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Initial value problem for the time dependent
Schridinger equation on the Heisenberg group

by

JACEK ZIENKIEWICZ (Wroctaw)

Abstract. Let L be the full laplacian on the Heisenberg group H" of arbitrary dimen-
sion n. Then for f € L*(H™) such thas (7 — L)s/zf e LA(H™), a > 3/4, for a ¢ € Ce(H™)
we have
[ 16 sup_ |V po)f de < Oyl -

- DIl

On the other hand, the above maximal estimate fails for 8 < 1/4.If A is the sublaplacian
on the Heisenberg group H", then for every s < 1 there exists a sequence fn € L2 (H™)
and Cn > 0 such that (I — L)*/% fn € L2(H™) and for a ¢ € Cc(H™) we have

[ 16a)] sup [/ n(o)l? o 2 Culldulfys, i, On = 4o
up

8

Introduction. In his lectures Some analytic problems related fo sta-
tistical mechanics [C] Lennart Carleson observed the following. Let H be
a hamiltonian of a quantum system and let Vi be the time dependent
Schrodinger group which describes the time evolution of the system Vi f =
eV—TtH £ Then for a general state f € H although lims..q WVaf — flle =0,
a better convergence like a.e. may not hold. Indeed, Carleson showed that
if H = L?(R) and the hamiltonian H is equal to d? /dz?, then there exists
f € W/8 for which V,f does not converge to f ae. ast — 0. On the other
hand, be proved that if f belongs to the Sobolev space Wi/Ate &> 0, then
limg,o Ve f(z) = f(z) ae.

The last theorem attracted a Jot of attention. In 1983 Michael Cowling
[Cw] put the Carleson theorem in a general framwork.

Let X be a measure space and H a self-adjoint, densely defined operator
on L? (X}, We introduce a scale of Sobolev spaces W¢, s € R, by -

few® iff felI?(X)and |H*?f € L*(X).

1991 Mathematics Subject Clossification: Primary 22F30.
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16 J. Zienkiewicz

THEOREM (M. Cowling, 1983). Suppose f € W* for some s > 1. Then
(%) lim eV"RH p(0) = f(z) ..

In this generality one does not expest the theorem to be true for less
regular functions. Indeed, as we shall show in this paper, for H being the
sublaplacian on the Heisenberg group, Cowling'’s result is sharp. However,
there are a number of results which allow for smaller s’s in the case of some
specific hamiltonians H,

The case of X = R and H = d?/dz? is completely settled. B. E. J. Dahl-
berg and C. E. Kenig [DK] showed that given s < 1/4, there exists f ¢ W@
such that (*) fails. On the other hand, C. E. Kenig and A.. Ruiz [KR)] showed
that if ¢ € C,(R) then

J1(2)| sup |e/ " £(@)[? da < Oyl Fl3yasa,
- o<t
which implies (). . :

But already if X =R? and H = Eﬁzi 82, the known results are not as
sharp. The best are for d = 2. In this case first Per Sjslin [S1] proved (*) for
s = 1/2, then J. Bourgain [B] found a very small but positive § such that
(*) holds for 5 > 1/2 — §. For higher dimension d > 3 Per Sjélin [S1] proved
(%) for s > 1/2 + ¢,

There seems to be no better estimate from below on s which is necessary
for (+) to hold than the one in the case d = 1.

There are a number of papers dealing with this circle of ideas: {S2),
[83], [S8], [V]. All of them deal with hamiltonians which are differential or
pseudodifferential constant coefficient operators on RY, the estimates being
heavily dependent on analysis of the Fourier transform of e¥V—1t# f. Even
though the original lectures of L. Carleson exhibit a physical example where
the hamiltonian is d?/dz? on the circle, other fundamental hamiltonians
like harmonic oscillator or the laplacian or sublaplacian on the Heisenberg
group are not treated. The point is that these operators are not translation
invariant and the Fourier transform technique is not available. For these
cages, however, the Laguerre transform is at hand. First it was applied to
questions in harmonic analysis by A. Hulanicki and F. Ricci [HR], and proved
to be a very efficient tool (see e.g. D. Miiller [M])

Our results are the following:

Let L be the full laplacian on the Heisenberg group H® of arbitrary
dimension n. Then for f € L*(H") such that (I~ L)*/? f € L*(H"), s > 3/4,
for any ¢ € C.(H™) we have

~1tL 2 2
v dz <C .
jH§"|<15(fv)|0~°£1§1|e f(w_)l z < Cyllf |l
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On the other hand, the above maximal estimate fails for s < 1/4.

If A is the sublaplacian on the Heisenberg group H™, then for every s < 1
there exists a sequence f, € L2(H") and C,, > 0 such that (I — L)¥/%f, €
L?(H™) and for ¢ € C.(H") we have

| 16()| sup |V (@) do 2 Cufl fallfys,  lim Cn =40
- 0<t<l n—

This seems to be the first example of a hypoelliptic symmetric second order
differential operator for which Cowling’s estimate is sharp.

Even though our results on the Heisenberg group cannot be transferred
by a unitary representation, the methods can. Here we show only a similar
result for the twisted laplacian on C%; the harmonic oscillator and other
related operators like 82/8z% + z28?/0y? for n > 2 will be treated in
another paper.

The author is deeply grateful to his advisor Andrzej Hulanicki for con-
stant encouragement, fruitful conversations and help with the presenta-
tion of the paper. He would also like to thank J. Dziubadski, W. Hebisch,
D. Miiller, F. Ricci and K. Stempak for illuminating remarks concerning the
material of the paper.

0. Preliminaries. We identify R? with C and consequently R*™ with g .
Thus for the standard symplectic form on R2" we write S(z,w) = 23(z-W).
Form=0,1,2,... let

T (m\ (—z)F
k=0
be the Laguerre polynomial of degree m. A function f € L?*(C™) is called
polyradial if it is invariant under the natural action of T® on C*: for any
= (911 v :-an)) |9i| =1,
U yOnzn) = flz,. - \Zn )

A polyradial function on C is called simply radial.

For every real a # 0 the Laguerre functions

lm,a.(z) = 3m|a”z|2Lm(21a! : |z|2)1

form an orthogonal basis of the subspace LZ(C) of radial functions in L2(C)
{cf. [E2]).

Consequently,

m=0,1,...,

Gon,a(2) = linya(21) - - lna(2n)y  m= (ma,--, M), 2= 21y 2n):

is an orthonormal basis of the space LZ(C*) of polyradial functions in
L3 cm).
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We denote by dz the Lebesgue measure on C" and for a # 0 we define
the twisted convolution

f %ag(z) = |f(z - wig(w)e“S= ) dw, f,ge (T

We have the following orthogonality relation for the Laguerre functions
(cf. [M]):

(0.1) 2" Gk,a Xa gm,alz) = e, mm,q (2).
Fix a real o # 0 and let
Qm,f(2z) = ]a]éqm,a Xq f(2).

Since the functions ¢m,, decay exponentially at infinity, each Qmq is
bounded on L?(C*). It is not difficult to verify that for a fixed a 3 0,

(0.2)  The operators Qm . are mutually orthogonal projectors

and 3 Qm. = Id
" Indeed, by (0.1) we have

(03) Qk,an,a = 6k,QO,aa
whence, in particular, QZ, , = Qun,o. Moreover,

(0.4) Qm,z Is a symmetric operator.
Indeed, we note that the kernel K of Qm!a is of the form
(05) }C(z’, ZH) — |a|an,a (z' _ zf!)e'ias(z’,z.f,)

and is symmetric. To complete the proof of (0.2) we assume that for g€
L*(C*) we have Qm,ag = 0 for each m. Since g o form a basis of L2(C),
we have hy X4 g = 0 for all polyradial h;. If h; is an approximate identity,
passing to the limit we obtain g = 0. .

We introduce a separate notation for the operators Qma in the case
m=meEN, ie n=1 We then write

Qm,u = Pm,a.f = |a'lm,a Xa f.

The Heisenberg group H™ is defined as C* x R, with the group product
(2, 8)(w, 1) = (z+w, s++2¥(2W)), where z = (21,...,2,), zj = x5 + 4y,
Then the Lebesgue measure on C" x R is the Haar meagure on ™.

Let K belong to L'(H") or be a distribution with compact support. Let
F(z,t) = g(z)e’, g € C°(C™). Then for K and F on H" their convolution
is equal to '

K+ F(z,t) = {2 K® %, g(z) da,
where.

(0.6) K*(z) = ge*mg\fcz, 1) dt.

icm

Schridinger equation on the Heisenberg group 19

Polyradial functions form. a commutative subalgebra A of the group al-
gebra L'(H™) (see [HR]). The Gelfand space of A is identified with R* x
N" U ({0} x R% ). The Gelfand transform § of the elements of .4 is described
in the following way. Let

Xam(%:t) = gm,a(2)e"™.
‘We have
0.7 Of(a,m)={f(z8)xum(z,t)dzdt for (a,m)e R* x N,
0.8)  GF(0,0) = f(z )P =T dzdt for g € R}, W C™, | = o5

Hence, by (0.7) and (0.1), for f € A we have

(09) f*Xm,a = gf(m7 a)xm,m'

The theory of representations of the Heisenberg group implies the Fourier
inversion formula and the Plancherel formula for f € A:

(0.10) F(z, 1) = C1Y . G f (@, m)Xg m(z 8)]a]" da
=C | Gf(a,m)Tyum(z t)dA(o,m),
R % Nn ’
(0.11) (78 =C {3195 (a,m)P|a" da

=C | iGf(a,m)*dA(a,m),
R* x N» .
where the Plancherel measure dA(e,m) = |a|"6m x da is supported on
R* x N*. Consequently, for every subset A of R™ x N™ the operator

Paf=G""(1aGf)
is an orthogonal projection in LZ(H") given by CDIlV.O]uiin.n :With a,_'radia.l
kernel. By a simple use of a radial approximate identity it is %mn?edlz}te to
verify that convolution with such a kernel is an orthogonal projection in the
whole of L2(H™). | .
Of course our A. is given by a family Ap of subsets of R*. Consequently,
for f € L*(H"),

(0.12) Paflzu) = | 6°Qm,.f"(z) do.
M Am
See [M] and [HR] for the proofs.
Let

X; = O, + 200, Vi =8y — 22,8, forl<ism,
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and

n 7
L=Y X}+Y?+T% A=Y Xxi+Y?

i=1 i=1
be the elliptic laplacian and the sublaplacian on H". The clogsures of L and
A on C(H*) are selfadjoint operators (see [NS]). Therefore iL and iA
generate groups {Vi }rer and {U;}ser of unitary operators on L2(H™). Since
L commutes with the action of T" on H", by (0.7), as is well known and
can be computed directly,

(013) LXm,a = )\fm|(a')xm,m

where
As(a) = lal(2s +n} +a?, jm|l=mq +... +mn, $>0.

Hence, since I commntes with left translations, for every t € R and f € § ,
forfixed a € R*, N €N, ¢ € C2(R*), for the function g defined by

g(z,u) = Z S ¢'(a‘)eman,afa(z) da
[m]<N R
we have

Vig(z,u) = Z S qb(a)ei““e“"im\(")Qm,af“(z) do.

Im|<N R

Observe that g is a Schwartz function and the set of such g is dense
in L2(HM). Consequently, we can assume that a function f & & has the

additional property that the set {{c, m) : @m,af* do not vanish identically}
is a compact subset of E* x N.

The same argument allows us to write the formula for the unitary group
generated by 1.4:

Uiflz,u) = Z S e"““eitl‘”@'m'*’")Qmﬂf“(z) da.
m
See [M], Lemma 2.2, for the proof.
Let s > 0. We define a scale of Sobolev spaces putting
[ £llws = (T = LY a.

Since Qm,q are mutually orthogonal projectors, by (0.13), (0.2) and the
Plancherel theorem applied to the variable u,

1 Bre = D 2T+ Ay (0))° | Qe 07 3 2ony .

m
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1. Lemmas. First we recall the following classical facts.

LeEMMA 1 (Schur). For a measure space (2, u) let T be an operator on
L(u) given by
Tf(z) = | K(z,9)7 () du(y).

If
sup| | K (2, )|dulz) < O, sup||K(e,9)ldp(y) < C,

then || Tl < C.
Let 0 < o < 1. The fractional derivative of order o is defined by
8% £(s) = {(£(s — 1) ~ SNHCF dt.
]R B
LEMMA 2 (Sobolev). Lety > 0 be a Schwartz function and 1/2<a<l.
Then 2
sup 7O < Ca( {167 1P dt + § 1£BP1(e) i)

—-1<t€1 R B

LEMMA 3 (van der Corput). (i) Suppose that Fy ¢ € C'[a,b], B¢ is mono-
tonic and |8¢] 2 M. Then

y §e"’¢(s)F(s) ds| < %OF(a)l + § IF’(s)ids).

a
[+

(i) Let F € C'a, b], ¢ € C?[a, b}, [0%¢] = A Then

ﬁewmﬁ(s) dsl < -/\%(m(a)} +§1F'(s)1ds).

a
[}

The constant € does not depend on ,b, ¢, A and F.

The following is a classical formula (cf. [E2)).

LaMMmA 4.
(1.1) Lo ()\5[2) = Z (7;:) L;C(Q:)Ak(l - )\)'m‘—k
k=0

In the next two lemmas we present estimates for the mth Laguerre func-

tion in the region |2] < (m+ 1)*/2.
LEMMa 5. Let 1 < |z| < (m+1)/%. Then -
s ()] < Cm + 1) 4712,
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Proof Let 0 < & € ¢ < w/2 — e(m + 1)~/2, Then by a theorem of
Szegd [Sz], for z = (4m -+ 2) cos® i, we have

e™*/2 () = {(~1)™(wsin @) /2 (sin((m + 1/2) (sin 20 - 2¢) + 3r/4)}
x (a{m + 1)) + (a(m + 1))"?0(1)).
LeMMA 6. Let |z| < 1. Then
m1(2) = Jo(242]2](m 4 1/2)1/2) + O((m + 1)=%),
where Jy is the zero Bessel function.

Proof. Follows from an asymptotic formula for Laguerre polynomials
(cf. [Sz]):

e 2L (2) = Jo((25(m + 1/2)}/2) + O((m + 1)7%/4).
LemMA 7. There is a constant C such that for A > 1 we have
Vima(=)Pe 174" dz < CA(m + 1)~2,
Proof. By Lemma 5, we obtain
I male)Pe 74" gy
1<)z (mt1)1/2
1 z 2
<ol 2 —izi?/4 -1/2
_OS[sz-l-l)l/Ze dz < CA(m+ 1)~Y4,
Also
S \lmll(z)|26_1"|-z/‘42 dz < g~™/4 S |bm,1(2)|* dz < CA(m +1)7Y/2,
|z{=(m+41)1/2

E)n the other hand, from Lemma 6, using the estimate for the Bessel function
see [Sz])

|To(2)| < C(1+ |af)~1/2
we obtain

lm1(2)] < O+ 22 (m + 1)/41,
Hence

S ‘lm,1(2)|2€_|z|2/A2 dz §C(m+1)_1/2-
lz|<1

For a function ¢, let My denote the operator of multiplication by ¢.
Let ¢ € C3°(C) with supp(¢) € B(1), and

Tm,af(z) = M¢Pm,af(z) = ¢(Z)|a’“m,a Xa f(z)
LEMMA 8. Ford < |a] < m+ 1 we have

N TnallZsnre < Claf/2(m+1)72/2,
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Proof. Since P, 4 is an orthogonal projector, Ty, o Ty, o, = My P oM.
Hence, by {0.5), the kernel K of T, o T}, , is given by the formula

(1.2) K{z,22) = $(z1)lallm,a(z1 — 2)e 5172 (zy).
We write

% 2 2
— p— ¥z Zl—ra)” _ ,—(z1—22 o), 0
1= ¢ (1m22) gl Pz e )Ecazle.
o

Thus
K(z,m)=) Ca? d(m)e” 72 ally o(21 — ze)e I g(2)222.
o]

Consequently, the operator Ty, o Ty, , is the sum of operators
CaM¢Mz:=1 Tk, Mzga My,
where )
Tx, = f X K1 and  Ki(z) = el [allna(2)-

Since ¢, converges to zero faster than exponentially, it suffices to estimate
the norm of Tk,. Dilating we see that the norm of Tk, is the same as the
norm of the 1-twisted convolution operator by

K(z) = ﬁ—lzﬂal“gmal(z)'

The radial function K(z) has a decomposition

oC
]C(z) = 2 Ck,mqﬂlk,l (Z):
k=0
where
(1.3) ehma = €71 1 (2)lm 1 (2) da
So

o0
fC(z) X1 f(z) = Zch,m,apm,lf(z)'
k=0
Since Py,,1, m = 0,1,..., are mutually orthogonal projectors, th.e norm of
the operator f = K xy f is equal to supy |k, m,a - By the Schwarz inequality,
we obtain

2 a
tomal < ey (2l ED L (2)] 22

Now, by Lemma 7, if 10k = m, then

1/4 1/4 i/2
ol ) sl
R m+1 E+1 m- 1
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Tt remains to estimate the coeflicients cg m,qo for 10k < m. Observe that by
the definition of I,,,1(2), for A = (1+ (2]a])™") %, {1.3) turns into

oo

Come = C | € Ly (2) Li(%) da.
4]
Then
ctma = CX | €L (22) Li(aA) de,
0

whence, in virtue of (1.1), because the Ly form an orthonormal basis with
weight e™, we obtain

Ck,ma_c:\z Z ( )(i))\hm

89,=0 §2=0

<o
X (1 — A)mth—{sates) S e %L, (2) L, (z) dz
0

=0) g (’:’) (S) A (1 — Aymth—ls,

Now, if |a| > 4 then 2/3 < X < 1 so for 10k < m we have
k
Eck,m,ai < ZQmZk(]_ — )\)m-i-k—Zk < k2m2k3-——mmﬁc
s=0

2 m+tk
<k(3)  sremere

for some positive constant &.
LEMMA 9. For |a| < 4 we have
1/2
1.4 Tmal? <o 12)"
(14 [Tl < € -2

Proof. In order to estimate the norm of T}, ", o We use (1.2) and the
asymptotic formula for the Laguerre functions glven in Lemma 6,
Let |a| < 4. By the Taylor series expansion for 252122} we have

K(z1,2) = 3 af¢(a)lalim,a(z1 - 22)$(22)zhan tlaf*
k.

= E a’k51|a|kKk,l(Z1, Zg).

Since the a,;’s decay faster than exponentially, and the norms of the oper-
ators MyM_» grow -at most exponentially, it suffices to estimate the norm
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of the operator K given by the kernel

A1, 22) = P{z)lallmal2 ~ 22)9(22),
where ) € OF° with 1(z) = 1 on supp ¢. Now using Lemma 6 we obtain
P21} allm,a (21 — 22)1(22) = O9(21)lal Jo(2]al**|z1 — 22| (2m+ 1)1/2)¢_(z2)
+1p{(z1)g(2)0(Ja|(m + 1)),

Observe that the error term in the last formula gives an operator of norm
of order |a|(m + 1)73/4, so it is negligible.

Hence, for a function ¢ € § (©) with ¢ =1 on suppy we write
(1)l Jo(lal"? |21 — zl(2m + 1)1 )i (z2)
= @z — ) (a)lal o021 ~ 22l 2+ 1)V )p(z2).
Thus we may drop {2, ), 1(zz) and we estimate the norm of the convolution
operator by the function
R = §(z)|alJo(|a|*/?|2](2m +1)*/2).

By definition, Jy is the Fourier transform of the normalized Lebesgue mea-
sure supported on the unit circle. Hence

ﬁ :5* Ia’“‘ba

where u is the normalized Lebesgue measure supported by the circle of
radius |a(2m + 1)[%/2. We write (using a smooth resolution of identity 1 =

Zjezz k(z — 7), suppk C B(2))
g: Zajqua

where 3, o] < 00, [|¢j]lzee < 1 and the support of ¢; is contained in the
dise of radius two. A tivial geometric argument shows that for |(2m + 1)a|
> 1, ||¢; * pllze < C|(2m + 1)a|~*/2. These imply that the L* norm of R
is bounded by c\a|1/2|m+ 1722, I |(2m + 1)a| < 1 then |[¢; # pf|z= < C
and consequently | B|z= < Cla| < Clm + 1/7%/2|a|*/2. This proves the
lemnma.

Let
3M

KM,N(ua fr) = Z S eiua+i‘rls (a) da’
s=M N<|af<2N

where X, (a) = (25 + n)|al + a®.
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LemmMA 10. Let |ul £ 1/8 and |7| £ 1. Then

K (u,7)| < Cmin{MN, (M + NY/2N =4 u| =2, M(M + N2y ~1/2)
+ min{M|u|"!, MN},
Proof. The estimate |Kas,n(w, 7)] < CMN is trivial. It suffices to con-

sider only the integral over the set N < ¢ < 2N, We split the argument into
cases:

(a) 2u| < (M + N),
(b) 87(M + N +n) < |u,
(c) lu| £ 87(M + N+n) and (M + N) < 2u/.
_ Tor (a) and (b) we write ¢,(a) = ua + ({25 +n)a + a?)7 and see that in
either case |9.¢b¢| > 3|ul so by the van der Corput lemma, Lemma 3(i),

2N

’ S gi#s(e) da,’ < —g—
) =
Hence
3M 2N
Eng (e, 7] < Z ‘ S ei®ala) da| < C'M‘
s=M N |'U|
In case (¢) we have
2N ; 1
KM,N('U: T) — S eiua+ira2+i(4M+n)a7 sm ((M + 5)37-) da
b sin (5a7)
2N
=(24)"! S ei““+ifa2+(5M+l/2+ﬂ)aTm_da
& sin (a7)
aN
- (@)™ | giuatira® (@M -1/24n)ar 00
A 1 -
) _ sin (3a7)

Let ¢ (g,) = ua-t7a’ +(5M+1/2+n)ar, $_(a) = vatra+(3M~1/2+n)ar.
Then 82d4(a) = ngﬁl_ (a) = 27. For a € [N,2N] and 7 satisfying (c) the
function ¢ — 1/sin (3a7) is monotonic. From the van der Corput lemma,
Lenuma 3(ii), we obtain ,

2§J (a)__da c 1 2 1
ettt (e) < ( +1la (—~——)
N sin (zar) ~ 732 \sin (1 NT) ]§, “\sin (fa7) da
¢ 1
< = < O(M + N)¥/2N -y =52,
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An analogous estimate holds for ¢_(a). Also we have, by Lemma 3(ii),

aM 2N . oM
Z ' S givatira®+ir(2sti)a g, | < 7 < CM(M+ N)”glurlf2
s=M N T

and all these prove the lernma.
LEMMA 11. Let ¢ = 0, ¢ € C°(R). Define o mozimal function
VIR, 3 f Ve LR

by _
3M 2N )
Vf('u.) = sup ¢(u)1 Z S ez(uu+tla(a))f8(a) da}
0=t=1 s=M N
Then

IVl 22@y—z2m) < CUM + NYD/NY? + Mlog N2,

Proof. It suffices to prove the estimate for functions ¢ supported in the
interval [—1/8,1/8]. We use the Kolmogorov—Plessner—Silvestroff method.
Let 7(u) be a continuous function. We are going to estimate the norm of
the linear operator T : L#(R,12) — L*(R),

3M 2N

Tiw =d(w) 3 § ST fy(a) da.

s=M N
The operator TT™ acts on L? and has the kernel
3M 2N

TT" (un,uz) = $lun)g(uz) 3 | elamuaetitradriualile) do
s=M N

= {1 dp(uz) Knr,n(wr — g, 7(ug) — 7(uz)).
By the Schur Lemma,

TT*|| < sup ¢{u1) S | K pg v (uy — w2, T(u1) — 7(u2))|é(ua) dug

< O | (min{MN, (M + NP/2N"Hul 73, M(M + N3y 712
+ min{M|u|"}, MN})${u) du
< C(M + NYM/NYY? + Mlog N.
Hence

T < C((M + N)(M/NYY? + Mlog N)M/2.

2. Main theorem. For a fixed ¢ € C2°(H™) we define the local maximal
function of the group Vi:

Mf(z,u) = ¢(zu) sup_ |Vif(zu).
0<t<1
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‘We have
THEOREM 1. Let s > 3/4 and f € W*. Then

[MFz2 < C||filwe.

Proof. Let f € L*(H"). To estimate || M f|| ,2(zm) we introduce a family
of projections Pa, given by a partition {A,} of B* x N*. Then we write

1M Fllz2) <Y 1M Pa, fllagen)

and we estimate each ||[M Py, f| p2gm separately.
We write s ~ 2% iff 2F < 5 < 2%+1 Lot

Api={(em)eR" xN": |m| =~ 2% |o|~ 2}, k<3l
Ag={{a,m) e R* xN":|a| < 1},
A° = the complement of U Ay U Ay,

k!
We observe that

(21) A*=JAmx{m} with Ay C {a€R": 1< |a| < 10/m[/3).
We write
Pk‘,!f(z,u_) = PAk,,f(z,u) = Z 5 eianm,afa(z) da,
{m:/m|m2*} {|a|=2!}

Pof(z,u) = Paf(zu) =Y | €Qum.f(z)do,

m {|a[<1}

Plf(z! 'M) = PA“f(Z: '”’) = § : S eianm,afa(z) da,
m Ay ’
and we note that

Po+P + ZP"‘:’I =Id.
k,l
The maximal function of the theorem splits into the maximal functions

Sk,lf(z: u) = Oi}iEl W(z)ﬁb(u)ﬂ,thf(Z; U)l,
i W€ CF(C), ¢ € C°(R), suppo C B(1),
Sof(z,u) = Ogglhﬁ(Z)PoV:f(z,u)la ¥ e G°(C),
Slf(z,u) = Wz PV f(z,u)|,  weC(Cm).
We are going to estimate the norms

HS’“J”WW‘H“—J{E: |!SOHW3/“+’—>L2 and ”S]-”W3/‘+C-—>L2~
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Then we sum up the estimates. With no loss of generality we may consider
only the m’s in I} = {m : m; = max(my,...,m,)}. We have

Spif(z,u)

= sup ‘w(z}gb(u) Z S eiuueitz\\mi(a)@m,afa(z) da'

0stst {mely:|m|=24} {|afa2'}
2k+l
= sup [U(adn) 30§ @O BT Quef*(a) daf,
01 52k {|a|a2t} {me&ly:jm|=s}

Now we apply Lernma 11 with M = 2%, N = 2!, and

fs(a) = Z

{m&l:|m|=s}

Qmaf*(z) for M <s<2M.

‘We have
1
V 1Skf(z,u) du < C((M + N)(M/N)*? + M log N)
-1
gkl

<> § 0 X

s=2k {|a|=2!}  {mE&li:|lm|=3s}

2
Qm,afa(z)) 1 da.!I’(zl),
where ¥ € C®(C) depends only on the first coordinate of z = (z1,...2n)

and ¥(z)? < ¥{z1). Integrating with respect to dz we obtain

[ 15,05 2, )| du da
< O((M + N)(M/N)'? + Mlog N)

gkl 2
X'Z S ”( Z Qm,af“(z))l ¥(#) dzda.
om2k {Jalm2'} | {meliim|=s}
Let A= {(m,r):mg=rs,...,my =ry, m,r € I;}. We fix @ and we note

that |m| = |r| and (m,r) € A imply m = r. By the orthogonality relations
for Pp, o we have

SQm,af(z)Qr,af(Z) dzo ... dz,
— SPml,aPma,a e Pmn.af(Z)Pm,aPrg,a, e Prmaf(z) dzg ‘e dzn =0

if (mg,...my) # (r2,...,7s). In the formula above P, o acts on the vari-

able z;.
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‘We write

1>

{méel:|m|=s}

- =

{r&ly:|r|=s} {me&l1:|m|=s}

! b

{{m,r}€ A:|m|=|r|=s,mel1,re1 }

= Z S|Qm,af(z)!2 dza...dzn P(z1)dz.

{mEI1:|m\=_g}

Qunaf(3)) |2u?(z1) da

Qumof(#)Qrof(@)) d .. din F(21) d2y

Qunof (@)0ra (@) dip . din (1) da

Now again we write Qm,of = Pmy,a(Pmg,a - - - P o) a0d we apply Lemma 8
to the operator My Pn, ,, to obtain

S (Qmef@)dz .. den ¥ () da

{mEIlz|m{=5}
. |a| 1/2
< Z Smln{(m1+1 11}|Qm,af(z)2dz-

{me I:|m|=s}
Consequently,
22) ({18 (@ W) dudz
< C(M + N)(M/N)Y? + Mlog N)

gk+1

<E 5§y m{(

la|
s=2F {|a|~2!} {mecii:[m|=s}

1/2
my -+ 1) ’ 1}
x IQm,a.fa(Z)‘de da.

Let 1 <k <[ Then for N < |af < 2N and M < |m| < 2M we can
easily verify that -

(M + N)(M/N)ljz + MlogN.-< C(MN)UQ log N < szsll\lml(a)l/%-a
so by (2.2) and (2.1),

2 —E .
19k fliZe < €270 - o (@) Qe £ da

{mely:m|m2%) {|a|2!}
< C27|F 35 sate-
Let %k <l<k Then N < M and for ¢ and m as before we have
((M+N)(M/N)2 1M log NYN/MP2<CMlog N < C27F X ) (@) 34132,
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So since |a|/my < 2nN/M,
ISkafll: C27F 3 b Al @%@ da
{mel:|m|=2k} {Jaj=2}
< CX Y1y
Consequently, we have
Z Z HSR'.,I”W:“/‘*‘FE—)LQ < 00,
k>0 > (1/3)k

Now we are going to estimate the norm of Sp. We use the Sobolev lemma.
We have
150f (2 )2 < C( 1017 ViPof () P(8) dt
R

+ §IVePof (2, w) Py () dt ) (z).
®
In what follows we assume that ¥ is supported in the interval [~1,1]. In-
tegrating with respect to dzdu, by the Plancherel theorem applied to the
Fourier transform in the central variable, we have

{10 (2 )P dad
< 1652 Po £z, ) Pap )y (8) da du it

=i S Foiars; (6)Qma F2(2) 8592 ? dan(t) dio(z) da
= CSSS { Z I{G‘/Im|s|a|51}(a))\m(a)(lﬂ)/z

% Oom ()61 @) dan(t) dt(z) da+ | £]%.

In the last inequality we have used the fact that for ja| < C|m|™!, we have
Without loss of generality we may assume that in the above sum the
multiindices m belong to f;. Thus

SSS 1 Z I{C/Imlsla;gl}(a)A[m](a)(1+e)/z

X Qe ol (z)e =0 ’ da~{t) dt (z) dz

=11 S Lopmigiasny @ oiisial (@) My (@) (@)

melirel

X Qm,a'fa(Z)Qr,afa(z)ﬁ()\lml (a) - )‘Irl(a)) datp(z) de.
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By orthogonality of P, , the last expression is equal to

V3 Lomaxtml- sy <o (8) (Ajeay (@) Ay (@) 4412
{mr)eA

X SQm,mfa(z)Qr,afa(z)w(zl) dz ?(Almi (a') - )\[r](a')) da

=1 3 Liomextimi -t jel-5)<lal<1} (@) Oyl (@) Aje (@) 172
(m,rycA

% | Qmaf*(z) @ f2 (@) (21) deF(2m |a| — 2r1]e]) da

= S( Z): (G mae ol |~} < a] €13 (8) (Am{ (@) Ay (2)) 10/
m,ric A

lal o\ o "
() 10t 1@ue s et = o o

To verify the last inequality we use Lemma 9. The Schwarz inequality implies
that the last expression is bounded by

=0 > Icmaxgmi~tjel-11</a<13.(8) (Afen| (@)Ajz)(a))Ce)/2
{m,r)eA
% ((lal/m )21 Qum,af I + (ol /1)) 21 Qs,u fII?)
X H(2(my —~ r1)|a]) da.

For fixed r we have

(2.3) Z I{Omax{lmIM’|1'|"1}£['1\S1}(a)(>wm| (a))\lrl(a))(1+g)/z
{m:(m,r)eA}

x(Jal/m)23((my — r1)]a]) < CAp ()24,
In order to verify (2.3) we observe that for m, r, and @ we can write
Apmi{a) < [ml- o] < Chjmy(a),
A (a) <rl-la| < Chpy(a),  cim| < |rf < CJml,
and also
H{m: (m,r) € 4, |ry —m4| - |a] € supp ¢} < C/lal.

Now (2.3) follows by an easy calculation.
By {2.3), § is dominated by

28 Z I{Cm—lg\algl}(a))‘lﬂ(

In order to estimate S f we use again the Soboley lemma. By the Plancherel

3/4
QeI do < | £
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formula applied to the central variable, we have
S|5‘1f(z w)|* dz du < SS B2 () PV, f (=, ) |* das duy(E) df + N

Apain we consider only m's in I;. Also since suppd C {u: |u| £1} and
la| > 1 we have F(Ajm(e) — Api(a)) = 0 for jm| # |r|. Using (as before)
orthogonality of P, . we have

IPIEZNCE

(@) Qn 2 (m)e A {a)t dadtw(z)dz

HZZIA,,. {(a)(Mmi(a} N e (a (@))(+e)/2

X Qm,afa(z)Qr,afa(z)'Y(Alm! (a‘) - )‘[rl (a.)) dag’(zl) dz
< SZ I{lglalgl+|m1”3}(a‘)}‘lm| (a)l'i'e S lQm,ﬂ,fu(Z)lZQ](zl) dz da.

As before, we apply Lemmas 8 and 9 to the operator My P, o to obtain
{154 (2, ) ? da
< SZ I{lg!al§1+|m|1/3}(a‘)AImI (a)1+5(‘a!/|m])1/2 S 1Qm,afa(z)‘2 dz do
m.

< 3 (A (@4 § Qo () dz da < iy

Thus the proof of Theorem 1 is complete.

ExampLe 1. It is interesting to observe that the analog of Theorem 1
fails for the sublaplacian A on H™.
Let

Fulz,u) = | pr(a)ao,a(2)e*"|0]" da,
where ¢r(z) = ¢(27%12]), ¢ € C(1,2) is nonnegative, k is a positive integer
and ¢pq(2z) = ¢=lall=* > 0, Then

(I = A2 fu(z,w) = | #r(0)ao,0(2) (L + o)/l da,
U fu(2,w) = €42 fi (2, 1) = | ¢ (a)qo,a(2)e™ e |a]” da,
and if (=,%) belongs to the unit ball B in the Heisenberg group, we have

Mfi(z,u) = o € fio(2, u)| = | ¢r(a)q0,a(2)lal" da

50
M fi(z,u) = 2 lal? quk(a.)]ainda. > 02]@2”;06_2!:4-1'212‘



34 J. Zienkiewicz

Now the L? norms of M fi(z,u) and (I — A)*/2f,(z,u) can be estimated.
‘We have

”(I— A)S/ka“z = Ss¢k(a)2f10,a(z)2(l + Ial)slaln dzda
= §¢k(a)2(1 + |a|)?]al” da < gnk-+ktks

and
MulP > | § 2 dadu > o,
|2[=1 |u] <1
which disproves the estimate
| M fulliaay < O — 4)*filze

for s < 1.

ExaMpPLE 2. The theorem below gives the answer to a question posed
in [MR].

Let ¢ € C®(C") and f(zu) = g(z)exp(—iu). We define a twisted
laplacian A on (/%(C") as the differential operator satisfying the condi-
tion Af{z,u) = exp(—iu)Ag(z). The formula makes sense, since the coeffi-

cients of A do not depend on ¢ (cf [MR]). For the theory of unitary groups
generated by twisted laplacians see [MR].

The closure of A on C2°(C*) is a selfadjoint operator. The spectral
decomposition of A%/? is given by the formula

A*2f(z) = > (2|m| + n)**Qm f(2).

meEZ™
Consequently,

Vif(z) =y Pt £(z).

The Sobolev space of order s is defined as the domain of A%/2, and

1F13e =182 £ =3 @fm] +n)*/2| Qma £

m

Ohserve that for s > 0, W* is contained in L?*(C") and the function f
Vif(z) is 2m-periodic.
For a fixed ¢ € C°(C™) we put

- Mf(2) =4(z) sup [Vif(z)).
o<t<an
We are going to prove
THEOREM 2. Let 8 > 1/2 and f € W*. Then
M f]z2 < C|l fllwe.
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Proof. Assume that the function f is real-valued. We use an estimate
of the Sobolev type:

2r 2T
| sup Vaf()P < C | (00T ()P di+ C | (Vs (2)I dt.
0<t<2n b )

We multiply the inequality above by ||* and integrate both sides with
respect to dz. Then an application of the Plancherel formula with respect
to the t variable, as in the proof of Theorem 1, yields

| IMr@)Rdz < Y 2s+m) | 6?3 Qm,lf(z)fdz

Cn [ {m:lm|=s}
2
] | Wf@)P dz.
cr 0

Since V; is an isometry, the second summand is dominated by || |32
Again with no loss of generality we may consider only the multiindices
m in 1. Majorizing ¥(2)? by ¥(#1) (as in the proof of Theorem 1) we write

2
2(23+ n)tte S 1/)(Z)2| Z Qmﬁlf(z)l dz
s [ {meh:im|=s}
2
<T@+t Y Qua 12)| da
s {mel:jml=s}
< 2(23 + n)Ep(z) E Qm1f(2)Q:,1f(z) dz
: {(myr) € Adfm=r|=s}
- Z(Qs-i—n)“‘s Z SLZ"(zl)|Qm,1f(z)|2 de.
g {megli:|m|=s}

Now, by Lemma 4, we dominate the last sum by

Yo@s+n)2 N |QmafliEs < Nl

g {mEI;:|m|=a}
The theorem follows.

EXAMPLE 3. We show that s > 1/4 is necessary. In. fact, we show that
the example given by Dahlberg and Kenig in [DK] works in our setting as
well, For the sake of simplicity we state our estimate for .

Let Gfla,m) = 1if m =0 and N < a < N + NY2 Gfla,m) = 0
otherwise. Then by the Plancherel formula we see that

N+N1/2
Il = §  (1+al+0%)*|a|da < CN*F/2TE,
N
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‘We have
NN2
Vif(z,u) = emw 0=/ a0 [ g1 /ara/ ) el g gg,
N

On the other hand, choosing i(z,u) = —u/(N +1/2) we see that for
[u| < 1/10 the real part of e®(e+1/2-4/(26))" ig hounded from below by 1/2.
Also t(z,u) € [~1,1] and
N+N1f2

S e_l"“’E2|a,\ da > ON¥/2e=2N1al",

N
Hence |[M f]|? > CN?. This completes the proof.

|V;{z,u)f(zz u)| >

pai =
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