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A generalization of the uniform ergodic theorem
to poles of arbitrary order

by

LAURA BURLANDO (Genova)

Abstract. We obtain a generalization of the uniform ergodic theorem to the sequence
(1/nP) Z}:;& T*, where T is a bounded linear aperator on a Banach space and p is a
positive integer. Indeed, we show that uniform convergence of the sequence above, together
with an additional condition which is automatically satisfied for p = 1, is equivalent to
1 being a pole of the resolvent of T plus convergence to zero of [|[T™]|/n¥. Furthermore,
we show that the two conditions above, together, are also equivalent to 1 being a pole of
order less than or equal to p of the resclvent of 7', plus a certain condition £(k, p), which is
less restrictive than convergence to zero of ||T™||/n? and generalizes the condition (called
condition (£-k)} introduced by K. B. Laursen and M. Mbekhta in their paper LM2]
(dealing with the case p=1).

Introduction. Throughout this paper, when the scalar field is not spec-
ified we assume it may be either R or C. If X and ¥ are Banach spaces over
the same scalar field, let L{X,Y") denote the Banach space of all bounded lin-
ear operators from X into Y, endowed with the canonical norm induced by
the norms of X and ¥. Then convergence in L{X,Y"} of a sequence (T )rnew
of bounded linear operators from X into ¥ means uniform convergence of
T.% on the closed unit ball of X. For the Banach algebra of all bounded
linear operators on X we use the notation L(X) instead of L(X,X). We
denote by Iy the identity operator on X, which is the identity element of
L{X).

Let X be a complex Banach space. For each T € L(X) we denote the
spectrum of T by (T, the spectral radius of T' by r(T') and the resolvent set
of T by o(T) (that is, o(T") = C\ ¢{(T)). It is well known that the resolvent
function

R(,T): o(T) 3 A (Mx —T)7l e LX)
(where, for each A € o(T), (\x — T)"* denotes the inverse of Alx — T
in L(X)) is holomorphic on o(T). By N and Z; we denote the sets of all
nonnegative and positive integers, respectively. If p € Z;, we recall that
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a pole of order p of R(-,T) is an isolated point Ag of o(T) such that the
coefficient of index —p of the Laurent expansion of R(-,T) in a punctured
neighborhood of Ag is nonzero and the coefficient of index —n is zero for
every n > p. By a pole of order zero of R(-,T) we mean an element of p(T).
Thus, according to our terminology, a pole of R(-,T) may not belong to
o(T) (this happens exactly when the order of the pole is zero).

In the paper [D1] by N. Dunford, several theorems about convergence
of fn(T), where I' is a bounded linear operator on a complex Banach space
and (fnlnen is a sequence of complex-valued functions, each of which is
holomorphic on some open neighborhood of o(T), are obtained. Different
kinds of convergence {namely, convergence in L(X), strong and weak con-
vergence, and, in the case of a space of measurable functions, almost ev-
erywhere convergence) are treated in [D1]. A special case of the results in
[D1] about convergence in L{X) is the uniform ergodic theorem, concern-
ing convergence of (1/n) »_rqk in L(X), which in particular turns out
to be equivalent, under the hypothesis of convergence to zero of [T™[}/n,
to 1 being a pole of order less than or equal to one of the resolvent of T
(see [D1], 3.16; see also [D2], comments following Theorem 8). Dunford’s
uniform ergodic theorem has been improved by M. Lin in [Li], and further
improvements have recently been obtained by M. Mbekhta and J. Zemanek
in [MZ], and later by K. B. Laursen and M. Mbekhta in [LM2]. Dunford’s
uniform ergodic theorem and the further contributions by Lin, by Mhekhta
and Zemének and by Laursen and Mbekhta are put together in Theorem 1.5
below,

A partial generalization of the uniform ergodic theorem to the sequence
(1/nP)S30 g T*, where p is a positive integer, has been provided by
H.-D. Wacker in [W]: indeed, in [W], Wacker proves that, if 1 is a pole
of order less than or equal to p of the resolvent of T and || T||/n? converges
to zero, then (1/nP) Y 75 T* converges in L(X). Also, an example showing
that the converse implication does not hold (more precisely, showing that
convergence in L(X) of (1/n?) T r=o T* does not imply that 1 is a pole of
the resolvent of T when p > 1) is given in [W] (p. 543, Beispiel).

This paper contains (the developments of) part of the results announced

in [B]. Indeed, we are concerned here with providing a converse of Wacker's
result.

Section 1 presents some preliminaries, in order to make this paper as self-
contained as possible. In Section 2 we introduce condition £(k, p) {where k
and p are positive integers), which is a generalization of the relaxed version,
provided in [LM2] and called condition (£-k), of the condition ||T™||/n — 0.
Condition &£(k,p) coincides with condition (£-k) for p = 1 and turns out to
be equivalent to convergence to zero of |[T™||/n? for k = 1. Furthermore,

icm

Uniform ergodic theorem 77

we prove that £(k,p) implies E(k — j,p+ j) for all j = 0,..., k — 1 (Theo-
rem 2.4), whereas the converse does not hold (Example 2.7). In Section 3 we
obtain our main result (Theorem 3.4), namely a complete generalization of
the uniform ergodic theorem to the sequence (1/n7) E;‘;& T*: among other
things, we prove that convergence of this sequence in L{X ), plus the ad-
ditional requirement that the sum of the kernel of Ix — T and the range
of (Ix — T)?~! be a closed subspace of X (which is automatically satisfied
when p = 1, and thus is a “hidden” condition in the uniform ergodic case),
is equivalent to 1 being a pole of order less than or equal to p of the resolvent
of T, plus condition &(k,p) for some k € Z; . Several other equivalent con-
ditions are given, involving either condition E(k, p) or convergence to zero
of ||T™||/n?. We also provide some examples in order to illustrate the role
of the hypotheses of Theorem 3.4.

We remark that Theorem 3.4 is used by IL. C. Rénnefarth in [R3] in order

to obtain an extension to the sequence (n + 1)*P+1M£k) (T), where k € Zy
and the M5 (T), n € N, are convenient operator means, generalizing the

Cesiro means MY (T) (= (n + 1)71 4o T"). We also recall that the
asymptotic behavior of the generalized Cesaro means Mf(ak)(T) as n — 0O,
in connection with 1 being a pole of order less than or equal to 1 of R(-, 1),
is studied in [R2]. More generally, in [R2]—as well as in [R1] and in [Z]—
several results and a list of references concerning the iterates of a bounded

linear operator {or an element of a Banach algebra) can be found.

Acknowledgements. I am grateful to J. Zemének for useful biblio-
graphical references and interesting discussions about the topic.

1. Preliminaries. In this section we recall the uniform ergodic theorem
and the generalization by H.-D. Wacker, as well as sorne other known results
which we shall frequently use in the sequel.

If X and Y are Banach spaces, for each T' € L(X,Y) we denote the
kernel and range of T' by N(T) and R(T), respectively. We begin with the
following closed range theorem.

TueoreM 1.1 (see [TL], IV, 5.10). Let X and Y be Banach spaces and
let T € L(X,Y). If there exists a closed subspace Z of Y such that R(T)NZ
= {0} and R(T) @ Z is closed, then R(T) is closed.

By a projection of 'a Banach space X we mean an element P of L(X)
satisfying P2 = P. We recall that, it P is a projection of X, then R(P)
is a closed subspace of X and in addition X = N(P) @ R(P). Conversely,
for every direct-sum decomposition X =Y ©Z, where Y and Z are closed
subspaces of X, there exists a unique projection Pof X such that R{P) =Y
and N(P) = Z: we call P the projection of X onto Y along Z.
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Following [LM2], by a complement of a linear subspace V' of X we mean
a subspace W of X such that X = V @ W (where neither V' nor W are
necessarily closed).

For each T € L(X), let a(T) and §(T) denote the ascent and descent
of T', respectively. Namely,

a(T) = inf{n € N: N(T™) = N(T"1)},
8(T) = inf{n € N: R(T™) = R{(T"T1)}.

Then o T and §(T) belong to N U {oo}. Furthermore, we have a(1") = oo
(respectively, 6(T) = co) when N(T™) is strictly contained in A(T")
(respectively, R(T"F1) is strictly contained in R(T™)) for every n € N. If,
on the contrary, N{T™) = N(T™1) (respectively, R(T™) = R(T™1)) for
some n € N, then o(T) (respectively, §(T)) is the minimum of all natural
numbers for which the equality above is satisfied. We also recall that, if
a(T) < oo (respectively, §(T) < o), then N(T™) = N(T*T}) for every
n > o(T) (respectively, R(T") = R(T*T)) for every n > §(T)). Notice that
a(T) = 0 (respectively, §(T) = 0) if and only if T is one-to-one (respectively,
onto).

It is well known that finiteness of the ascent and descent of a bounded
linear operator on a Banach space X is equivalent to a certain decomposition
of X, as the following result shows.

TueOREM 1.2 (see [TL], V, 6.2, 6.3 and 6.4). Let X be & Banach space
and let T € L(X). If both o(T) aend 8(T) arve finite, then a(T) = &§(T)
and the following decomposition holds, where p denotes the common value
of a(T) and 8§(T'):

X =N(T?) @ R(T*)

{which implies that R(TT) is closed, in virtue of Theorem 1.1). Conversely,
if the decomposition above holds for some p € Z, then o(T) = §(T) < p.

Now let 7" be a bounded linear operator on a complex Banach space and
let Ag € C either be in o(T') or be an isolated point of (7). We recall that
then the coefficient of index —1 of the Laurent expansion of R(:,T) in a
punctured neighborhood of Ay is a projection P of X, which is nonzero if
and only if A € o(T") (see [TL], V.10): we call P the spectral projection of T
associated with Ag. The following classical result relates ascent and descent
of complex Banach space operators to poles of the resolvent.

THEOREM 1.3 (see [TL], V, 10.1 and 10.2). Let X be o complez Banach
space, let T' € L(X) and let Ay € C. If Ag 8 a pole of order p of'R(A,T) for
somep € N, then a(hlx —T) = §(MgIx —T) = p and the spectral projection
associated with Ay coineides with the projection of X onto N((AoIx ~ T)P)
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along R({AoIx — T)P). Conversely, if both a(rgIx ~ T) and §(Aolx — T)
are finite, then Ay is a pole of R(-,T).

Let X be a Banach space. We recall (see for instance [LM2], Defini-
tion 5) that T &€ L(X) is said to be quasi-Fredholm if there exist two closed
subspaces M and N of X, invariant wnder T, such that X = N & M, the
operator Ty : N — N defined by Tyz = T’z for every x € N is nilpotent, and
finally (M) is closed in X and contains N'(T™) N M for every n € N. As
remarked in [EM2], it is well known (see [K], Theorem 4) that the bounded
linear semi-Fredholm operators on X are quasi-Fredholm.

The following result is implicitly contained in the proof of [LM2], The-
orem 6 (see [LM2], Theorem 6, proof of “(a) and (b) imply (c)”, in which
condition (£-k) is not used).

THEOREM 1.4. Let X be o complex Banach space and let T € L(X). If
Mo € C is a pole of R(-,T), then MoIx — T is a quasi-Fredholm operator.

Finally, let k& € Z,.. Following [LM2}, Definition 2, we say that a bounded
linear operator T on a Banach space X satisfies condition (£-k) if
1 n—1 '
= Tk d
~(Ix ~T) Z T

F=0

We recall that condition (£-k) implies (£-h) for every h > k. We also recall
(see [LM2], Lemma 3; notice that —(Ix —7T)*~*T™ /n should be replaced by
(1/m)(Ix — TY*1{(Ix — T™) in the proof) that T' satisfies condition (E-k) if
and only if

— {0 asn - o0,

— 0 asmn-— oo

L k—1pm]
171(1}( TYe-iT

Hence, as remarked in [LM2), T satisfies condition (£-1) if and only if
|| /n — 0 as n — co.

By also taking Theorems 1.2 and 1.3 into account, the uniform ergodic
theorems in [D1], [Li], [MZ] and [LM2] can be rephrased in the following way
{see [D1], 3.16, [D2], comments following Theorem 8, [Li], [MZ], Théoréme 1
and final Remark 1, and [LM2], Theorems 6 and 9). ‘

THEOREM 1.5. Let X be a complex Banach space and let T € L(X).

Then the following conditions are equivalent:

(15.1)  (1/n) S pog T* converges in L(X);

(1.5.2) | T™|/n — 0 asn — oo and 1 is o pole of R(-,TY;

(1.5.3) T satisfies condition (E-k) for some k € Z,. and 1 is a pole of
R(-,T), of order less than or equal to 1;

(1.5.4) T satisfies condition (£-k) for some k € Zy. and X = N{Ix -T)
53] R(Ix - T);
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(1.5.5)  |IT%||/n — 0 asn— oo and 6(Ix —T) < 004

(1.5.6) T satisfies condition (E-k) for some k € Zy and 8{Ix —T)< 1

(1.5.7) T satisfies condition (E-k) for some k € Zy, 6{(Ix —T) < 0o and

_ N(Ix —T) has a complement which is invariant under T';

(1.5.8) || T"||/n — 0 as n —» oo end Ix — T is a quasi-Fredholm operator;

(L5.9) | T*||/n — 0 as n — oo and R((Ix — T)*) is closed for some
positive integer k; :

(1.5.10) [|T"{l/n — 0 as n — oo and R((Ix — T)*) ds closed for every
positive inleger k;

(1.5.11) |T™|/n —0 as n — o0 and N (Ix ~T) +R(Ix — T} is closed.

Purthermaore, if (1.5.1)—=(1.5.11) are satisfied and E is the projection of X
onto N(Ix ~T) along R(Ix—T), then |(1/n) Spoy TF~ B! — 0 asn — oo.

We now recall H.-D. Wacker’s generalization of the uniform ergodic the-
Qrem.

THEOREM 1.6 ([W], Satz 4). Let p € Zy, let X be a complex Banach
space and let T € L{X) be such that |T"| /7 — 0 as n — oc. Then the
following two conditions are equivalent:

(1.6.1) 1 4s a pole of R(-,T), of order less than or equal to p;
(1.6.2)  R((Ix —T)P*') is closed.
Furthermore, if (1.6.1) and (1.6.2) are satisfied and P is the projection of

X onto N((Ix — T)?) along R((Ix — T)?), then
1

1 1 _

t——>0 as n — 00.

As remarked by H.-D. Wacker (W], p. 543, Bemerkung), (T~ Ix)?~Pis
the coefficient of order —p of the Laurent expansion of R(-, T") in. a punctured
neighborhood of 1.

Also the following two results by H.-D. Wacker will be wuseful in the
sequel.

TurorEM 1.7 ({W], Satz 2). Let X be a complez Banach space, let T &
L(X) and let p € N be such thai limn,_,oo(1/nP)T™z = 0 for every z € X.
Then a{Alx —T) <p for every A € C such thet [A| = 1.

THEOREM 1.8 ({W], Satz 5). Let X be a complex Banach space, let p €
Z. and let T € L(X) be such that »(T) = 1 and the intersection of o(T)
and the unit circle consists of a finite number. of poles of R(-,T), each of
order less than or equal to p. Then the sequence (||T™||/nP ™ )nen is bounded
and ||T"] /n? — 0 asn — co. .
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Finally, we will need the following well known identity (which is not
difficult to prove by induction on n):

n—1%
(1.9) kzq (;") = (jil) for every j € Nand foralln > 5+ 1.

2. A generalization of condition (£-k)

DeFINITION 2.1, Let X be a Banach space, let T € L(X) and let
k,p € Z... We say that T satisfies condition E(k,p) if

n—1

o g

We say that T satisfies condition S(k,p) if

— 0 asn —o00.

n—1 ) .
;}EUX—T)kZT% —0 asn — oo for every z € X.
j=0

Notice that £(k, 1) coincides with (£-k) for each k € Z;.. Notice also that,
for every k,p € Zy, condition £(k, p) implies S(k, p) (and is equivalent to it
in the special case of a finite-dimensional space X ). Furthermore, we remark
that &(k,p) (respectively, S(k,p)) implies £ (h,q) (respectively, S(h,q)) for
every h > k and for every g > p, whereas E(h, q) (respectively, S(h,q)) for
some h > k and some ¢ > p does not imply £(k,p) (respectively, & (k,p)) if
one of the two equalities is strict: for instance, the operator in the example
on p. 3444 of [LM2]—represented by the matrix (3 1)-—satisfies both £(2,1)
and £(1,2), but does not satisfy S{1,1).

The following result generalizes Lemma 3 of [LM2].

PROPOSITION 2.2. Let X be a Banach space, let T € L(X) and let k,p €
Zy. Then:

(2.2.1) T satisfies condition £(k,p) if and only if

—lﬁ(IX ~TY*- 7™~ 0 asn— oo
n

(2.2.2) T satisfies condition S(k,p) if and only if

—%(IX mT)k_lT”m —0 asn — oo foreveryx € X.
n

Proof. Asin the proof of [LM2], Lemma 3, it suffices to remark that,
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for each n € Z, we have
Ux~T)Y TV =Ix~T"

and consequently
7i~1
(IX Ty T = —(IX TV Y Ix —T™).
F=0
Since dearly (1/nP)(Ix — T)*! — 0 in L(X) as n — oo, we obtain the
desired result. =

Let X be a Banach space, T € L{X) and p € Z,.. Notice that, from
Proposition 2.2, it follows that T satisfies £(1,p) (respectively, S(1,p)) if
and ouly if ||T7||/n? — 0 as n — co (zespectively, || T"z||/n? — 0 as n — oo
for every z € X).

LEMMA 2.3. Let (an)nen and (bn)nen be sequences of nonnegative num-
bers. If (Gn)nen 15 nonincreasing and limy, oo Gn = liMyo0 @nby = 0, then

apmax{b;: k=0,...,n} =0 asn—oo.
Proof Foreachn € N, set
my, = max{m € {0,...,n}: by = max{b 1 k=0,...,n}}.
Notice that (M, )nen is a nondecreasing sequence of natural mumbers, Hence
either limy,_oo My, = 00, OT (Mp)nen is eventually constant. In the latter
case, the desired result follows from convergence to zero of (@n)nen.

Now suppose that lim, o M, = 00. Then lim, o0 @m,, b, = 0. Since
m, < n for every n € N, and (a,)nen is nonincreasing, it follows that

Onbm,, < Om, by,  foreveryn € N,
Hence

0= lim apbm, = hm apnmax{by:k=10,...,n}. m
n—00 —r0Q

TreoOREM 2.4. Let X be a Banach space and let T € L(X). If T' satisfies
condition £{(g, p) (respectively, S(q,p)) for some g,p € Zy., then T satisfies
condition £(q — j,p+ 7) (respectively, S(q—j,p+ 7)) for =0,...,q— 1.
In particular, it follows that | T™]|/nP*%1 — 0 as n -~ oo (respectively,
|T7z||/nPt9—t — 0 as n — oo for everyz € X).

Proof We begin by remarking that for each n € Z, we have
1 1 n 1« n
E(T" —Ix) = (e~ (Ix = T)" — Ix) = ~ Z(Wl)é (k) (Ix —T)*

mn
k=1
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Pt kEn—k
5
= —(Ix—T):g:%,)lj(ngl)(Ix—T)k
n—1 1
= —(Ix wT)Z(wl)k(Stk dt) (”; 1) (Ix —T)*
k=0 0
= — (Ix T)l(’il( 1)’°t’°( )(Ix T) )

k=0

n—1

—(Ix-T) (Z (” . 1) (1 —t)”“l"“tka> dt.

0 k=0

Now we prove that, if T satisfies £(g,p) for some p,g € Z, then T
satisfies £(q — 7,p + ) for §=0,...,¢— 1. In virtue of Proposition 2.2, this
holds if and only if, forj =10,...;4 — 1, we have

(2.4.1) (Ix — Ty i=rm™

as mn — oo.

np+i

We proceed by induction. From Proposition 2.2 it follows that (2.4.1) holds
for § = 0. Now suppose ¢ > 2 and (2.4.1) to be satisfied for some j €
{0,...,q — 2}, From the formula above for (1/R){T™ — Ix} it follows that
for each n € Z,. we have

1

preeesd (Sl LI
1 q—j—2 1 7 T
;O-I-j-l-l (IX T) (IX T) (T - X)
- nP+J+1 s red (o L
n—1
1 Y n—=1\ . n-1-kgkgk
—mjﬂ.(_b,;—ff)‘lJ S(Z( B )(1 ) tT)dt

0 k=0
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1 _i_3
T i (Lx = T)%
- n—l—lpk —j—1mk
~§](Z( § )(1—1&)_ t (an(Ix—T)q i-ig ))dt,
k=0

which gives (by setting My, = max{||(Ix — T)7 7 'T%|| : £ =0,...,n — 1})

1 ‘
Hn?+j+1‘(IX - Ty
1 e
< srprllidx =) 2l
Y gty | 1
- n—1—k ik —j=lopk

+§)<k§( . )(l—t) t*|| =5 (Ix — D¢ 7T )dt

e M, t [T /n—1 .
S o lUx - T 2“+np+j§(2( k >(1_t)n 1 ktk) %

0 Mk=0
Ma ¢ '

B Ciin -y _
= —rlidx - T) [|+W§(t+(l~t))“ tdt

; M,
e — —i-2 _/n
_np+j+1”(IX T)q ! H+TLP+-7”

From Lemma 2.3 it follows that M, /nP*/ — 0 as n — co. Hence

(Ix —T)9-i2™

—0 asn—o0,

1
P+l
which gives the desired result. The same arguments (replacing M,,, for each

z € X, by max{||(Ix — )¢ 3"1T%g|| : k = 0,...,n — 1}) prove that S(g,p)
implies S{g— 7, p+ ) for j=0,...,¢g—1. =

The following result, which generalizes Proposition 4 of [LM2] as well as
Theorem 1.7, is a consequence of Theorems 2.4 and 1.7.

COROLLARY 2.5. Let X be o complex Banach space, let T € I(X) and
let k,p € Zy be such that T satisfies condition S(k,p). Then a(Ax —T) &
p+k—1 for every A € C such that |\ = 1.

The following example shows that the converse of Theorem 2.4 does not

hold, namely, for each p > 2, there exist operators which satisfy £(1,p) and
fail to satisfy even S(2,p— 1).

EXAMPLE 2.6. Let p be a positive integer, p > 2. We consider the Banach
space KP (where K is either R or C). For each 4 € L(KP), let A% (j, k €
{1,...,p}) denote the coefficients of the p x p matrix representing A with

Uniform ergodic theorem 85

respect to the canonical basis of KP. Now let T' € L(K?) be defined by
_J-1 i<k
Tj’““{o if j > k.
We prove that for each n € Z; we have
_paftE-I-y <k
(T™)j6 = (1)( n—1 I
0 if § > k.
This is clearly true for n = 1. Now, proceeding by induction, suppose this
holds for some n € Z. Then, for j,k € {1,...,p}, we have

P

(T =3 (T} juThk,

h=1

which gives (T%1);5, = 0if 5 > k. If § <k, then

(T = fj(T”)j;Thk = "::?(—1)” (n o 1)
h=j =3
= (—1)“+1 n+ki_j_l (nrrib 1) = (__1)71"“1 (n +:§ ) j>’

m=n—1

by {1.9). Thus the desired result holds for n + 1.
We remark that, for every n € Z and for all 5,k €1{1,...,p}, we have

(T™)gm!l < max{(”nih) : h=0,--.,p—1}
n+p—2 1 =2 o
( n—1 ) (p—l)i,go( A
Consequently, |(T%);x|/n? — 0 as n — oo for j,k € {1,...,p}. Hence
|T™|l/nP — 0 as n — oo, that is, T satisfies £(1,p). We could also have
obtained this by remarking that the spectrum of every element of L{CP)
consists of a finite number of poles of the resolvent, each of order less than
or equal to p, and consequently, by Theorem 1.8, LA™ /nP — 0'as n — o0
for every A € L(CP) satisfying r(4) = 1: this gives the desired result in
the complex case, as clearly o(T') = {-1}, and the real case follows by
rerarking that the norms of the iterates of T do not depend on K.
Now we prove that T' does not satisfy S(2,p — 1). By Proposition 2.2,
T satisfies S(2,p — 1) if and only if (1/nP~1)(T" ~ T+ g — 0 in KP for
every ¢ € KP. Since, for every n € Zy , we have (
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—(T" - Tﬂ“)(o, : H

npl
= =l (T™)1p = (T )1y, (T = (T o)
2 =T = (T )yl
1 p—2 p—1
= m(g(n+h) +h[=[1(n+h))
I
2 1= 1) }g(n +h)

and

1 (mp 1)'H('“"}“h) e

it follows that T does not satisfy S{(2,p—1). Notice that, from Theorem 2.4,
it follows that T" satisfies S(j+1,p—-j) fornoj=1,...,p—L n

3. A generalization of the uniform ergodic theorem. We begin
with some auxiliary results. Lemma 3.1 below is implicitly proved in [MZ]
(proof of Théoréme 1) for m = 0 and § = 1, and is proved on p. 128 of
[LM1] for n = 2 and m = 0.

LemMma 3.1. Let X be a Banach space, let T € L(X) and let R(T™) +
N(T™) be closed for some (n,m) € N x N. Then R(T™7) + N(T™H) is
closed for every j € {0,...,n}.

Proof. It suffices to remark that R(ZT™) + N (T™H) = (T9)} "1 (R(T™)
+ N(T™)) for every 7 € {0,...,n}. Now the desired result follows from
continuity of . m

We shall also need the following immediate consequence of stability of
semi-Fredholm operators under small perturbations (see [K], §3, Theorem 1).

LeMMA 3.2. Let X and Y be Banach spaces and let T € L(X,Y). If
R(T) is closed, then there exists € > 0 such thot R(S) = R(T) for every
S e L(X,Y) satisfying |§ ~ T <& and R(S) Cc R(T).

In the following lemma we collect some consequences of the convergence
in L(X) of (1/n?) 3325 T*
LeMMA 3.3. Let p € Z+, let X be a Banach space and let T € L(X). If

1 n—1
EETJ“—E’ -0
k=0

as n — oo for some B € L(X),
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then

(3.3.1)  ||T™||/nP — 0 as n— oo;

n—1
1 ; 1 1
—(T - Ix)? 0
(332) |- Z (3 . 1) (T~ Ix) - p!( x)PH|
asn — 00;

(3.3.3) R(E)cN{Ix-T)NR({Ix - T)>1).
Proof. In order to prove (3.3.1), it is sufficient to observe that

b1 -1
™ (n+ 1)?( 1 k) 1 &k
—_—= E ) — —- E T",
np ne {n+1)7 — 7P —

for every n € Zy, and (n—i— 1)?/mP — 1 asn — oo.
Now we prove (3.3.2). For every n € Zy, the following equalities hold
(in virtue of (1.9)):

n—1 n—1 k
ZT’“ ZIX+T I ZZ()T Ix)

k=0 k=0 j=0

n—1 1 J

) gm[g(’“’ﬂ]@—w-

Hence for every n > p-+ 1 we have

n—1
1 7, :
— T —Ix)
— ;:p (j 4 1)( x)
3

_ii pil__}._.[_l_n(nw
T omp P o (7 + 1) nP

Since, for every j € {0,...,p — 1}, Hk olm = k) is a monic polynomial of
degree j - 1 in n, it follows that (1/n?) [Ti_o(n - k) converges to zero (as
n—»oo)when]<p—1andtolwhen3—p 1.T

k)} (T — Ix Y.

%Tg (j —t 1) (T - Ix) - (E - ;!(T - Ix)”_l)

which establishes (3.3.2).
Finally, we prove (3.3.3). Since we have R{(T'— 1 %)) ¢ R((Ix —T)P) C
R((Ix — T)P~*) for every j € {p,...,n~ 1} and every n > p, from (3.3.2)

as 1 — 00,
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it follows that R(E) C R((Ix — T)P—1). Furthermore, since, by (3.3.1),

1
= i — I T =
lim ” (Ix—-T7) 0,

n—+oo

I(Ix ~T)E| = lim “(_rx _ T% 37
k=0

it follows that R(E) C N(Ix —T). m
‘We can now formulate our generalization of the uniform ergodic theorem.

THEOREM 3.4. Let p € Z, let X be o complex Banach space and let
T & L(X). Then the following conditions are equivalent:

(34.1)  (1/n?)S0TE T converges in L(X) and R((Ix — T)P™Y) +
N(Ix —T) is closed;

(34.2) |[T™||/n? - 0 as n— oo and 1 is a pole of R(-,T);

(34.3) T satisfies condition E(k,p) for some k € Zy and 1 is a pole of
R(-,T), of order less than or equal to p;

(34.4) T satisfies condition E(k,p) for some k € Zy and

X =N((Ix - Ty @ R(Ix — T)F);

(3.4.5) ||T7||/nF — 0 as n— oo and §(Ix ~T) < o0;

(3.4.6) T satisfies condition E(k,p) for some k € Z and §(Ix — T) < p;

(3.4.7) T satisfies condition E(k,p) for some k € Ly, §(Ix —T) < oo and
N((Ix —T)P) has a complement which is invariant under T';

(8.4.8) {T"||/n? — 0 as n — oo and Ix —T is o quasi-Fredholm operator;

(3.49) |T%|/mP — 0 as n — co and R((Ix — T)*) + N((Ix — T)?) is
closed for some (k,j) € N x N with k > p;

(3.4.10) |T™|/n? — 0 as n — oo and R{(Ix — T)*) + N((Ix — T)7) is
closed for every (k,j) € N x N satisfying k+j = p.

Furthermore, if (3.4.1)—(3.4.10) are satisfied and P is the projection of X

onto N{(Ix — T)P) along R{{Ix ~ T)*), then

n—1

1 1

E E Tk—;(T—Ix)p~1P1"“*O as n — 00,
k=0 ’

Proof. Conditicns (3.4.3) and (3.4.4) are equivalent in virtue of Theo-
rems 1.2 and 1.3. From Theorem 1.2 it also follows that they imply (3.4.7).
In virtue of [LM2], Proposition 1, condition (3.4.7) implies §({Ix —T)P) < 1,
which gives §(Ix —T) < p. Hence (3.4.7) implies (3.4.6). Furthermore, from
Corollary 2.5 it follows that £(k, p) implies a(Ix -~ T) < co. Then (3.4.6) im-
plies (3.4.3) and (3.4.4) by Theorem 1.3. We have thus proved that (3.4.3),
(3.4.4), (3.4.6) and (3.4.7) are equivalent.

Since ||[T"||/n? — 0 as n — oo implies a(Ix — T} < p by Theorem 1.7,
from Theorem 1.3 it also follows that (3.4.2) and (3.4.5) are equivalent and
imply (3.4.3), (3.4.4), (3.4.6) and (3.4.7).
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Now we prove that (3.4.3), (3.4.4), (3.4.6) and (3.4.7) imply (3.4.2) and
(3.4.5). If T satisfies the former set of conditions, then R({Ix —T')"} is closed
by Theorem 1.2. Furthermore, R((Ix —T)") = R({Ix —T)?) for every n = p.
Consequently, in virtue of [TL], IV, 5.9, if we set m = max{p, k — 1} there
exists § > 0 such that, for each y € R{{Ix ~ T)P), there exists u, € X
satisfying (Ix —T)™u, =y and |uy|| < 8||y||. Since T satisfies £(k,p), from
Proposition 2.2 it follows that

_ H%(IX—T)k‘lT” —0 asn-— oo

Hence for every £ > 0, there exists n. € N such that
g
< — foralln2n

| "

(where M. > 0 satisfies M > |{[Ix — P|| - [{(Ix — TYy™=*+1|)). Then for all
n > n. and for each z € X we have

1 1

1
— (I _Tk-'“lT'n
SUx=T)

T"(IX — P):E

nP

1 T
= H;T (Ix = T)"u(1x—P)a

1 -
4E(IX _ T)k—lTn(IX _ T)m .'c+31,tll(1_}&”_}:')z

e
< —&H(Ix — T ] gy -pya
< ZN(T — T T - P lel < 2l

which gives

_:_L;T”(IX —P)|<e foralln = n,.
m

Hence (1/n?)I™(Ix — P) converges to zero in L(X) as n — oc. Since 1 is a
pole of order less than or equal to p of the resolvent of the bounded linear
operator
To :N((Ix—T)p) 3z Tx EN((IX —T)p),

and moreover we clearly have o(Ty) C {1}, we may apply Theorem 1.8 and
conclude that (1/nP)T™P — 0 in L(X) as n — oo. Then (1/n?}T"™ — 0 in
L(X) as n — oo, that is, T satisfies (3.4.2) and (3.4.5).

We have thus proved that (3.4.2)-(3.4.7) are equivalent. Notice that they
imply (3.4.8) by Theorem 1.4.

Now we prove that (3.4.8) implies (3.4.10). If T' satisfies (3.4.8), then
Iy —Tis a quasi-Fredholm operator, that is, there exist two closed subspaces
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M and N of X, invariant under T, such that X = M @ N, the operator
Ty :NBxH(Ix—T)$EN

is nilpotent, (Ix —T){M} is closed in X and N{Ix=T)")NM < (Ix-T)(M)
for every n € N. Then (Ix — T)™(M) is closed for all 7 € N by [MO],
2.5, and [TL], IV, 5.9 (or [MO], 1.1). Furthermore, since 7] /n? — O as
n — oo, and consequently a(Ix —T") < p by Theorem 1.7, it follows that
N ¢ N{(Ix —T)?). Hence for all (k,7) € Nx N satisfying k+j = p we have
R((Ix — TY+7) = (Ix — T)**+J (M), which is closed. Now from Lemma 3.1
it follows that R((Ix — T)*) +N{({x — T)7} is closed. We conclude that T
satisfies (3.4.10).

From what we have proved above, it follows that, if T satisfies (3.4.2)~
(3.4.7), then R((Ix ~T)?~Y)+N (Ix —T) is closed. Theorem 1.6 provides the
remaining part of the proof of the assertion “(3.4.2)(3.4.7) imply (3.4.1)",
as well as the proof of convergence of (1/n?) py TF to (1/p!)(T—Ix )PP
when conditions (3.4.2)—(3.4.7) are assumed.

Clearly, (3.4.10) implies (3.4.9). Now it suffices to prove that (3.4.1)
implics (3.4.9), and (3.4.9) implies (3.4.2)~(3.4.7).

We prove that (3.4.1) implies (3.4.9). We first recall that convergence in
L(X) of (1/nP) 772 T* implies convergence to zero of [|T™|/n® by (3.3.1).
Now we prove that, if T satisfies (3.4.1), then R((Ix — TY) +N({Ix —T) is
closed. Let B ¢ L(X) be such that ||(1/nP) Sy T% — E|| — 0 as n — co.
Then

I RN (RS

i=p
by (3.3.2) and R(E) C N(Ix ~ T) in view of (3.3.3). Hence, if @ €
L{X,X/N(Ix — T)) is the canonical quotient map, we have

— 0 asn-—o00

— 0 asn-— 0.

BT —
npj=p J+l X) +EQ( _X)

Notice that R{Q(T - Ix)P~!) = (R(Ix — TP )+ N(Ix~T))/N{Ix-T1),
which is a closed subspace of X/N (Ix —T) as R((Ix — TV 1) +N(Ix —T)
is a closed subspace of X and contains M (Ix — T'). Furthermore, since for
every n > p we have

R(SS (1)@ - mp) e rx ) < Rk - TP,

Jj=p
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it follows that

n—1
R(%,; z <j :: 1) Q(T“Ix)j) c (R((Ix=T)P~1)+N(Ix -T))/N(Ix-T)

i=p
for all n > p. Thus from Lemma 3.2 we conclude that

1 n—1 n ; -
R(;;; ; (j + I)Q(T—Ix) ) = (R((Ix=T)Y 1) +N(Ix—T))/N{Ix-T)

for sufficiently large n. Since

1 n-1 n ]
Rl —= T—Ix)
(np ; (j+1)Q( < )
CR(Q(Ix —T))
= (R{(Ix — T)?) + N(Ix = T))/N (Ix ~T)
for all n > p, we have
(R({Ix — TP + NUx —T)/N(Ix ~ T)
= (R((Ix — TV} + N(Ix —T)H/N(Ix ~T)
and consequently
R((x — TY) + NIz — T) = R({Ix = T ™) + N (Ix = T).
Hence R({Ix — T)?) + N({Ix — T) is closed. We have thus proved that T
satisfies (3.4.9) for k=pand j = 1.

Now we prove that (3.4.9) implies (3.4.2)~(3.4.7). Suppose that T' satis-
fies (3.4.9). Then ||T™{|/n? — 0 as n — co and consequently, as we remarked
above, a(lx —T) < p. '

Now let k > p and j € N be such that R((Ix — V) + N ((Ix —TY) is
closed. Since the vector space R{(1x — TY) NN ((Ix — T')?) is algebraically
isomorphic to N ((Ix — Ty /N ((Ix - T)*) (see [TL], V, 6.3) and since
a{Ix — T) < p, it follows that R{{/x — Ty NN ((Ix — T)) = {0}. Then,
since R{(Ix — T)®) ® N ((Ix - T)7) is closed, it follows from Theorem 1.1
that R((Ix — T)F) is closed. _

Suppose first k& > p. Since [|T7(|/n® — 0 as n — oq, it follows that
#(T)y<1.Thenl € o(T). Since a(Ix —T) < p, it follows from [Laf, 2.7 that
1is a pole of R(-,T). Thus T satisfies (3.4.2)-(3.4.7). '

Now suppose k = p. Let A € L{R{{Ix — T)?), X) be defined by

Az = (T — Ix)z

for every = € R({Ix — T)F). Then R(A) = R((Ix — T)P™).
Since R{(Ix — T)?) is closed, there exists 7 > 0 such that, for each
y € R((Ix — T)P}, there exists oy € X which satisfies (T — Ix)Pzy = y and
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llzy|l < 7|yl (see [TL], IV, 5.9). Then, for every y € R{(Ix — T)?) and for
alln > p+1, we have

= > (})er = roy=e=t ) - o

k=p+1
1 n
= — E (k:) (T—Ix)kwy

k=p+1
1 (o F /n
= Tmy—z § (T —Ix) "y
k=0
A 2211 /n X 1 /n

Since [|7™|/n? — 0 as n — oo and limyeo{1/n?)(}) is equal to zero if
k<p-1and to 1/p! if k = p, there exists v > p such that

1., S 1 1

—r S (VT - | < L. L
vP gyl’(k)( x) p!- 47 and vP \p >p!-2'
Consequently, for each y € R({Ix — T)P) we have

H(E ol

k=p-+1
|zl

Vip(;)liyll -
Jial> 1L

1 (v 1 2oy
. | L el —_ ke
| (W (P) iz ,;01/1’ (k)(T Lx) P4

Hence (1/.v3’)(22=p w1 (DT = Ix)*P=1)A is one-to-one and has closed
range, which implies that also A is one-to-one and has closed range. Thus
R((Ix —T)P*1) is closed. Now, in order to conclude that T satisfies (3.4.2)-
(8.4.7), we can either remark that we have reduced the situation to the case
k > p, or appeal to Theorem 1.6.

We have thus completed the proof of the theorem. m

-1 1

ST L (1)

k=0

v

v

~ We remark that, the condition “R((Ix — T)*~1) + N(Ix —T) is closed”
1s automatically satisfied when p = 1, as in this case R{(Ix — TP =
R((Ix — T)°) = X. Thus each of conditions {3.4.1)~(3.4.8) generalizes the
corresponding condition of Theorem 1.5. Notice that conditions (3.4.9) and
(3.4.10) generalize conditions (1.5.9) and (1.5.11) and condition (1.5.10)
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respectively, also when p = 1: indeed, when p == 1, conditions (1.5.9) and
(1.5.11) correspond to the special cases j = 0 and k = j = 1, respectively,
of (3.4.9), and condition (1.5.10) corresponds to the special case j = 0 of
(3.4.10).

We also recall that in [LM2], Theorem 6, several equivalent conditions
to 1 being a pole of the resolvent of a bounded linear operator T, satisfying
condition (£-p) for some p € Z,., are given. We remark that Theorem 3.4
generalizes Theorem 6 of [LM2], as condition (£-p), in virtue of Theorem 2.4
and Example 2.6, is more restrictive than convergence to zero of [|T"(|/n®.

Finally, we remark that (3.4.9) is more general than (1.6.2) (which cor-
responds to the special case k = p+ 1, j = 0). Besides, condition (3.4.9)
with k¥ = p, j = 0 shows that, if ||T™||/n® - 0 as n — oo, then closed-
ness of R{{Ix — T)P) ensures that 1 is a pole of order less than or equal
to p of R(:,T). The following example shows that, under the weaker (than
convergence to zero of ||T™|/nP) hypotheses r(T") < 1 and a(Ix —~ T} < p,
closedness of R{(Ix — T)F) does not suffice to ensure that 1 is a pole of
R(-,T) (whereas closedness of R({Ix — T)*) for some k > p does, in virtue
of {Lal, 2.7).

ExAMPLE 3.5. Let § be the bounded linear weighted shift operator on
the complex Hilbert space ly defined by
Tn
S njn =
(Zn)nen Z ]
neEN

(where (en)nen is the canonical basis of I3}, and let A € L{ls x I2) be defined
by

€nt1 for every (Znlnen € lo

A(z,y) = (Sz,2) for every (z,y) € b X la.
Then R(A) is closed by Theorem 1.1, as Iz x Iz = R(4) & (I2 ¥ {0}). Far-
thermore, since r(§) = 0 (see [H], Solution 80), S is not nilpotent and

A¥(z, ) = (S*z, 5% 2) for every (2,y) € I X I3 and every k € Zy,

it follows that 7(A) = 0 and A is not nilpotent (see for instance [Z] for
another example of a bounded linear nonnilpotent operator having closed
range, whose spectral radius is equal to zero). Hence 0 is not a pole of
R(, A) (see [TL], V, 10.6). Notice also that a(A) =1, as N(AF) = {0} x Iz
for every k € Z, . Hence, if we set T' = I, x1, — 4, it follows that o(T) = {1},
oIy xiy ~ T) = 1, R{Iiyx1, — T') is closed and nevertheless 1 is not a pole
of R(-,T). m

We remark that the equivalent conditions of Theorem 3.4 imply the
following condition:

(3.6) ||T"{|/n® — 0 as n — oo and R{(Ix — TVP=B) 4 N ((Ix — T)) is
closed for every k € {1,...,p} and for all j > &.
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When p > 2, the equivalent conditions of Theorem 3.4 imply the following
condition as well:

(3.7) (1/nP) 33 s T* converges in L(X) and R{UIx =T F+N{((Ix-T))
is closed for every k € {2,...,p} and for all j 2 &.

Nevertheless, neither (3.6) nor (3.7) implies the equivalent conditions of
Theorem 3.4: indeed, if 7' is some bounded linear cperator on a complex
Banach space such that the sequence (T™)nen is bounded and 1 is not a pole
of R(+,T) (e.g., if T is the bounded linear operator on the complex Banach
space L2([0,1]) defined by (Tz)(t) = tz(t) for almost all ¢ € [0,1] and for
all z € Ly([0, 1])-—see [W], Beispiel—or by T' = (Ir,([0,1)) + V)~*, where V
is the Volterra integral operator—see [MZ], p. 1155), then T satisfies both
(3.6) for p= 1 and (3.7) for p = 2, yet satisfies the equivalent conditions of
Theorem 3.4 for no p € Z..

Now we are going to show that convergence to zero of |T™]{/n (respec-
tively, condition £(k,p)) cannot be replaced by condition S(1,p) in (3.4.2),
(3.4.5) and (3.4.8)(3.4.10) (respectively, {3.4.3), (3.4.4), (3.4.6) and (3.4.7)):
indeed, the following is an example of an operator 7' such that (1/n)T™ con-
verges strongly to zero (namely, in virtue of Proposition 2.2, T' satisfies
condition §(1,1)), »(T) = 1 and 1 is a pole of order 1 of R(-,T) (which,
in virtue of Theorems 1.2-1.4 and Lemma 3.1, implies that T satisfies the
second part of each of conditions (3.4.2)—(3.4.10) for p = 1), and neverthe-
less (1/n) Y-pog T* does not converge in L(X). Notice that, instead, if a
bounded linear operator A with r(A) = 1 satisfies condition §(1,p) and in
addition the intersection of o(4) and the unit circle is assumed to consist
of a finite number of poles of R{:, 4), then Theorems 1.7 and 1.8, together
with Theorem 1.3, ensure that A satisfies the equivalent conditions of The-
orem 3.4. In virtue of Theorem 1.3 and of [Lal, 2.7, respectively, together
with Theorem 1.7, the condition above about the intersection of ¢(A) and
the unit circle is satisfied when, for instance, o(A) = {1}, 4 satisfles S(1,p)
and either §(Ix — A) < oo or R{(Ix — A)¥) is closed for some k > p (sce
[Z], Theorem 6, for the case p = 1).

ExAMPLE 3.8. Let W be the bounded linear operator on the complex
Hilbert space L2([0,1]} considered in [W], Beispiel. That is,

(Wa){t) = tz(t) for almost all ¢t € [0,1].

We recall that o(W) = [0,1], R(A, o) — W) # La([0,1]) for every
A€ [0,1] and |W”|| =1 for all n € N (see [W], Beispiel).

Now let A € L{Ls([0,1]) x L2([0, 1])) be defined by
Alz,y) = (Wx,y—2z) forall (z,y) € L([0, 1]} x La(10,1]).
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We remark that for all A € € and (z,) € L2([0, 1]} x Ly([0, 1]), we have
(A Lzy o)y xa(ioa)) — A& ¥) = (Mrao,uy — W)z, (A - Ly +2).
Since R{AL,¢01p — W) # L2([0, 1]) for all A € [0,1], it follows that
Ry qoapxza(ionn — 4) # L2([0,1]) % L2([0,1]) for all A€ [0,1].

Hence [0,1] C o(A). Now, for every A € C \ [0,1], let the operator S\ €
L{L2([0,1]) x Ls([0,1])) be defined by

1 -
Sx{z,y) = (()\ILE([O,U) -W) 'z, 3 1(?} — (Mry(oy) — W) lx))

for all (z,9) € La([0,1]) x La({0,1]). Then
Sy (M a0, 1 La(i0,1)) —A) = (ALLa(0,1)x 220,11 —A)Sx = raqomx L2010

and consequently A € p(4).

We have thus proved that o(A) = [0,1] (which implies that 1 is not a
pole of R(-, A}).

We also remark that, since for every (z,4) € Lz([0,1}]) x L2([0,1]} we
have

(Trac0,1% Ea(o)) — A(@:¥) = ((Traony — W, 2),

we get La([0, 11) x La([0, 1]) = Rz, (0.1 xL2i0,17) — A) @ (L2([0,1]) x {0})-
Then R(Ir,([0,1])x L2(10,1]} — A) is closed by Theorem 1.1.
Now we prove that (1/n)A™ converges strongly to zero. We begin by

remarking that for all n € Z,. and (z,3) € L2({0, 1]) x La([0, 1]} we have

A"z, y) = (W“sc, Y- ri W’“m) .
k=0

Since ||[W™] = 1 for every n € N, and consequently |w"|/n— 0asn — co,
it suffices to show that (1/n)(y— S e—o W¥z) — 0in Lg([0,1]) asn — oo for
all (z,3) € L(]0,1]) x L5{[0, 1)), that is, (1/7) S=p=g Wk — 0 in Ly([0,1])
as n — oo for all z € Ly([0,1]). Fix = € L([0,1]). We remark that for all
n € Z4 we have
1/ 15, a(t)(1 - t™)
E(kz:%wkiﬁ) (1’:) = -T_L kg;’)t .’E(t) = —W for almost all ¢ EI[O_, 1].

Thus (1/n)(3 52 W¥z)(t) — 0 as n — oo for almost all £ € [0, 1]. Since

1 n-—-1 . _Mn-wl . .
;(kzﬂum)(w— Y ¢ <et)

for almost all ¢ € [0,1] and for all n € Z., from the dominated convergence
theorem, it follows that (1/n) n o Whz — 0 in L3([0,1]).
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We have thus proved that (1/7)A™(z,y) — 0in L([0, 1]) x L»(]0, 1]} for
all (z,v) € L2(10,1]) x L2([0,1]).
Now let X denote Lg([0,1]) x L2([0,1]), and let T € L{X x C) be defined
by
T(u, ) = (—Au, A} for all (u, ANeX xC
Since o(—A) = —o(4) = [~1,0] and the spectrum of the linear operator on
C mapping every A € C into A is the singleton {1}, it follows that

o(T) = [-1,0]U{1}

and consequently r(T) = L.
‘We remark that for all (u,A) € X x C we have

(Ixxe — T u, X) = ((Ix + A)u,0).
Since —1 & o{A), it follows that
Nxxc—T)={0} xC and R{Ixxc—T) =X X {0},
which gives
X xC=N{Ixxc—T)®RIxxc ~T).
In virtue of Theorems 1.2 and 1.3, we may conclude that 1 is a pole of

order 1 of R(-,T). Furthermore, since (1/n}A™ converges strongly to zero,
it follows that

1 1 (—1)™ A

—qm A= Z((-1}n A" _ Moy, —

- {n, A) n(( Ly A%u, A) ( - A u,n) -0

as n — oo for all (u,A) € X x C. Thus (1/n)1™ also converges strongly to
zero, that is, T' satisfies 8(1,1).

Now we prove that (1/n) S r_y T® does not converge in L(X x C).
Otherwise, by Theorem 1.5, (1/n)T™ — 0 in L{X x C), and consequently
(1/n)A™ — 0 in L(X). Since R(Ix — A) is closed, Theorem 1.5 would show
that 1 is a pole of R(-, A), contrary to what we have proved above. m

Now we are going to provide a sufficient condition in order that the
equivalent conditions of Theorem 3.4 be satisfied.

PropOSITION 3.9. Let P € Zy., let X be a complez Banach space and let
T € L{X). If (1/nP) Y isy T* converges in L(X) and R((Ix ~ T)P"1) is
closed, then T satisfies the equivalent conditions {3.4.1)—-(3.4.10).

Proof. Let B € L(X) be such that ||(1/n?) S5 3 T% — B — 0 as
n — oo. Then by (3.3.2) we have

1%/ n , 1 .
HT,,}Z<j+l)(T_IX)J—E+;,(T"~Ix)p"l —0 asn— oc.
j=p .
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Furthermore, since R{(Ix — TP~ is closed, from (3.3.3) we conclude that
R(E) © N{Ix — T} N R({Ix — T)?~*) and consequently

R(;}E z:j (j _”; 1) (T —Ix) - E) CR((Ix = TP,

for every n > p. Since R{{Ix — T)?~!) is closed, from Lemma 3.2 it follows
that, for sufficiently large n, we have

R(%};g (j j_ 1) (T — Ix) — E) = R((Ix - 7).

j=p
Consequently,
n—1
1 n .
— T = -7 j+1i
R((Ix = T)) R(nﬂj___zp(j+1)(T x) )

-t ({2 o077

i=p

c R({Ix — TYH).
Hence R({Ix —T)F+1} = R{(Ix —T)P), that is, §(Ix —T) < p. Since conver-
gence to zero of [|[T™||/n” is a consequence of convergence of (1/n?) Z:;[ll T*

in L(X) (see (3.3.1)), it follows that T' satisfies (3.4.5), and therefore all the
equivalent conditions of Theorem 3.4. m

We conclude with the following example, showing that the summand
N{Ix — T) cannot be removed from condition (3.4.1}, as closedness - of
R((Ix — T)P~') is not a necessary condition for 1 to be a pole of order
p of the resolvent of an operator T such that \T™||/nP — 0 as n — oo,

ExAMPLE 3.10. Let B be some bounded linear operator on a complex
Banach space X, with zero square, and such that R(B) is not closed (that
is, R(B) is a nonclosed subspace of N'{B); such an operator B can be con-
structed on any infinite-dimensional Banach space X: it suffices to choose
two sequences (Zn)nen and (T )nen of elements of X and of its dual, re-
spectively, such that [jzn]| = 1 for all n € N and z3(zx) = §;5, where ik
denotes the Kronecker symbol, for all 7,k € N, and then set

Bz = Z Ay, (T)zonpr  for allz € X,
neN
where (An)new I8 Some sequence of nongero scalars such that 3. -y |Anl
% || 25|l < 00). If we set T = Ix — B, then 1is a pole of order 2 of T and
o{T) = {1}. From Theorem 1.8 it follows that |T>||/n* — 0 as n — cc.
Then T satisfies (3.4.1)~(3.4.10) for p = 2. Nevertheless, R{Ix — T) is not
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closed, as it coincides with R{B), whereas R(Ix —T)+N(Ix ~T) = N(B),
which is closed. m
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