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On matrix rapid filters

by

Winfried J u s t (Athens, Ohio) and Peter V o j t á š (Košice)

Abstract. Galois–Tukey equivalence between matrix summability and absolute con-
vergence of series is shown and an alternative characterization of rapid ultrafilters on ω is
derived.

Introduction. Filters (ultrafilters) on the set ω of natural numbers
play an important role in different applications of set theory in real analysis,
functional analysis, topology, dynamical systems and ergodic theory, infinite
combinatorics and complexity theory etc. In other words, filters on ω are
useful whenever some objects are enumerated by natural numbers and we
are interested in their asymptotical behaviour at infinity.

A special example of this sort with applications in analysis was intro-
duced by G. Mokobodzki ([M]): a filter j on ω is said to be rapid if for every
sequence an of positive reals tending to zero, there is an X ∈ j such that
the series

∑
an converges when restricted to the terms with indices in X.

Motivated by this and work of R. Atalla [A] we define a filter j on ω
to be m-rapid if for every positive Toeplitz matrix A with suprema of rows
tending to zero, there is an X ∈ j such that the characteristic function of
X seen as an infinite 0-1 sequence has the matrix limit calculated according
to the matrix A equal to zero (is summed by A to zero).

In [V1] the notion of Galois–Tukey connection between binary relations
was introduced in order to express the combinatorial content of inequalities
between cardinal characteristics of real analysis in a “durable way”, i.e.
interesting also under CH. Note that most of the cardinal characteristics of
real analysis lie between ℵ1 and the continuum, and inequalities between
them are no longer interesting if CH is assumed.
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We extract from the notions of rapid and m-rapid filters two relations
(one between series and subsets of ω and a second one between Toeplitz ma-
trices and subsets of ω). We show that these two relations are Galois–Tukey
equivalent in a special way, namely in both conections the second mapping
is the identity on subsets of ω. This enables us to show that rapid filters
(ultrafilters) are exactly the m-rapid ones. Moreover, this gives “durable”
combinatorial connections between matrix summation and absolute summa-
bility of series.

Connections between matrix summation and divergence of se-
ries. Let R,S be binary relations. Following [V1], we call an ordered pair of
functions (E,F ) a (generalized) Galois–Tukey connection (abbreviated as
GT-connection) from R to S if the following holds:

(a) E : dom(R)→ dom(S);
(b) F : rng(S)→ rng(R);
(c) ∀x ∈ dom(R) ∀v ∈ rng(S) (E(x), v) ∈ S ⇒ (x, F (v)) ∈ R.

The existence of a GT-connection from R to S means that, in a certain
sense, R is simpler than S. Moreover, if we define the bounding number of
R by

b(R) = min{|B| : B ⊆ dom(R) & ∀y ∈ rng(R) ∃x ∈ B ((x, y) 6∈ R)},
and the dominating number of R by

d(R) = min{|D| : D ⊆ rng(R) & ∀x ∈ dom(R) ∃y ∈ D ((x, y) ∈ R)},
then the existence of a GT-connection from R to S implies that b(R) ≥ b(S)
and d(R) ≤ d(S).

Two relations R and S are said to be GT-equivalent if there exist both
a GT-connection from R to S and a GT-connection from S to R.

Let M denote the set of all regular matrices (also called Toeplitz ma-
trices) A = {ai,j}i,j∈ω (i ranging over rows and j over columns) with non-
negative entries and such that the suprema of rows tend to 0. Recall that
a matrix A = {ai,j}i,j∈ω with nonnegative entries is regular if and only if
limi→∞ ai,j = 0 for every j ∈ ω and limi→∞

∑∞
j=0 ai,j = 1. If b : ω → R and

A ∈M, then A-lim b is defined as A-lim b = limi→∞
∑∞
j=0 ai,jb(j). Regular

matrices have the property that for all b : ω → R, if limj→∞ bj = L, then
A-lim b exists and is equal to L.

For X ⊆ ω let cX denote the characteristic function of X. Given A ∈M
we define FA = {X ⊆ ω : A-lim cX = 1}. It is not hard to see that FA is
a proper filter on ω that contains all cofinite sets. Following [A], we define
the support set of A as the set of all ultrafilters in ω∗ that extend FA. Our
requirement that the suprema of rows tend to 0 ensures that the support of
this matrix is a nowhere dense subset of ω∗ (see [R]).
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We define a binary relation TOEP ⊆M× [ω]ω as follows:

(A,X) ∈ TOEP if and only if A-lim
n→∞

cX(n) = 0.

The relation TOEP is the inverse of the relation RLIM restricted to
characteristic functions of subsets of ω (see [V1] for more information about
RLIM ).

As usual, let `1+ = {a ∈ ω[0,∞) :
∑∞
n=0 a(n) < ∞} and c+0 = {a ∈

ω[0,∞) : limn→∞ a(n) = 0}. We shall consider the binary relation CONV ⊆
(c+0 \ `1+)× [ω]ω defined in [V1] by

(a,X) ∈ CONV if and only if
∑

n∈X
an <∞.

In [V1] restrictions of RLIM to various domains were studied, and,
roughly speaking, all b- and d-numbers of them were variants of the split-
ting number s and the refining (reaping) number r. In [V1] it was also
shown that CONV and (ωω,≤∗) are also Galois–Tukey equivalent. Our first
theorem will yield estimates for the bounding and dominating numbers of
TOEP = RLIM−1.

1. Theorem. The relations CONV and TOEP are Galois–Tukey equiv-
alent to each other (and hence also to (ωω,≤∗)).

P r o o f. In both directions, the mappings F of the GT-conections will
be the identity on [ω]ω.

So to show that there exists a GT-connection from TOEP to CONV ,
we have to construct a mapping E : M→ c+0 \`1+ such that for every matrix
A and set X of natural numbers

∑

n∈X
E(A)(n) <∞ implies A-lim cX = 0.

In order to define E, first we define by simultaneous induction two
increasing sequences of natural numbers: (mk)k∈ω (denoting rows) and
(nk)k∈ω (denoting columns). Put m0 = 0, n0 = 1 and having defined mk,
nk find the first row mk+1 > mk for which

∀i ≥ mk+1

(
sup
j∈ω

ai,j <
1

nk2k+1

)
.

Having defined mk+1 find the first column nk+1 > nk such that

∀i ∈ [mk,mk+1)
( ∞∑

j=nk+1

ai,j < 2−k
)
.



180 W. Just and P. Vojtá š

Notice that for k > 1 and i ∈ [mk,mk+1) we have by induction
nk−1−1∑

j=0

ai,j < nk−1
1

nk−12k
=

1
2k
.

Having this we define

E(A)(j) =
log(k + 1)
k + 1

if j ∈ [nk, nk+1).

Now assume X is such that
∑
j∈X E(A)(j) < ∞. We claim that for all

but finitely many k’s, |X ∩ [nk, nk+1)| ≤ k. If not, then there are infinitely
many k’s such that

∑

j∈X
E(A)(j) ≥

∑

j∈[nk,nk+1)∩X
E(A)(j) ≥ (k + 1)

log(k + 1)
k + 1

= log(k + 1)→∞.
Having estimated the size of X ∩ [nk, nk+1] we can estimate the A-limit of
cX . For k > 0 and i ∈ [mk,mk+1) we have

∞∑

j=0

ai,jcX(j) =
nk−1−1∑

j=0

ai,jcX(j) +
nk+1−1∑

j=nk−1

ai,jcX(j) +
∞∑

j=nk+1

ai,jcX(j)

≤ 2−k + 2 · k · 2−k + 2−k ≤ 2(k + 1)2−k

which as expected tends to zero. Thus, the first half of Theorem 1 is proved.
To prove the opposite GT-connection we have to construct a mapping

H : c+0 \`1+ →M with H(a)-lim cX = 0 implying
∑
n∈X a(n) <∞. Again we

construct two sequences (mk)k∈ω and (nk)n⊂,nω of natural numbers, but this
time we arrange that nk = min{n : ∀j ≥ n (aj < 2−k)} and mk+1 = mk +
the number of all k-element subsets of nk+1 \ nk.

Now we are ready to define the matrix H(a). The rows between the mkth
and the mk+1th will be enumerated by k-element subsets of nk+1 \ nk. For
s ∈ [nk+1 \ nk]k we let as,j = 1/k if j ∈ s and 0 otherwise.

2. Claim. Suppose X ∈ [ω]ω is such that H(a)-lim cX = 0. Then

lim
k→∞

|X ∩ [nk, nk+1)|
k

= 0.

P r o o f. Assume towards a contradiction that there are infinitely many
k’s such that |X ∩ [nk, nk+1)| > kε, for some positive ε < 1. For such k,
there is an i ∈ [mk,mk+1) that codes a k-element subset s ⊂ [nk, nk+1] such
that |X ∩ s| ≥ εk. For such i we obtain the following estimate:

∞∑

j=0

ai,jcX(j) > εk
1
k

= ε > 0;
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but this contradicts the assumption that the H(a)-limit of cX is 0. We have
proved Claim 2.

It follows from Claim 2 that for all but finitely many k,
∑

n∈X∩[nk,nk+1)

an < k
1
2k
,

and the latter implies that
∑
n∈X an <∞.

3. Corollary. b(TOEP) = b(CONV ) = b(ωω,≤∗) = b and d(TOEP)
= d(CONV ) = d(ωω,≤∗) = d.

Filters on the set of natural numbers. Now let us present an ap-
plication of Theorem 1. A nonprincipal ultrafilter on ω is called rapid if the
family of functions enumerating elements of F is a dominating family in
(ωω,≤∗). It is known (implicitly in [M]) that an ultrafilter F ∈ ω∗ is rapid
if and only if

(1) ∀a ∈ c+0 ∃X ∈ F
( ∑

n∈X
a(n) <∞

)
.

Let us recall some notions introduced in [V2]. For a ∈ c+0 let Ia = {X ⊆
ω :

∑
n∈X an < ∞} and Ga be the corresponding dual filter. Let δ(Ga) =⋂{A∗ : A ∈ Ga} be the closed nowhere dense subset of ω∗ corresponding

to Ga. Note that the set ω∗ \⋃{δ(Ga) : a ∈ c+0 } is exactly the set of rapid
ultrafilters. In a similar vein, one might investigate those ultrafilters that
omit all δ(FA) in ω∗. Let us define m-rapid filters or m-points as those
ultrafilters in

ω∗ \
⋃
{δ(FA) : A ∈M},

i.e., all F ∈ ω∗ such that

∀A ∈M ∃X ∈ F (A-lim cX = 0).

4. Theorem. The m-points are exactly the rapid ultrafilters.

P r o o f. Suppose F ∈ ω∗ is rapid and let A ∈M. Then E(A) ∈ c+0 \`1+ is
chosen as in the first half of the proof of Theorem 1 and by (1) there exists an
X ∈ F such that

∑
n∈X E(A)(n) <∞. Since (E, id[ω]ω ) is a GT-connection,

(A,X) ∈ TOEP , i.e., A-lim cX = 0. This shows that F is an m-point.
Now suppose F is an m-point and a ∈ c+0 . We want to show that

∃X ∈ F (
∑
n∈X a(n) < ∞). If a ∈ `1+, there is nothing to prove; so as-

sume that a ∈ c+0 \ `1+. Let H : c+0 \ `1+ →M be as in the second half of the
proof of Theorem 1. Since F is an m-point, we can pick X ∈ F such that
H(a)-lim cX = 0. Since (H, id[ω]ω ) is a GT-connection, the latter implies∑
n∈X a(n) <∞. Since a was arbitrary, we have shown that (1) holds, and

thus F is rapid.
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Conclusions and a problem. Let us define Fr = {δ(Ga) : a ∈ c+0 \`1+}.
In [V2] it is proved that d(Fr,⊆) = d, i.e. the portion of ω∗ which is
covered by all nowhere dense sets from Fr is already covered by a subset
of size d. Recall that the Novák number n(ω∗) = n is the minimal size of
a family of nowhere dense subsets of ω∗ which covers the whole ω∗. Notice
that ω2 ≤ n ≤ 2c. This was used in [V2] to prove existence theorems like:
If n > d then there are rapid ultrafilters. Moreover, the structure (Fr,⊆)
considered as a forcing notion (the smaller δ(Ga), the stronger the condition)
is a separative factorization of (c+0 \ `1+,≤∗). Finally, under MA the partial
order RO(Fr,⊆) is isomorphic to RO(P (ω)/fin). Now it is natural to ask
similar questions about FM = {δ(FA) : A ∈ M}. By Theorem 1, for every
A ∈M there is an a with δ(FA) ⊆ δ(Ga) and for every a ∈ c+0 \ `1+ there is
an A ∈ M with δ(Ga) ⊆ δ(FA); hence d(FM ,⊆) = d. On the other hand,
(FM ,⊆) considered as a forcing notion is nontrivial. Note the analogy: The
complexity of (c+0 \ `1+,≤∗) measures the complexity of absolute divergence
in the sense that a dense subset of (c+0 \ `1+,≤∗) yields a set of comparison
tests that allows us to detect the divergence of every divergent series of
positive numbers, whereas a dense subset D ⊆ (FM ,⊆) has the property:
every sequence of 0’s and 1’s containing infinitely many 1’s has A-lim = 1
for some A ∈M with δ(FA) ∈ D. This leads to the following open problem.

5. Question. Is RO(FM ,⊆) isomorphic to RO(P (ω)/fin) = RO(ω∗)
(at least consistently)?
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