

Problem 3. Assume that $V[G]$ is a model obtained by adding Cohen reals to a model of $\mathrm{ZFC}+\mathrm{CH}$. Is it true that $\mathcal{P}(\omega)$ has the $\aleph_{1}-F N$ in $V[G]$?

By Theorem 15, the answer to this question is positive if the number of Cohen reals added is less than \aleph_{ω}.

Problem 4. Does Theorem 15 hold also without the assumption of tameness?

Or, more generally:
Problem 5. Are the following equivalent?
(i) $\mathcal{P}(\omega)$ has the $\aleph_{1}-F N$;
(ii) every ccc complete Boolean algebra has the $\aleph_{1}-F N$.
6. Lusin gap. For a regular κ, an almost disjoint family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ is said to be a κ-Lusin gap if $|\mathcal{A}|=\kappa$ and for any $x \in[\omega]^{\aleph_{0}}$ either $\left|\left\{a \in \mathcal{A}:|a \backslash x|<\aleph_{0}\right\}\right|<\kappa$ or $\left|\left\{a \in \mathcal{A}:|a \cap x|<\aleph_{0}\right\}\right|<\kappa$.

Theorem 17. Assume that $\mathcal{P}(\omega)$ has the $\aleph_{1}-F N$. Then there is no \aleph_{2} Lusin gap.

Proof. Let $f: \mathcal{P}(\omega) \rightarrow[\mathcal{P}(\omega)]^{\aleph_{0}}$ be an \aleph_{1}-FN mapping. We may assume that $f(a)=f(b)=f(\omega \backslash b)$ for all $a, b \in \mathcal{P}(\omega)$ with $a=^{*} b$. Thus $x \subseteq^{*} y$ implies that there is $z \in f(x) \cap f(y)$ such that $x \subseteq^{*} z \subseteq^{*} y$, and $|x \cap y|<\aleph_{0}$ implies that there is $z \in f(x) \cap f(y)$ such that $x \subseteq^{*} z$ and $|z \cap y|<\aleph_{0}$.

Suppose that $\mathcal{A}=\left\{a_{\alpha}: \alpha<\omega_{2}\right\}$ is an almost disjoint family of subsets of ω. We show that \mathcal{A} is not an \aleph_{2}-Lusin gap. Let χ be a sufficiently large regular cardinal and consider the model $\mathcal{H}=(\mathcal{H}(\chi), \in, \unlhd)$ where \unlhd is any well-ordering on \mathcal{H}. Let N be an elementary submodel of \mathcal{H} such that $\mathcal{A}, f \in N, N \cap \omega_{2} \in \omega_{2}$ and $\operatorname{cf}(\delta)=\omega_{1}$ for $\delta=N \cap \omega_{2}$. For $\alpha \in N$ we have $\left|a_{\alpha} \cap a_{\delta}\right|<\aleph_{0}$ and hence $a_{\alpha} \subseteq^{*}\left(\omega \backslash a_{\delta}\right)$. Thus there is $b_{\alpha} \in f\left(a_{\alpha}\right) \cap f\left(a_{\delta}\right)$ such that $a_{\alpha} \subseteq^{*} b_{\alpha} \subseteq^{*} \omega \backslash a_{\delta}$. Since $f\left(a_{\delta}\right)$ is countable and $\operatorname{cf}(\delta)=\omega_{1}$ there is $b \in f\left(a_{\delta}\right)$ such that $I=\left\{\alpha<\delta: b_{\alpha}=b\right\}$ is cofinal in δ. We show that b witnesses that \mathcal{A} is not an \aleph_{2}-Lusin gap, i.e., $J=\left\{\alpha<\omega_{2}: a_{\alpha} \subseteq^{*} b\right\}$ and $K=\left\{\alpha<\omega_{2}:\left|b \cap a_{\alpha}\right|<\aleph_{0}\right\}$ both have cardinality \aleph_{2}.

Claim 17.1. $|J|=\aleph_{2}$.
\vdash First note that $b \in N$ since $b \in f\left(a_{\alpha}\right)$ for any $\alpha \in I \subseteq N$. Hence $J \in N$ and $I \subseteq J$. Since I is cofinal in $N \cap \omega_{2}$, we have $N \vDash$ " J is cofinal in ω_{2} ". By elementarity it follows that $\mathcal{H} \vDash$ " J is cofinal in ω_{2} ". Hence J is really cofinal in $\omega_{2} . \dashv_{\text {Claim }} 17.1$

Claim 17.2. $|K|=\aleph_{2}$.
\vdash Since $b \in N$ it follows that $K \in N$. For $\beta \in N \cap \omega_{2}=\delta$, we have $\mathcal{H} \vDash " \delta \in K \wedge \beta<\delta$ ". Hence $\mathcal{H} \vDash " K \nsubseteq \beta$ " and $N \vDash " K \nsubseteq \beta$ " by elementarity. It follows that $N \vDash$ " K is unbounded in ω_{2} ". Hence, again by elementarity, $\mathcal{H} \vDash$ " K is unbounded in ω_{2} ". Thus K is really unbounded in $\omega_{2} \cdot \dashv_{\text {Claim } 17.2}$ ■Theorem 17

Corollary 18. $\mathbf{b}=\aleph_{1}$ or even the statement " $\mathcal{P}(\omega)$ does not contain any strictly increasing \subseteq^{*}-chain of length ω_{2} " does not imply that $\mathcal{P}(\omega)$ has the $\aleph_{1}-F N$.

Proof. Suppose that our ground model V satisfies the CH. Koppelberg and Shelah [11] proved that the forcing with $\operatorname{Fn}\left(\omega_{2}, 2\right)$ can be represented as a two-step iteration $A * \dot{B}$ where \Vdash_{A} " $\mathcal{P}(\omega)$ contains an \aleph_{2}-Lusin gap". Thus, by Theorem 17, we have \Vdash_{A} " $\mathcal{P}(\omega)$ does not have the $\aleph_{1}-\mathrm{FN}$ ". On the other hand, we have $\Vdash_{A * \dot{B}}$ " $\mathcal{P}(\omega)$ does have the \aleph_{1}-FN" by Theorem 15. Hence $\Vdash_{A * \dot{B}}$ "there is no strictly increasing \subseteq^{*}-chain in $\mathcal{P}(\omega)$ of length ω_{2} ". It follows that \Vdash_{A} "there is no strictly increasing \subseteq^{*}-chain in $\mathcal{P}(\omega)$ of length ω_{2} ". Corollary 18

References

[1] T. Bartoszyński and H. Judah, Set Theory: on the structure of the real line, A K Peters, 1995.
[2] S. Ben-David and M. Magidor, The weakis really weaker than fullJ. Symbolic Logic 51 (1986), 1029-1033.
[3] M. Foreman and M. Magidor, A very weak square principle, preprint.
[4] M. Foreman, M. Magidor and S. Shelah, Martin's maximum, saturated ideals, and non-regular ultrafilters I, Ann. of Math. (2) 127 (1988), 1-47.
[5] R. Freest and J. B. Nation, Projective lattices, Pacific J. Math. 75 (1978), 93-106.
[6] S. Fuchino, S. Koppelberg and S. Shelah, Partial orderings with the weak Freese-Nation property, Ann. Pure Appl. Logic 80 (1996), 35-54.
[7] —, —, —, A game on partial orderings, Topology Appl. 74 (1996), 141-148.
[8] L. Heindorf and L. B. Shapiro, Nearly Projective Boolean Algebras, Lecture Notes in Math. 1596, Springer, 1994.
[9] R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
[10] S. Koppelberg, Applications of σ-filtered Boolean algebras, preprint.
[11] S. Koppelberg and S. Shelah, Subalgebras of the Cohen algebra do not have to be Cohen, preprint.
[12] K. Kunen, Set Theory, North-Holland, 1980.
[13] J.-P. Levinski, M. Magidor and S. Shelah, On Chang's conjecture for \aleph_{ω}, Israel J. Math. 69 (1990), 161-172.

Institut fur Mathematik II
Free Universität Berlin
14195 Berlin, Germany
E-mail: fuchino@math.fu-berlin.de
Present address:
Department of Computer Sciences
Kitami Institute of Technology
Kitami Hokkaido 090, Japan
E-mail: fuchino@info.kitami-it.ac.jp

Received 29 April 1996;
in revised form 24 May 1996

[^0]: 1991 Mathematics Subject Classification: 03E05, 03E35, 03E55, 06A06, 06 E 05.
 The second author was supported by the Hungarian National Foundation for Scientific Research grant no. 16391.

