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TUDIA MATHEMATICA 122 (1) (1997)

Some weighted inequalities for general
one-sided maximal operators

by

F. J. MARTIN-REYES and A- DE L& TORRE (Milaga)

Abstract, We characterize the pairs of weights on R for which the operators
c
M f(z) = sup h(z,c) | £(s)k(w, 5,¢) ds
v e

T

wre of weak type (p, g), or of restricted weak type (p,¢), 1 $ p < ¢ < 00, between the
_ebesgue spaces with the coresponding weights. The functions h and k are positive, &
s defined on {(z,¢) : @ < c}, while k is defined on {(z,8,¢) : ¢ < s < ¢}. If h(zm,c) =
e m}”’ﬂ, k(z, s,¢) = (e — s)“““l, 0 €8 < a<l, we obtain the operator

- 1 f{s)
Myaf = S TP ;c ooy e

[

For this operator, under the assumption 1fp—1/q = a — f, we extend the weak type
-haracterizabion to the case p = g and prove that in the case of equal weights and 1 < p <
0, weak and strong type are equivalent. If we take e =  we characterize the strong type
weights for the operator Mé', o introduced by W. Jurkat and J. Troutman in the study of
O differentiation of the integral. .

1. Tntroduction. In 1979 W. Jurkat and J. Troutman [JT] studied the
operator

a_[_|fs)l
M7 f(@) =8 o5 § Gogimds 0<asl

They proved that there is a limit case p = 1/a below which the operator is
not of weak type. For p = 1/a the operator still fails to be of weak type,
but it is of restricted weak type, and for p > 1/« it is bounded. From these
estimates they obtained results about a C,, version of Lebesgue’s differenti-
ation theorem. The restricted weak type of some particular weight for the
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2 F. J. Martin-Reyes and A. de la Torre

case & = 1/2 hag also been recently used by A. Carbery, E. Hernandez and
F. Soria in the study of the Kakeya maximal operator for radial functions
[CHS].

Since the operator is clearly one-sided, it seems natural to study the good
weights and to compare them with the classes A7 introduced by Sawyer [S]
for the one-sided Hardy-Littlewood maximal function.

The paper is organized as follows: In this section we introduce a very
general operator and show that almost any one-sided operator is a particular
case of our operator. In Section 2 we study weak and restricted weak type
inequalities. Section 3 is devoted to the study of strong type inequalities in
the case of “equal” weights for the operator M’ g defined below. The paper
ends with some remarks about the relationship between our weights and the
weights for the fractional one-sided maximal operator.

DEFINITION 1.1. Let J be a locally integrable function defined on R,
and let h{z,y) and k(x,y,z) be two positive measurable functions defined
on {(z,9) : & < y} and {(z,y,2) : ¢ < y < z} respectively. If the function

3 — k(m s,y) is locally 111tegrable on (z,y) for any z < y, we define the
maximal operator

M3 f(@) = suph(a, o) { £ )]k (e, 5,¢) ds

Tn the case A(z,c) = (c— 3)"7?, k(z, s,¢) = (c — 5)>~

LO0gf<ag, we
will call the operator M.}, instead of M, ,'1': .-

Our aim is to study the good weights for these operators.

ExAMPLES. (1) The starting point and the motivation for this paper is
the case o = 3 5 1. Then the operator M * 5 18 the maximal operator asso-
clated to the Cesiro averages C,. For Lebesgue measure it is known that it
maps LF into itself if p > 1/a. In the limit case p = 1 /o it maps Ly ; into
Lypoo (cf. [TT]), but nothing was known about the weights for this operator

(2) fa = 3 =1, the operator M «p 18 the one- -sided Hardy-Littlewood
maximal operator, denoted usually by M. The pairs of weights for which
this operator is of weak or strong type are well known. See [S] and [MOT).

(8)Ifa=1and 0 < § <1then MT a8 18 the fractional one-sided maximal
operator. ‘The pairs of weights (u,v) for which this operator is bounded from
LP(vdz) to L9(udz) were characterized by Andersen and Sawyer in the case
v? = uP and with the restriction 1/p — 1/g = 1 — 3 (see [AS]). The weak
type with the same conditions can be seen in [MPT)]. The strong type for
1 < p < q was solved by the authors in [MT]

(O Ifa=1,J=0then MI 5f(z) = [7° f(s) ds, which is the dual of the
Hardy operator So F{s) ds ' '
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(5) If h{z,c) = «", k = 1, we obtain the modified Hardy operator
2" > f(s)ds. Weighted weak type inequalities were studied in [AM] and
weighted strong type inequalities follow from the results for the dual of the
Hardy operator. _
(6) It h = 1 and k(z,s,¢) = (s~ £)*~?, then the operator is the Weyl
fractional integral studied in [LT] and [KG].
w5 defined

Of course, one could also consider the operators M, , and M,
reversing the orientation.

Throughout the paper, the weights v and v will be positive, measurable
functions and € will denote a constant that may change from one line to
another, I p is any number between 1 and oo, then p’ will denote its conju-
gate exponent. For any measurable, positive function g and any measurable
set E, g(E) will stand for the integral of g over B and M,f will be the
maximal operator My f(z) = sup,er{1/g(1)) {; |flg, where the supremum is
taken over all the intervals I containing z. We will use the fact that, since
we are in dimension one, this operator is of weak type (1,1) with respect to
the measure gdux.

2. Weak and restricted weak type inequalities. In this section we
characterize the pairs of weights for which the above operators are of weak
or restricted weak type. The following theorem characterizes, under mild
conditions on h and k, weak type weights in the case p < g.

THEOREM 2.1. For 1 < p,¢ < co, we consider the following two condi-
tions:
(1) There exists a constant C such that for any f € L7 (v},

a/
sup Mu({ Mt (@) > A) < c(g | m) !

(2) The pair (u,v) belongs to A;', g B-€-, there emists @ constant C such
that for any three numbers a < b <c,

T 1/ .
Waa) Mo (1) (I @ @ gas) T 20 dron

and b

g . —1 P
‘ k ,8,¢) if p=1
ha, c)(gu) < Ct;:zs(gn%w(s) (a,s,¢) ifp

If both h and k are increasing in the first variable then (1)=(2). Ifh and
k decrease in their last variable and p < q, then (2)=(1).

Proof. Assume (1) holds. Ifp > 1,a < b < ¢ and we consider the
function F(s) = v*~F (8)k¥ ~Y(a,s, )x(bc (5), then for any € (a,b) we
have
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M, f2) > h(z,c) v P (5)k7 " a, 5, €)k(x, 5, ) ds

fulp ()K" (a,s,¢)ds = h(a

L’"l’l T e

o) fPo=2

This means that (a,b) C {:c : My () > A} T A < oo we apply (1) and
obtain (2). If X = co, then the function m(s) = v™'(s)k(a,s,¢) is not in
LP (x (b,c)v). This means that there exists g > 0, g € LP(x(s,)v), such that
{; g(s)k(a, 5, ¢) ds = oco. It follows that for any z € (a,b),
c &
My g(z) > h{z, C)Sg(s)k(w, s5,¢)ds > h(m,c)Sg(s)k(a, 5,¢) ds = 00,
z b
contrary to (1). If p =1, we take a < b < ¢ — ¢ < c—r < ¢ and consider the
function f = x(c—t,c—r). Now if % € (a,b) then
c—r c—r
Mt f(z) 2 h(z,¢) | k(z,s,¢)ds > hia,c) | k(a,s,¢)ds= A
et c~—t
Therefore h(a, c) {7, k(a, s, c) ds (L u)/7 < C{:"} v, and (2) follows from
Lebesgue’s differentiation theorem.
Assume now that (2) holds and h and k are decreasing in their last
variable. For f ¢ L? (v) fzo ax}d & < ¢, we define a sequence of points by
taking o = c and {*** fPy = [ zip, 170 for i 2 0.1f p > 1, we may write

h(z,c) S F()k(x, s,¢) ds

T

:h(m,c)fg T F(8)k(z, 5,c) ds

i=0 @ity

. h(a:.,c)‘io( ms fpv)l/p( msd ”1—1”(3)%1"(%,3,0) ds)l/p’
=0 " wmisn e

Sh(m’c).io( | f"_”)l/p( § D (7 (2, 8,05) ds)
o Tita

< Ch(z, c)i (™ fru)t/e

prt (S:cl+1 1/qha($ fE-b)

I+1

C(MU(pru.—l))l/q(w) Z ( S fpv) 1/1’—1/4.

i=0 T
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But it follows from the definition of the points z; that {7 fPo = 27 {7 7o,
and therefore we have proved that for any 2 < ¢,

¢

h(m,C)S (s)k(z,8,¢c)ds < C'( W(fPou™ ))1/q(m)(§§fpﬁ)l/p_1/q-

o

This implies that M,j:kf(m) < C(Mu(fpfuu—l))l/Q(m)(SR fPu)L/P=1/4 and
then

u{wm : M,;':kf(m) > A}
< u{x s My, (FPou Y (z) > C’)\Q(Sf”v)lmq/p} gy (Sf”’u)q/p,

which is (1). If p = 1, the proof follows the same lines but we dominate
(% f(s)k(z,s,c)ds by

f Fls)k(z, 8, z:)v ™ (s)u(s)ds < C Si f(s)’u(s)h—l(m,mi)ds( ‘S u)—l/q,

and then proceed as in the case p > 1. m

Under the same conditions on h, k and still with p < ¢ we obtain a
characterization for restricted weak type.

THEOREM 2.2, For 1 € p,q < oo, we consider the following two condi-
tions:

(1) There exists a constant C such that for any measurable set E,

sup Nu({z 1 Mt xe(z) > A}) < C(E)Y.
A0
(2) There exists a constant C such that for any three numbersa <b<ec
and any measurable set B contained in (b, c),

(u(BYM?
<Ol
h(a,c) JSﬂ}c(a, s,¢)ds < O(u(a, b))
If both h and k are increasing in the first variable then (1)=-(2). If h and
k decrease in their last variable and p < g, then (2)=>(1).

Proof Assume that (1) holds with 2 and k increasing in their frst
variable. Fix a < b < ¢. By a limiting argument it is enough to consider
E C (b,d) with d < e. If we define A = h(a,¢) {5 kla, 5,c) ds, then A < co
and for any = € (a, b) we have

¢ ) ¢
Mt n(a) 2 bz, ) | xa(s)k(@, 5,¢) ds > ha, ) | xa(s)k(a, 5, ) ds.
x : b
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This means that (a,b) C {z: Mj xs(z) = A}, and therefore

q .
(h(a,c) S k(a,s,¢) ds) ule, b) < Clu(E))¥/P,
B
which 1s {2).

Assume now that p < g, that h and & decrease in their last variable
and that (2) holds. Given then a measurable set £ and ¢ < ¢, we define
a sequence of points as in the preceding theorem, i.e. zg = ¢, Xil“ XEBV =
{7+ xmv. If we consider the sets By = BN (2i41,75), and apply (2) in the
case ¢ = T, b= 2441 and ¢'= x;, we have

h(z,c) S xz(5)k(z, s, ¢) ds = h(z,¢) Z Si xe($)k(z, s,c) ds
z i=0 Tip1 .
< h(m,c)i S k(x,s, @) ds
i=0 B;

1 (v(E;))L/P
< OM@ ) D T Gl me )

1/ i 14
SOZ( mtg;zCE@) q( mg XEU)UP 1/q

i=0 m Titl

< O(Mu (xmou™)M1(z) ( fv
E

?

)1/39*1/11

which implies

1/p-1/a
M;foxs(a) < C(Mu(cmou ) 3@y (§0)
E
and (1) follows from the weak type (1,1) of the operator M, with respect
to the measure udz. »

The proof of these theorems uses the fact that 1/p — 1/¢ > 0. In order
to deal with the case p = ¢ we restrict ourselves to the operator Mci a

and exploit the relationship that in this case exists between the functions h
and k.

THEOREM 2.3. Let 1 < p < oc and 0 < & < 1. The following are
equivolent:

(1) There exists a constant C such that for any f € LP(v) and any
positive A,

w{z : M:’af(m) > A} S. C)FpUﬂPv.

icm

Weighted inequalities for mamimal operators 7

(2) There exists o constant C such that for any three numbers a < b < ¢,

(Su)w(gfc“?—j%)w < Ofe-a)®.

a

(Afp,a)
Before proving the theorem we cbserve that A;"p o 18 mothing but a

particular case of Ap a.hk 8ud that, in this case, both A and k satisfy the
monotonicity conditions of Theorems 2.1 and 2.2.

Proof That (1) implies (2) is the first part of Theorem 2.1, for this
particular case. For the converse we will prove that (2) implies that there
exists O > 0 such that for every ¢ < b and any f > 0 the following inequality
holds:

b fla
(2.4) S@%(S‘))l—_uds < C(

My (fPou))P(a) (b - a),

Le. M, fla) £ C(My (fPou~1))'/P(a). From this inequality one obtains (1)

as in Theorem 2.1. To prove (2.4) we define a sequence zg = b > 31 > T2 >
.. > ¢ by the identity

Lip By 1 TG
ju= Ju=ziw
[ il o

On each interval (@441, ;) we have

[

1o o4
B — B2 - f(9) 1/ ~1/p
<(3=2=2) W” o e} ds

Wl
II.--r.x 1/p
o (BT T2 jp'u ( v %) e e ] )
- b - Lhep m, " .T. — S) l—a)p
_ 1-a N

Ly — T
gc(————-w* '2) -—mm“( o) (1w

b - Ti+2 Lip1 Zite

(b — i)t~

<C 2y = Lipd (ms"fp”)l/PCS"u)—l/p

Ty — TipR Py, —11)1/P
Eol (2. e T Mu, f VU ).
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{For passing from line 2 to 3 of the above we have used the fact that the
function 5 — ((; — §)/(c~ 8))} 7% is decreasing.) Adding in 7 from % = 0 to
oo we get

b

f(s) » 1/p T~ &
S(——)l—ads<O(M W (FPou~ 1)) (a);(—b—ﬁ
< C(My(fPou™1) P(a) > 5 e S
b'b “’H;
< C(My(fPou™t)) 7P(a) { B ds

= O(Mu(fPou™))P(a)(b— ).
Restricted weak type can also be characterized in this case.

THEOREM 2.5 Let 1 < p < co and 0 € &

< 1. The following are
equivalent:

(1) Restricted weak type, i.e. there exists C such that for any measurable
set B and any A > 0,

o
S u < Y SXE’D.
{z:MT xm(2)> 2}

(2) There exists C' such that for any a < b < ¢ and any measurable set
E C (be),

{gle—s)>"tds
(e—a)*

(w(E))H*
(fupse
Proof. We only need to prove that (2) implies (1). For any given interval

(a,b) we define a sequence z; as in the proof of (2.4). It follows that if £ is
any measurable set and B; = E N (2,41, 2;), then

e

xe(s) ( mz+2)1
=T Ce o I e
— l1—a — 1~
Zip1 (b—s) b—mita 2 (@i s) o
< 0T T Biy2 (SE; v)l/>

(b-wipz)i—e (farrs w)t/e

C Ti — Li42 SZ VX B, e
T i)t e

(3

(A Rl A K -
= (b — zipp)te (M“(UXEH 0.

icm
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As in the preceding theorem this implies

M xpla) < C(My(xpvu™))?(a),

and restricted weak type follows. m

3. The case of equal weights. By equal weights we mean v? = u®.
In this section we will prove that in this case, and under the restrictions
1/p~1/g = a— 8, and p > 1, weak and strong type for the operator
M g are equivalent. The natural approach is to prove a “p —&” property.
The problem is that this property in the theory of A+ welghts relies on
some kind of reverse Holder inequality for the functlon v1=P' but the role
of this fanction is now played by v1=? (s)/(e — s}~ which is not a fixed
function but a one-parameter family depending on the variable point ¢. Still
the “p — £” property can be proved using the following lemma:

LemMMA 3.1. Let 1 < p < oo and 0 < a— 8 < 1/p. Assume Ap 0,8
holds, i.e. there exists C1 such that for any a < b <e¢,

(3.2) (Su)lfq (E (_% ds) W < Cifc - a)®.

EAYF
) (e~ s)ii=e

Then there exists o constant Ca depending only on Cy and such that for any
z<y<z<e,

H af ~'(s i
o (25

z 1
<G (S (c— sya—al/(i+A—a)
€

1473 »—-oc
ds)

: Titl
Proof. We consider ¢ < v < z < ¢ and define points mp = z, Sm U =

Vf.l wif i > 0. Let N be such that zxy < y < zny-1. It follows from the
definition that S =i = 411 Pr-tu> g S u, while for i < N —1

N4k 2 Jon @

we have § w"‘ L= ot > {¥ w. Keeping this in mmd we have

‘i ot (s) \ < NE’I mSi v! P (s) (wi - 5)(1—a)p ds
- L 1—o)p’ -
.y (C )(1 a)p ror S (9;‘ s)( )P ¢ 8§
N-1 (1—a)p’ w: 1-p'
~ Li4-2 v (S) ds
< E ( C— Titz ) S (-T'i - S)(l'*l)!)iﬂ!

LitL
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N-1 (1—a)p'
Li — Topa : 1
<Gy (—1"—2) (z: ~ zig2)" B pia
i=p N T T2 (Smi+3 %)

; Vo epg Nl g (18-l
< 4P /iy ( S u) Z ((c _ m:;)(lf;;f(lw—a))

o'ia N—1Zig2 1 {(14+8-a)p
<G fu ( 2 | T d“’)

=0 @y

—pia® 1 (18-
”) (i(cﬁs)a—a)/tww ds) g

We have used the fact that (1 4+ 8 — a)p’ > 1, which is nothing but
another way of writing o — 3 < 1/p. Observe that if 8 0, we can take
z = ¢ in (3.3) and obtain (3.2), so actually they are equivalent. We also
point out that A;:q,a’ﬁ is nothing but A;"q,h’k when h(z,c) = (c— )~ and
k(z,s,c) = (¢ — §)*~1. Therefore A, ;5,0 5 characterizes weak type if p < g
ora=4,p=q. :

In order to characterize strong type in the case of equal weights, we need
to recall a few facts about weights for the operator

1 " xth
M7 f(x) = sup —— ,
5 /(=) R0 S“‘h 5 fe

where g is any locally integrable function. The main resuit needed is the
following.

THEOREM 3.4. The operator M is of weak type (p,p), 1 < p < oo,

with respect to the weights (u,u) if, and only if, the following condition is
satisfied: There exists C' such that for any z <y < z,

=z

(" ey <l
& Yy Fis}

Furthermore, if (u,u) satisfles AT (g), then there ezists ¢ > 0, depending
only on the constant C' of the definition of A; (g) and not on the particular
function g, such that (u,u) satisfies A7 __(g).

(45 (a)

For the proof see [MOT]. The same result holds also for functions and
weights supported on a half-line (—o0,¢) (cf. [A]).

THEOREM 3.5. Let 0 < B <a <l and 1< p<oco. Ifl/p—1/q=0a—j
and v = uP, then the following are equivalent: :

icm
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(1) There exists a constant C such that for all f € LP(u),

- 1/q ' alp

(ogtary) " <o(fispe)"

(2) The pair (u,v) satisfies A;q!aﬁ.

Proof. (1)=(2) follows from Theorems 2.1 and 2.3. Conversely, we know
from Lemma 3.1 that A;" g, (mplies (and is actually equivalent to)

YNVt vt (s) L z 1 1+5-c
(1) (3 (o= 5)0-a ds) ¢ ( | G aEee ds) ’
z ¥ x

for all x,y,z, ¢, with £ <y < 2 < ¢, where the constant C' does not depend
on %,y 2,¢. If v? = uP, this is equivalent to

Yo\ 1/q /% yml00-p)g) LY z 1 1ti—a
(iu) (S (c— 5)0tmo) ds) : O(S (c — 5)(-a/(+6-a] ds) '
T y z

Defining » = (p’ + ¢)/p’ aud ' = (¢’ + ¢)/¢, and keeping in mind that
1+ 8 —a=1/p + 1/q, the last inequality can be written as

Vo 1jr s L=’ () M
@8 ({u) (S el ds)

Y
z 1
<C (S (e = syi-a)/(if-a) ds) ‘

This is A} (g.), where g. is the function {c— s)fer D/ A+B=aly,_ . 5(s).
Because of the “p — ¢” property, the same inequality holds with r replaced
by a smaller exponent r; that does not depend on ¢ and with a copstant that
depends only on C and r; but not on &,y,z,c. On the other hand, it follows
from Holder’s inequality that (3.6) holds with r replaced by r2 > r with the
same constant. If we now follow the above chain of equivalences backwards
we obtain Az—;.qm,ﬁ with p; = ri/(ri{a~B)+1+8—a), ¢ =7/ (L +0 —al,
where still 1/p;—1/¢; = a—pB (i = 1,2). It follows from Theorems 2.1 and 2.3
that the operator M r;'" g s of weak type (p1,q1) and (p2, g2) with refspect to
the measures uclm,vclr'u. The interpolation theorem of Marcinkiewicz [SW]
agserts that then M, c'x'", p is of strong type (ps,q:) with

1 ¢ 1-t 1 _t 1-—¢%

P M @ @ q2
Choosing t so that 1/r =t/ry + (1 —1)}/r2, we get p: =p, ¢t = q. ®

4. Final remarks. In this section we want to point out some facts

about At ; weights. First of all we observe that alihough the weak type
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characterization for p < ¢ holds without any relation between p,g on the
one hand and «, 3 on the other, actually if & — 3 < 1/p— 1/q then the class
A:;q,a,a is empty. To see this one takes ¢ = ¢~ 2h, b = ¢ — h and then
AT o g implies

/

1 c—h /g 1 ¢ 1/p
(._ S u) (_ S vl—p’) < OpB—etl/p-1/q
h — El

h c—2h c—h

which is impossible unless wv™' = 0 a.e. Furthermore, since the function
1/(c~ &)1~2P" must be locally integrable near ¢, the exponent (1 — a)p’
must be less than 1, which means that p > 1/a. Therefore there is always
a critical index p = 1/a for which weak type fails, but still restricted weak
type may hold. It is easy to see that if @ = § = 1/p then Lebesgue measure
satisfies the condition for restricted weak type (p,p), which is one of the
main results in {JT].

We end our work by studying the relationship between the good weights
for M, and those for M. We will fix 0 < a < 1 and simplify our notation
writing A, instead of A, , . The good weights for M+ wil be denoted,
as usual, by A7

The first observation is that if (u, ) € A, then

(1" ()"

b Li/m ul=?'(s) /v
1~
< (J») (Sm) dofe—a) ™ < Cle—a).
a b
Therefore A}, C Af. That this inclusion is proper can be seen by consid-
ering weights of the form u(z) = |2|7. 1t is easy to see that then (u, u) is'in
Al if, and only if, —1 <y <1 —1. Now if r > ap and we choose ~ 80 that
ap—1 <y <r—1, the pair (u,u) satisfies A7 while.
(10" (e
U Y P
A7 \Je—auar
is of the order of b raised to the exponent
yEl 1A —p) - (- o)y
P 4 ’
and the condition v > ap ~ 1 implies that this exponent is strictly greater
than «. The conclusion is that, At , is not contained in A} whenever r > ap.
This means that the natural candidate for the inclusion in the other direction
is Agp. To see that A;fp < A;,': o we will use the characterization of restricted
weak type. If (u,v) is such that the operator M+ is of restricted weak
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type (r,r), then Theorem 2.5 asserts that there exists C such that for any
z<y<zand EC (y,2),
U(E) )1/7‘
El <l{z—z)| ——~ .
B e )(u(m,y)
It follows that

/T
| ““"“"@"ST:“ S|EI* < G(Z“w)“( o(E) ) :
B (z - '5) “ u(m,y)
This means that M is of restricted weak type (s,s) with s = r/o. There-
fore if (u,u) € AT with s < ap then M is of restricted weak type (;, 5) jcmd
M is of restricted weak type (s/c, s/a). Since s/a < p, interpolation gives
weak type (p,p). We have thus proved that s < ap implies A7 C AL . Fl—
nally, if (u,u) € A;tp, cp > 1, there exists s < ap so that (u,u) € Aj, which
implies Af, C A} . The natural question of Whe':ther or not A7 o I8 equajl to
Aj"p is open. We have a positive answer for restricted we?,k type in the 111:1_11:
case, even for different weights. More precisely: let us write RAY and RAT
for the classes of weights (u,v) for which restricted weak type (p, p) holds for
the operators MT and M respectively. We have seen above that RAL, C
RAZ ,. We claim that in the limit case as = 1 they agree. Ojbserve first that
RAT is just A, because in this case weak type and restricted weak _type
are the same. It is then enough to check that RAY,, is Af. But RAT

means that there exists ¢ such that for any a < b < cand E C (b, ¢),

d of V(E)\*
| e <o ()

E
Choosing F = (b, ¢) we get

b e
_.I.Z_SuSC' ! S’U‘.
b

c—a c—b
a
b X
Taking the limit when ¢ | bwe have (1/(b—a)) §, u £ Cv{b) for a.e. b, which
is AT
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Initial value problem for the time dependent
Schridinger equation on the Heisenberg group

by

JACEK ZIENKIEWICZ (Wroctaw)

Abstract. Let L be the full laplacian on the Heisenberg group H" of arbitrary dimen-
sion n. Then for f € L*(H™) such thas (7 — L)s/zf e LA(H™), a > 3/4, for a ¢ € Ce(H™)
we have
[ 16 sup_ |V po)f de < Oyl -

- DIl

On the other hand, the above maximal estimate fails for 8 < 1/4.If A is the sublaplacian
on the Heisenberg group H", then for every s < 1 there exists a sequence fn € L2 (H™)
and Cn > 0 such that (I — L)*/% fn € L2(H™) and for a ¢ € Cc(H™) we have

[ 16a)] sup [/ n(o)l? o 2 Culldulfys, i, On = 4o
up

8

Introduction. In his lectures Some analytic problems related fo sta-
tistical mechanics [C] Lennart Carleson observed the following. Let H be
a hamiltonian of a quantum system and let Vi be the time dependent
Schrodinger group which describes the time evolution of the system Vi f =
eV—TtH £ Then for a general state f € H although lims..q WVaf — flle =0,
a better convergence like a.e. may not hold. Indeed, Carleson showed that
if H = L?(R) and the hamiltonian H is equal to d? /dz?, then there exists
f € W/8 for which V,f does not converge to f ae. ast — 0. On the other
hand, be proved that if f belongs to the Sobolev space Wi/Ate &> 0, then
limg,o Ve f(z) = f(z) ae.

The last theorem attracted a Jot of attention. In 1983 Michael Cowling
[Cw] put the Carleson theorem in a general framwork.

Let X be a measure space and H a self-adjoint, densely defined operator
on L? (X}, We introduce a scale of Sobolev spaces W¢, s € R, by -

few® iff felI?(X)and |H*?f € L*(X).
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